首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The impact of climatic changes that occurred during the last glacial maximum and the Holocene on vegetation changes in the Amazon Basin and the Guiana Shield are still widely debated. The aim of our study was to investigate whether major changes in vegetation (i.e. transitions between rainforests and C4 savannas) occurred in northern French Guiana during the Holocene. We measured variations in the δ13C of soil organic matter at eight sites now occupied by forest or savannah. The forest sites were selected to cover two regions (forest refugia and peneplains) which are thought to have experienced different intensities of disturbance during the latest Pleistocene and the Holocene. We found that none of the forest sites underwent major disturbances during the Holocene, i.e. they were not replaced by C4 savannahs or C4 forest savannahs for long periods. Our results thus suggest that tropical rainforests in northern French Guiana were resilient to drier climatic conditions during the Holocene. Nevertheless, geographical and vertical variations in the 13C of SOM were compatible with minor changes in vegetation, variations in soil processes or in soil physical properties.  相似文献   

2.
3.
Radiocarbon-dated pollen and diatom records from Hoton-Nur lake (48°40'N, 88°18'E), northwest Mongolia are used to reconstruct Holocene vegetation and climate changes. Steppe, which covered the area some time before 9000 BP (all ages are given in 14C BP), was replaced by boreal conifer forest-steppe by 9000-8500 BP. At the same time, planktonic diatoms increased in abundance from 5 to 45%. After 4000 BP there was a sharp reduction in forest and re-establishment of steppe. Changes in the pollen composition were accompanied by a decrease in the abundance of planktonic diatoms from 35-50% (between 9000 and 5500 BP) to less than 10% soon after 4000 BP. These and other published data from Mongolia suggest wetter conditions during the early and middle Holocene than those of today. This pattern probably reflects an expansion of the Pacific monsoon recorded in geological data from China and simulated in climate-model experiments, and suggests that the summer monsoon influenced a larger area than might appear if the Chinese records only are taken into consideration.  相似文献   

4.
Sediments from two limnic basins in a sub-continental region of northern Norway are investigated for pollen, plant macrofossils and bivalves at a high stratigraphical resolution. The basins are located at 280 and 400 m a.s.l. on the S-SW slope of Mt. Skrubben (848 m a.s.l.). The bio- and lithostratigraphical records are interpreted in terms of immigration and establishment of forest tree species and climate. The mountain was deglaciated at both sites at c . 9200-9100 BP ( c . 10200-10100 cal. BP). Betula pubescens forest stands established at c . 8900 BP ( c . 9900 cal. BP). The first Pinus sylvestris individuals may have established at or near the lowermost investigation site at c . 8700-8600 BP ( c . 9700-9600 cal. BP), while P. sylvestris forest stands were present at 400 m a.s.l. c . 7700 BP ( c . 8500 cal. BP) and expanded in area and/or density from c . 7200 BP. Macrofossils of P. sylvestris occur in strata with a pine pollen influx as low as c . 200 grains cm -2 yr -1 . The immigration of P. sylvestris to the western part of northern Fennoscandia may thus have happened earlier than formerly interpreted from pollen analyses alone, where influx values as low as c . 200 grains cm -2 yr -1 would not be considered as indicative of local presence. Alnus incana established at approximately the same time as P. sylvestris . During the period from deglaciation to c . 6600 BP ( c . 7300 cal. BP), calcareous limnic sediments were deposited in the basins, with Chara species and a Sphaeriidae fauna consisting of Pisidium hibernicum , P. lilljeborgii , P. milium , P. nitidum , P. waldeni and P. casertanum . During the period c . 8800-8500 BP, P. nitidum prevailed, and almost pure CaCO 3 sediments were formed. We interpret the environment as dry with a low influx of both minerogenic particles and humic substances. The period 8800-8500 BP (9800-9500 cal. yr BP) is interpreted as a period with warm and dry summers and cold and dry winters.  相似文献   

