首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser-ablation microanalysis of a large suite of silicate and sulfide melt inclusions from the deeply eroded, Cu-Au-mineralizing Farallón Negro Volcanic Complex (NW Argentina) shows that most phenocrysts in a given rock sample were not formed in equilibrium with each other. Phenocrysts in the andesitic volcano were brought together in dominantly andesitic—dacitic extrusive and intrusive rocks by intense magma mixing. This hybridization process is not apparent from macroscopic mingling textures, but is clearly recorded by systematically contrasting melt inclusions in different minerals from a given sample. Amphibole (and rare pyroxene) phenocrysts consistently contain inclusions of a mafic melt from which they crystallized before and during magma mixing. Most plagioclase and quartz phenocrysts contain melt inclusions of more felsic composition than the host rock. The endmember components of this mixing process are a rhyodacite magma with a likely crustal component, and a very mafic mantle-derived magma similar in composition to lamprophyre dykes emplaced early in the evolution of the complex. The resulting magmas are dominantly andesitic, in sharp contrast to the prominently bimodal distribution of mafic and felsic melts recorded by the inclusions. These results severely limit the use of mineral assemblages to derive information on the conditions of magma formation. Observed mineral associations are primarily the result of the mixing of partially crystallized magmas. The most mafic melt is trapped only in amphibole, suggesting pressures exceeding 350 MPa, temperatures of around 1,000 °C and water contents in excess on 6 wt%. Upon mixing, amphibole crystallized with plagioclase from andesitic magma in the source region of porphyry intrusions at 250 MPa, 950 °C and water contents of 5.5 wt%. During ascent of the extrusive magmas, pyroxene and plagioclase crystallized together, as a result of magma degassing at low pressures (150 MPa). Protracted extrusive activity built a large stratovolcano over the total lifetime of the magmatic complex (>3 m.y.). The mixing process probably triggered eruptions as a result of volatile exsolution.Electronic Supplementary Material Supplementary material (eTable 1and eFigure 1) is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: T.L. Grove  相似文献   

2.
 The Aurora volcanic field, located along the northeastern margin of Mono Lake in the Western Great Basin, has erupted a diverse suite of high-K and shoshonitic lava types, with 48 to 76 wt% SiO2, over the last 3.6 million years. There is no correlation between the age and composition of the lavas. Three-quarters of the volcanic field consists of evolved (<4 wt% MgO) basaltic andesite and andesite lava cones and flows, the majority of which contain sparse, euhedral phenocrysts that are normally zoned; there is no evidence of mixed, hybrid magmas. The average eruption rate over this time period was ∼200 m3/km2/year, which is typical of continental arcs and an order of magnitude lower than that for the slow-spreading mid-Atlantic ridge. All of the Aurora lavas display a trace-element signature common to subduction-related magmas, as exemplified by Ba/Nb ratios between 52 and 151. Pre-eruptive water contents ranged from 1.5 wt% in plagioclase-rich two-pyroxene andesites to ∼6 wt% in a single hornblende lamprophyre and several biotite-hornblende andesites. Calculated oxygen fugacities fall within –0.4 and +2.4 log units of the Ni-NiO buffer. The Aurora potassic suite follows a classic, calc-alkaline trend in a plot of FeOT/MgO vs SiO2 and displays linear decreasing trends in FeOT and TiO2 with SiO2 content, suggesting a prominent role for Fe-Ti oxides during differentiation. However, development of the calc-alkaline trend through fractional crystallization of titanomagnetite would have caused the residual liquid to become so depleted in ferric iron that its oxygen fugacity would have fallen several log units below that of the Ni-NiO buffer. Nor can fractionation of hornblende be invoked, since it has the same effect as titanomagnetite in depleting the residual liquid in ferric iron, together with a thermal stability limit that is lower than the eruption temperatures of several andesites (∼1040–1080°C; derived from two-pyroxene thermometry). Unless some progressive oxidation process occurs, fractionation of titanomagnetite or hornblende cannot explain a calc-alkaline trend in which all erupted lavas have oxygen fugacites ≥ the Ni-NiO buffer. In contrast to fractional crystallization, closed-system equilibrium crystallization will produce residual liquids with an oxygen fugacity that is similar to that of the initial melt. However, the eruption of nearly aphryic lavas argues against tapping from a magma chamber during equilibrium crystallization, a process that requires crystals to remain in contact with the liquid. A preferred model involves the accumulation of basaltic magmas at the mantle-crust interface, which solidify and are later remelted during repeated intrusion of basalt. As an end-member case, closed-system equilibrium crystallization of a basalt, followed by equilibrium partial melting of the gabbro will produce a calc-alkaline evolved liquid (namely, high SiO2 and low FeOT/MgO) with a relative f O 2 (corrected for the effect of changing temperature) that is similar to that of the initial basalt. Differentiation of the Aurora magmas by repeated partial melting of previous underplates in the lower crust rather than by crystal fractionation in large, stable magma chambers is consistent with the low eruption rate at the Aurora volcanic field. Received: 7 July 1995 / Accepted: 19 April 1996  相似文献   