5.
Environmental changes are reconstructed from a Lateglacial and early Holocene sequence at Conty, northern France. The molluscan succession is put into a chronostratigraphic framework supported by numerous radiocarbon dates. Malacofaunas from the Bølling chronozone are reported for the first time in northern France and show progressive expansion of marshy communities within organic deposits. This biozone ended in a calcareous silt with the appearance of several species of arctic-alpine affinities. These sedimentological and malacological data point to colder climatic conditions after 12 220 ± 90 BP, but before 11 640 ± 80 BP, allowing allocation to the Older Dryas event. The first part of the Allerød appears to have been drier and relatively stable. After 11 400 BP, a decline in species richness and diversity in the malacofaunas suggests increasing dryness. During the Younger Dryas, two molluscan biozones are identified in a homogeneous calcareous silt, reflecting an early wet phase followed by a drier episode. At the onset of the Holocene malacofaunas show a higher diversity, suggesting climatic improvement.  相似文献   

6.
Sedimentological, geochemical and palynological data from Wulungu Lake in northern Xinjiang, China, are used to reconstruct environmental and climate changes since 9550 cal yr BP. High abundance of Sparganium and Poaceae, low Md (median diameter) and δ13Corganic values indicate aridity between 9550 and 6730 cal yr BP. High Md and δ13Corganic values, and the prevalence of desert-steppe and steppe vegetation between 4200 and 560 cal yr BP, indicate that effective moisture increased after 6730 cal yr BP, peaking at 4200 and 560 cal yr BP. Low Md values, a negative excursion of δ13Corg, and the transition from steppe to desert vegetation since 560 cal yr BP reflect a decrease in effective moisture during the latest Holocene. Late Holocene human activities were indicated by sharp increase in the abundance of Pediastrum then. Variations in carbonate contents indicate that temperature was generally high between 9550 and 7740 cal yr BP, low between 7740 and 6730 cal yr BP, intermediate between 6730 and 560 cal yr BP, and low during the last 560 yr. Regional comparison indicates that the Asian monsoon did not extend to Wulungu Lake and westerlies were the main factor in determining the moisture availability during the Holocene.  相似文献   

7.
A Holocene sedimentary record from the deep-silled Malangen fjord in northern Norway reveals regional changes in sedimentary environment and climate. Down-core analysis of two sediment cores includes multi-core sensor logging, grain size, x-radiography, foraminifera, oxygen isotopes, dinoflagellates, pollen, trace elements and radiocarbon datings. The cores are located just proximal to the submarine Younger Dryas moraine complex, and reveal the deglaciation after Younger Dryas and the postglacial evolution. Five sedimentary units have been identified. The oldest units, V and IV, bracket the Younger Dryas glacial readvance in the fjord between 12 700 cal. years BP and 11 800 cal. years BP. This is followed by deposition of glaciomarine sediments (units IV and III) starting around 12 100 cal. years BP. Glaciomarine sedimentation ceased in the fjord c. 10 300 cal. years BP and was replaced by open marine sedimentation (units II and I). A rapid stepwise warming occurred during the Preboreal. Onset of surface water warming lagged bottom water warming by several hundred years. The δ[Formula: See Text]O record indicates a significant, gradual bottom water cooling (c. 4°C) between 8000 and 2000 cal. years BP, a trend also supported by the other proxy data. Other records in the region, as well as GCM simulations, also support this long-term climatic evolution. Superimposed on this cooling were brief warmings around 6000 cal. years BP and 2000 cal. years BP. The long-term change may be driven by orbitally forced reduction in insolation, whereas the short-term changes may be linked to for example solar forcing, meltwater and NAO changes all causing regional changes in the North Atlantic heat transport.  相似文献   