3.
The kinetics of oxygen isotope self-diffusion in natural samples of hornblende, tremolite, and richterite have been measured. Samples were run under hydrothermal conditions using 18O enriched water. Profiles of 18O(16O + 18O)vs depth into the crystal were obtained using an ion microprobe; the depths of sputtered holes were measured using an optical interferometer. At 1000 bars (100 MPa) water pressure, the activation energies (Q) and pre-exponential factors (D0) for diffusion parallel to c are: D0(cm2/sec) Q (kcal/gm-atom) T (°C) Hornblende 1+20?1 × 10?741 ± 6 650–800 Tremolite 2+30?2× 10?8 39 ± 5 650–800 Richterite 3+5?2 × 10?4 57 ± 2 650–800The diffusion coefficient (D) for hornblende at 800°C and 1000 bars water pressure measured parallel to the c crystallographic direction is at least ten times greater than that parallel to the a or b directions. An increase in water pressure from 200 to 2000 bars increases D by a factor of 2.7 for diffusion parallel to c at 800°C. The D value for hornblende at 800°C is about 0.01 that for quartz and 0.001 that for anorthite. As a result, closure temperatures for oxygen exchange in natural primary amphiboles are significantly higher than for quartz or feldspars. It is unlikely that amphiboles will exchange oxygen isotopes by diffusion under most crustal conditions.  相似文献   

4.
Abstract Crystal-chemical relationships between coexisting sodic and calcic amphiboles have been studied in eclogitic metagabbros from the Aosta Valley, Western Alps. Textural analysis gives evidence of three successive high-pressure parageneses:
1. Pre-kinematic high-grade blueschist assemblages, preserved as polymineralic inclusions in garnet cores and made of glaucophane and actinolite (stage A).
2. Synkinematic eclogite assemblages, composed of garnet + omphacite + glaucophane ± actinolite ± white mica ° Clinozoisite + quartz + rutile (stage B).
3. Post-kinematic epitactic overgrowths of barroisitic amphibole on glaucophane and actinolite (stage C).
P–T conditions of the eclogitic metamorphism have been estimated at around 500–550°C, 16 kbar.
Glaucophane and actinolite coexist as discrete grains in stage A and B assemblages. This texture and the chemistry of the amphiboles unambiguously denotes the existence of a miscibility gap between sodic and calcic amphiboles (from NaM4= 0.80 in actinolite to NaM4= 1.70 in glaucophane at T = 500–550°C). A comparison with published analyses allows a new solvus along the glaucophane–actinolite join to be drawn.
The later barroisitic amphibole (stage C) exhibits strong chemical zonation indicating disequilibrium growth. This amphibole cannot either be used to define a miscibility gap with glaucophane or actinolite or be considered as an intermediate stage between these two end-members.  相似文献   

5.
The OH? stretching frequencies of clino-amphiboles are known to depend on the cations to which the OH? is co-ordinated, and the intensities of the corresponding infra-red (ir) absorption bands have been used to obtain evidence as to the occupancy of the M1 and M3 sites. However, the possible effects on the method arising from clustering together of like cations, or of the mutual avoidance of like cations (anti-clustering), have not hitherto been explicitly analysed. A model is set up which permits these to be systematically explored. The results are exemplified for occupation of M1 and M3 by (Fe, Mg). Clustering of Fe increases the frequency of both Fe3 and Mg3 triads, though not equally, and the effect of anti-clustering is in the opposite sense. The effect on the frequencies of MgFe2 and Mg2Fe triads is much more complicated and the sense of the changes depends on both the overall Fe content and on the degree of clustering or anti-clustering.  相似文献   

6.
Sugarloaf Mountain is a 200-m high volcanic landform in central Arizona, USA, within the transition from the southern Basin and Range to the Colorado Plateau. It is composed of Miocene alkalic basalt (47.2–49.1?wt.% SiO2; 6.7–7.7?wt.% MgO) and overlying andesite and dacite lavas (61.4–63.9?wt.% SiO2; 3.5–4.7?wt.% MgO). Sugarloaf Mountain therefore offers an opportunity to evaluate the origin of andesite magmas with respect to coexisting basalt. Important for evaluating Sugarloaf basalt and andesite (plus dacite) is that the andesites contain basaltic minerals olivine (cores Fo76-86) and clinopyroxene (~Fs9-18Wo35-44) coexisting with Na-plagioclase (An48-28Or1.4–7), quartz, amphibole, and minor orthopyroxene, biotite, and sanidine. Noteworthy is that andesite mineral textures include reaction and spongy zones and embayments in and on Na-plagioclase and quartz phenocrysts, where some reacted Na-plagioclases have higher-An mantles, plus some similarly reacted and embayed olivine, clinopyroxene, and amphibole phenocrysts.Fractional crystallization of Sugarloaf basaltic magmas cannot alone yield the andesites because their ~61 to 64?wt.% SiO2 is attended by incompatible REE and HFSE abundances lower than in the basalts (e.g., Ce 77–105 in andesites vs 114–166?ppm in basalts; Zr 149–173 vs 183–237; Nb 21–25 vs 34–42). On the other hand, andesite mineral assemblages, textures, and compositions are consistent with basaltic magmas having mixed with rhyolitic magmas, provided the rhyolite(s) had relatively low REE and HFSE abundances. Linear binary mixing calculations yield good first approximation results for producing andesitic compositions from Sugarloaf basalt compositions and a central Arizona low-REE, low-HFSE rhyolite. For example, mixing proportions 52:48 of Sugarloaf basalt and low incompatible-element rhyolite yields a hybrid composition that matches Sugarloaf andesite well ? although we do not claim to have exact endmembers, but rather, viable proxies. Additionally, the observed mineral textures are all consistent with hot basalt magma mixing into rhyolite magma. Compositional differences among the phenocrysts of Na-plagioclase, clinopyroxene, and amphibole in the andesites suggest several mixing events, and amphibole thermobarometry calculates depths corresponding to 8–16?km and 850° to 980?°C. The amphibole P-T observed for a rather tight compositional range of andesite compositions is consistent with the gathering of several different basalt-rhyolite hybrids into a homogenizing ‘collection' zone prior to eruptions. We interpret Sugarloaf Mountain to represent basalt-rhyolite mixings on a relatively small scale as part of the large scale Miocene (~20 to 15 Ma) magmatism of central Arizona. A particular qualification for this example of hybridization, however, is that the rhyolite endmember have relatively low REE and HFSE abundances.  相似文献   