8.
Birks, H. H. & van Dinter, M. 2010: Lateglacial and early Holocene vegetation and climate gradients in the Nordfjord–Ålesund area, western Norway. Boreas, Vol. 39, pp. 783–798. 10.1111/j.1502‐3885.2010.00161.x. ISSN 0300‐9483. Modern climate in western Norway shows a strong west–east gradient in oceanicity–continentality (coast to inner fjord) and altitudinal temperature gradients that control the regional and altitudinal zonation of vegetation. To discover if similar gradients existed during the Lateglacial and early Holocene, plant‐macrofossil analyses were made from five lacustrine sediment sequences in the Nordfjord–Ålesund region selected to sample the present climatic gradients. The macrofossil assemblages could be interpreted as analogues of the present vegetation, thus allowing reconstruction of past vegetation and climates. When the five sites were compared, climatic gradients could be detected. During the Lateglacial interstadial, mid‐alpine assemblages with Salix herbacea and S. polaris occurred at the lowland coast and upland inland sites, whereas the inland lowland site had low‐alpine dwarf‐shrub heath dominated by Betula nana, demonstrating a strong west–east gradient in temperature and precipitation and an altitudinal gradient inland. During the Younger Dryas stadial, assemblages at the lowland coast and upland inland sites resembled high‐alpine vegetation, whereas the inland lowland site was warmer with mid‐alpine vegetation, demonstrating west–east and altitudinal temperature gradients. Gradients became less pronounced in the Holocene. The early abundance of Betula nana in the inner fjord sites but its rarity at the coast is striking and reflects the oceanicity gradient. All sites became forested with Betula pubescens a few centuries into the Holocene. This forest was probably close to tree line at 370 m a.s.l. at the coast. Inland, there was no detectable altitudinal gradient, with the tree line well above 400 m a.s.l. reflecting the present pattern of tree‐line elevation.  相似文献   

9.
Pollen data from a Levinson-Lessing Lake sediment core (74°28'N, 98°38'E) and Cape Sabler, Taymyr Lake permafrost sequences (74°33'N, 100°32'E) reveal substantial environmental changes on the northern Taymyr Peninsula during the last c. 32 000 [Formula: See Text]C years. The continuous records confirm that a scarce steppe-like vegetation with Poaceae, Artemisia and Cyperaceae dominated c. 32 000-10 300 [Formula: See Text]C yr BP, while tundra-like vegetation with Oxyria, Ranunculaceae and Caryophyllaceae grew in wetter areas. The coldest interval occurred c. 18 000 yr BP. Lateglacial pollen data show several warming events followed by a climate deterioration c. 10 500 [Formula: See Text]C yr BP, which may correspond with the Younger Dryas. The Late Pleistocene/Holocene transition, c. 10 300-10 000 [Formula: See Text]C yr BP, is characterized by a change from the herb-dominated vegetation to shrubby tundra with Betula sect. Nanae and Salix. Alnus fruticosa arrived locally c. 9000-8500 [Formula: See Text]C yr BP and disappeared c. 4000-3500 [Formula: See Text]C yr BP. Communities of Betula sect. Nanae, broadly distributed at c. 10 000-3500 [Formula: See Text]C yr BP, almost disappeared when vegetation became similar to the modern herb tundra after 3500-3000 [Formula: See Text]C yr BP. Quantitative climate reconstructions show Last Glacial Maximum summer temperature about 4°C below the present and Preboreal (c. 10 000 [Formula: See Text]C yr BP) temperature 2-4°C above the present. Maximum summer temperature occurred between 10 000 and 5500 [Formula: See Text]C yr BP; later summers were similar to present or slightly warmer.  相似文献   