7.
The paper reports original thermochemical data on six natural amphibole samples of different composition. The data were obtained by high-temperature melt solution calorimetry in a Tian–Calvet microcalorometer and include the enthalpies of formation from elements for actinolite Ca1.95(Mg4.4Fe 0.5 2+ Al01)[Si8.0O22](OH)2(–12024 ± 13 kJ/mol) and Ca2.0(Mg2.9Fe 1.9 2+ Fe 0.2 3+ )[Si7.8Al0.2O22](OH)2, (–11462 ± 18 kJ/mol), and Na0.1Ca2.0(Mg3.2Fe 1.6 2+ Fe 0.2 3+ )[Si7.7Al0.3O22](OH)2 (–11588 ± 14 kJ/mol); for pargasite Na0.5K0.5Ca2.0-(Mg3.4Fe 1.8 2+ Al0.8)[Si6.2Al1.8O22](OH)2 (–12316 ± 10 kJ/mol) and Na0.8K0.2Ca2.0(Mg2.8Fe 1.3 3+ Al0.9) [Si6.1Al1.9O22](OH)2 (–12 223 ± 9 kJ/mol); and for hastingsite Na0.3K0.2Ca2.0(Mg0.4Fe 1.3 2+ Fe 0.9 3+ Al0.2) [Si6.4Al1.6O22](OH)2 (?10909 ± 11 kJ/mol). The standard entropy, enthalpy, and Gibbs free energy of formation are estimated for amphiboles of theoretical composition: end members and intermediate members of the isomorphic series tremolite–ferroactinolite, edenite–ferroedenite, pargasite–ferropargasite, and hastingsite.  相似文献   

8.
Principal components analysis is used to study the chemistry of 639 calcic amphiboles. Eigenvectors representing multiple partial correlation coefficients give various sets of substitutional relationships. The relative significance of each set can be noted by the percent variation of the data it represents. The highest percent variation (36%) is associated with the substitutions $$Si + Mg \rightleftharpoons Al^{IV} + Al^{VI} + Ti + Fe^{3 + } + Fe^{2 + } + Na + K$$ . Other expected substitutions among the ions such as AlIV + Na ? Si, the positive correlation between AlIV and AlVI etc. are shown statistically. The substitution of Al in T 1 and T 2 positions imposes an ordering in the M 1, M 2 and M 3 sites. Variability of OH in the amphiboles is found to be significant. There is no definite correlation between OH and Fe3+ but OH and Ti are positively correlated. Under certain conditions and provided the concentration of AlIV does not change significantly, Fe and Mg may be assumed to mix ideally in the amphibole solid solution.  相似文献   

9.
Electron probe and wet chemical analyses of amphibole pairs from the sillimanite zone of central Massachusetts and adjacent New Hampshire indicated that for a particular metamorphic grade there should be a restricted composition range in which three amphiboles can coexist stably. An unequivocal example of such an equilibrium three amphibole rock has been found in the sillimanite-orthoclase zone. It contains a colorless primitive clinoamphibole, space group P21/m, optically and chemically like cummingtonite with blue-green hornblende exsolution lamellae on (100) and (¯101) of the host; blue-green hornblende, space group C2/m, with primitive cummingtonite exsolution lamellae on (100) and (¯101) of the host; and pale pinkish tan anthophyllite, space group Pnma, that is free of visible exsolution lamellae but is a submicroscopic intergrowth of two orthorhombic amphiboles. Mutual contacts and coarse, oriented intergrowths of two and three host amphiboles indicate the three grew as an equilibrium assemblage prior to exsolution. Electron probe analyses at mutual three-amphibole contacts showed little variation in the composition of each amphibole. Analyses believed to represent most closely the primary amphibole compositions gave atomic proportions on the basis of 23 oxygens per formula unit as follows: for primitive cummingtonite (Na0.02Ca0.21 Mn0.06Fe2+ 2.28Mg4.12Al0.28) (Al0.17Si7.83), for hornblende (Na0.35Ca1.56Mn0.02Fe1.71Mg2.85Al0.92) (Al1.37Si6.63), and for anthophyllite (Na0.10Ca0.06Mn0.06Fe2.25Mg4.11Al0.47) (Al0.47Si7.53). The reflections violating C-symmetry, on X-ray single crystal photographs of the primitive cummingtonite, are weak and diffuse, and suggest a partial inversion from a C-centered to a primitive clinoamphibole. Single crystal photographs of the anthophyllite show split reflections indicating it is an intergrowth of about 80% anthophyllite and about 20% gedrite which differ in their b crystallographic dimensions. Split reflections are characteristic of all analyzed orthorhombic amphiboles so far examined from Massachusetts and New Hampshire except the most aluminous gedrites, and the relative intensity of the gedrite reflections is roughly proportional to the degree of Na and Al substitution. Thin sections of a few of these anthophyllite specimens show lamellae parallel to (010) that are just resolved with a high power objective.Publication approved by the Director, U.S. Geological Survey.  相似文献   

10.
Multiple-chain and other unusual faults in amphiboles   总被引:1,自引:0,他引:1  
A combination of high resolution transmission electron microscopy and computer simulation has revealed the existence of multiple-chain and other faults in nephrite jade. Attention is drawn to the subunit cell reorganization involved with many of these faults, which generally appear to be free from severe structural strain.  相似文献   

11.
Blue-green hornblendes are observed in metabasite assemblages throughout the chlorite, biotite and garnet zones of the southwest Scottish Highlands. Actinolites are common in more Mg-rich metabasites in these zones. At low grade, hornblendes are relatively edenite-rich, and may sometimes occur together with a more Mg-rich, Al-poor actinolite. Within the garnet zone, hornblendes are pargasitic, showing extensive tschermakite substitution. Textural and chemical evidence do not indicate the presence of any miscibility gap between hornblende and actinolite within the chlorite to garnet zones in the southwest Highlands. The occurrence of hornblende-actinolite pairs in metabasites of the Scottish Dalradian, and perhaps also in other metamorphic terrains, is considered to reflect the incomplete chemical equilibration of lower grade actinolitic amphibole during prograde metamorphism, rather than a miscibility gap. The paucity of amphibole compositions intermediate between hornblende and actinolite in many metamorphic terrains is thought to reflect the rapid but continuous change of stable amphibole compositions in metabasites over a small range of increased metamorphic grade.  相似文献   

12.
Chemical etching of defect structures in pyroxenes and amphiboles has been investigated. Many features, such as very thin (~1 micrometer) exsolution lamellae not observed by transmission optical microscopy of thin sections, have been observed in reflected light after chemical etching of cleaved or polished crystal surfaces. A new feature in the microstructure of pyroxenes, not previously reported in the literature, has been revealed by one of the etchants.  相似文献   

13.
Maria Dorling  Jack Zussman 《Lithos》1987,20(6):469-489
In terms of morphology there are four major types of calcic amphibole; massive, prismatic, finely acicular and asbestos. Representatives of each of these types have been examined by optical microscopy, X-ray diffraction, scanning and transmission electron microscopy, and electron probe microanalysis. Massive specimens (nephrite) consist of randomly oriented clusters of fine, roughly lath-shaped, sub-microscopic crystals; within each cluster the lath lengths (z) are approximately aligned but neighbouring laths are rotated with respect to one another. Finely acicular specimens (“byssolites”) have well-formed crystals bounded mainly by {110} (100) and (010) faces and characteristically have striations parallel to their lengths. Asbestiform varieties range from finer (flexible) to coarser (more brittle) specimens and many specimens contain a mixture of fine and coarse fibrils. The fibrils in a bundle are aligned parallel to z but are in a range of azimuthal orientations. It is inferred that they are formed by multiple independent nucleation and growth parallel to z rather than through parting or cleavage on {110} planes. (100) defect or twin planes, or on (010) planar defects.

The {110} cleavage in amphiboles is well reported but (100) features are rarely mentioned in the literature. Our observations reveal the importance of (100) as a cleavage or parting as well as the tendency in nephrites, byssolites and asbestos towards a lath-like (parallel to z) morphology with flattening on (100). In the latter varieties therefore, the y-direction is that of second fastest crystal growth, after z.

When subjected to moderate grinding, the comminution of asbestos fibres proceeds more by separation of fibrils and less by fracturing to shorter lengths as compared with prismatic and byssolite specimens. Prolonged grinding does, however, shorten lengths of even the least brittle asbestos.

Transmission electron microscopy revealed extensive sub-grain boundaries and dislocation networks (suggesting a deformation history) in all prismatic and nephrite specimens. Fine multiple (100) twinning was observed in asbestos but not in other varieties. Although chain-width defects [on (010)], with visibility enhanced by beam damage, were most abundant in nephrites and fibrous tremolites, there appears to be no completely consistent relationship between such features and morphological type.

Electron probe analyses showed that specimens that contain more than a very small amount of aluminium do not have asbestiform habit. Asbestos specimens also have lower contents of Mn, Na and K and have formulae closer to the ideal Ca2(Mg,Fe)5Si8O22(OH)2. Small departures from this in asbestos involve Na in the A site compensated by Na for Ca rather than Al for Si whereas the reverse is true in byssolites. Chemical substitutions in prismatic specimens are much less constrained.

The characteristics of the four morphological sub-groups correlate reasonably well with what is known of their geological environments.  相似文献   


14.
安山质熔结凝灰岩中凹凸棒石断层岩的矿物学特征   总被引:5,自引:0,他引:5  
郯庐断裂带肥东段龙山安山质熔结凝灰岩中产出一种白色断层岩。X-射线粉末衍射(XRD)、红外光谱(TER)、扫描电子显微镜(SEM)、透射电镜(TEM)、电子能谱仪(EDS)、X-射线荧光光谱(XRF。)等结构、形貌和成分分析证明,这些白色断层岩主要由凹凸棒石组成(含量大于90%),属于凹凸棒石断层岩。凹凸棒石呈现40-60纳米的细长纤维,其中的少量杂质是纳米粒度的石英和钠长石。纳米粒度的石英和钠长石形态特征显示它们可能由安山质熔接凝灰岩中原生矿物机械破碎形成。这些凹凸棒石断层岩形成于火山热液活动同一期断层递进变形过程中,经历了三个阶段。首先是安山质熔结凝灰岩在断裂作用下形成碎粉岩,然后是碎粉岩在构造应力和火山热液作用下水化形成凹凸棒石,最后凹凸棒石又在断层活动晚期发生变形。  相似文献   

15.
J.L. Vigneresse   《Ore Geology Reviews》2007,30(3-4):181-216
For a long time, granites have been considered as passive bodies ascending under intrinsic negative density and viscosity contrasts with their host rocks. Chemical variations within a granitic body resulted from in situ differentiation and crystal fractionation. Since the mid 1980s, this global view has been significantly modified by (i) shifting melting from water-saturated conditions to fluid-absent reactions, (ii) increasing the role played by the mantle during granite generation, (iii) reassessing the rheology of partially molten rocks, (iv) demonstrating stepwise segregation and ascent of magmas by analogue and numerical models, (v) combining structural, geophysical and geochemical studies to reveal the internal structures in granitic plutons. It results that a granitic body is built up by a discontinuous accumulation of successive magma intrusions. The discontinuous nature of magma emplacement has also significant consequences for its ability to generate ore. The processes that lead to ore deposits are examined, with a brief review of the magmatic and fluid phases that concentrate ore forming elements. Examples are taken from crustal-derived granites and porphyry-type deposits. Those are considered as the two end-members of magmatic and hydrothermal ore deposits. The source characteristics of the magma, the emplacement mechanisms and magma mixing processes are the frame that controls the potential to carry base metals with the magma. The distribution of elements is controlled by diffusion, partition between minerals and melt, solubility and redox conditions. Variations of those parameters are examined by considering their activation energy which controls the exponential dependence with temperature. A characteristic length depending on the activation energy, temperature variation and time is estimated for a characteristic time lag of 30 ka. The intrusion of a magma into a magma chamber of similar composition, hence temperature, has few effects on diffusion, partition coefficient and redox conditions, because of a too low temperature contrast. The intrusion of a mafic magma into a felsic one induces a variation of 300 °C in both magmas. The characteristic length of diffusion may vary by up to two orders of magnitude, whereas the variation of partition coefficients is only one order of magnitude. The redox conditions are about 2.5 log unit in the mafic magma, but they can vary by 7 log units in the felsic magma. Hence, a strong decrease in δD values is observed in porphyry-type deposits. The effect is a removal of the elements with higher activation energy (W, Sn, Zr) from the mafic to the felsic magma. Deformation during the late stages of emplacement also controls ore formation.  相似文献   

16.
Mineralogy and Petrology - Understanding the mechanisms responsible for the interplay between mafic and felsic magmas is the key to retrieving information on their sources, and characterizing the...  相似文献   

17.
During alkali metasomatism of the country-rock associated with ijolite-carbonatite complexes the development of sodic amphibole and/or pyroxene is characteristic. In this paper, some new chemical analyses of these minerals, together with published analyses from fenites of Kenya, Uganda and Tanzania, include those of co-existing pairs of amphibole and pyroxene. The common amphiboles of the fenites are magnesioarfvedsonites with 100 Mg: Mg+Fe+Mn ranging from 67 to 36. They co-exist with aegirines having 0.75 to 0.89 ions Fe+3. Most of these minerals are poor in Ca; co-existing pairs tend to show corresponding increases in Ca and in Fe+2. In the syenitic fenites of Tororo and Budeda, considered to have formed at higher temperatures, the stable mineral is aegirine-augite. New analyses of richterite, magnesioarfvedsonite and aegirine from carbonate-rich rocks are also presented, and the relation between fenites and carbonatites is discussed.  相似文献   

18.
Alkali amphiboles of an intermediate composition in the magnesioriebeckite-eckrite series have been found in the metamorphic terrane of Leros Island. A complete compositional gradation has been demonstrated by a series of electron microprobe scans and analyses of spots. Electron microscopic examination revealed no exsolution.The present analyses and other data indicate a closing of the Na-Ca amphiboles gap towards the magnesian end members at temperatures higher than that usually associated with the blueschist facies.  相似文献   

19.
Amphibole-bearing gneiss fragments are common in the impact breccias of the Xiuyan crater, China. Three kinds of amphibole-bearing gneiss fragments with different shock-metamorphic levels have been identified. Shock-metamorphic features of amphiboles in these gneisses were investigated in situ by optical microscope, electron microprobe, Raman spectroscopy, and X-ray diffraction. Amphiboles in the weakly shocked gneiss (shock pressure less than 10 GPa) basically remain intact. Amphiboles in the moderately shocked gneiss (shock pressure range between 35 and 45 GPa) show strong deformation, reduced optical interference color, and partial loss of OH?. In the strongly shocked gneiss (shock pressure above 50 GPa), amphiboles are completely melted and dendritic pyroxenes crystallize from the melt. The formation of dendritic pyroxenes shows nearly complete loss of water in the amphibole melt at shock-induced high temperature above 1,500 °C. The occurrence of both diopside and pigeonite dendrites crystallized in the same amphibole melt shows inhomogenous melt composition and rapid cooling of the melt.  相似文献   

20.
Calcic amphiboles are observed in ultramafic rocks that have equilibrated under a broad span of geological conditions and might prove to be good indicators of metamorphic grade if their stabilities could be determined as a function of their compositions. Experiments were performed on the stability of tremolite plus forsterite in the system H2O-CaO-MgO-SiO2 from 5 to 20 kbar. A univariant curve was fitted to the experimental brackets using volume, water fugacity, and heat capacity data. The results indicate that the maximum stability of tremolite in the presence of forsterite is about 825° C at 5 kbar. Addition of Al2O3 to this system increases the stability of tremolitic amphibole by only 20°–40° C and induces solubility of 5–7 wt.% Al2O3 in the amphibole, as determined from quantitative SEM analyses of individual amphibole crystals. Thus substitution of the tschermakite component (Ca2(Mg3Al2) (Si6Al2) O22(OH)2) alone cannot lead to the greatly enhanced Al2O3 contents or thermal stability of natural calcic amphiboles. Comparison of the results from this study with experimental results from other studies on synthetic calcic amphiboles indicates that the high thermal stability of natural amphiboles is strongly linked with the substitution of alkalies (Na in particular) in the form of the component Na-Ca2(Mg4Al) (Si6Al2)O22(OH)2 (pargasite). Accordingly, experimental data from studies on pargasite have been combined with the appropriate univariant curves to obtain a phase diagram for amphibole-bearing ultramafic rocks modelled by the system H2O-Na2O-CaO-MgO-Al2O3-SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号