10.
11.
Two sediment cores from Mauritia flexuosa palm swamps have been studied by pollen and charcoal analysis. The cores Fazenda Cigana (FC) and Terra Indígena Aningal (TIA) were taken from a savanna-forest ecotone area in the Roraima State, northern Brazilian Amazon. Based on 5 radiocarbon dates, these records allow the reconstruction of the vegetation fire and climate dynamics during the past 1550 years. At the FC site was recorded a higher proportion of forest cover, suggesting local wetter climatic conditions favorable for forest expansion, especially by gallery forests, between 1550 and 1400 cal yr BP. Stands of M. flexuosa started to establish on the site indicating sufficient soil moisture. From 1400 to 1050 cal yr BP, forest cover retreated while savanna, and the Mauritia palm swamp expanded considerably. The FC site was marked by savanna and Mauritia cover with a slight increase of forest between ca. 1050 and 900 cal yr BP. From 900 to 300 cal yr BP the savanna and palm swamp taxa became dominant and the forest area decreased. At the TIA site the savanna cover was dominant between 1200 and 1000 cal yr BP. From 1000 to 700 forest expanded while savanna and Mauritia palm swamp reduced. Between 700 and 300 cal yr BP savanna and Mauritia palm swamp increased and forest area decreased. The high amount of charred particles found in the sediments, indicate fires with a marked increase between 1400 to 1000 cal yr BP (FC site) and 700 to 300 cal yr BP (TIA site), and probably caused the retreat of forest cover during these two time intervals. The relatively lower fire activity after 300 cal yr BP until present-day favored the increase of forested area at both TIA and FC sites. The arrival of the European settler and the subsequent introduction of cattle, is suggested as the main reason for the decrease of fire in the study region. The results point the fire caused by indigenous people as the principal controlling factor for forest and savanna dynamics during the past 1550 years.  相似文献   

12.
Sedimentological, micropalaeontological (benthic foraminifers and dinoflagellate cysts), stable isotope data and AMS 14C datings on cores and surface samples, in addition to acoustic data, have been obtained from Voldafjorden, western Norway. Based on these data the late glacial and Holocene sedimentological processes and variability in circulation and fjord environments are outlined. Glacial marine sedimentation prevailed in the Voldafjorden between 11.0 kyr and 9.2 kyr BP (radiocarbon years). In the later part of the Allerød period, and for the rest of the Holocene, there was deposition of fine‐grained normal marine sediments in the fjord basin. Turbidite layers, recorded in core material and on acoustic profiles, dated to ca. 2.1, 6.9–7.6, ca. 9.6 and ca. 11.0 kyr BP, interrupted the marine sedimentation. The event dated to between 6.9 and 7.6 kyr BP probably corresponds to a tsunami resulting from large‐scale sliding on the continental margin off Norway (the Storegga Tsunami). During the later part of the Allerød period, Voldafjorden had a strongly stratified water column with cold bottom water and warm surface water, reaching interglacial temperatures during the summer seasons. During the Younger Dryas cold event there was a return to arctic sea‐surface summer temperatures, possibly with year‐round sea‐ice cover, the entire benthic fauna being composed of arctic species. The first strong Holocene warming, observed simultaneously in bottom and sea‐surface temperature proxies, occurred at ca. 10.1 kyr BP. Bottom water proxies indicate two cold periods, possibly with 2°C lowering of temperatures, at ca. 10.0 (PBO 1) and at 9.8 kyr BP (PBO 2). These events may both result from catastrophic outbursts of Baltic glacial lake water. The remainder of the Holocene experienced variability in basin water temperature, indicated by oxygen isotope measurements with an amplitude of ca. 2°C, with cooler periods at ca. 8.4–9.0, 5.6, 5.2, 4.6, 4.2, 3.5, 2.2, 1.2 and 0.4–0.8 kyr BP. Changes in the fjord hydrology through the past 11.3 kyr show a close correspondence, both in amplitude and timing of events, recorded in cores from the Norwegian Sea region and the North Atlantic. These data suggest a close relationship between fjord environments and variability in large‐scale oceanic circulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
14.
15.
Climate change with respect to summer temperature throughout the Holocene is inferred from oscillations in the local Pinus sylvestris, Alnus incana and Betula pubescens forest‐lines, as recorded by fossil pollen and plant macrofossils in lake sediments at four altitudinal levels. Mt Skrubben (848 m a.s.l.), in Dividalen, was deglaciated down to below 280 m a.s.l. during 10 800–10 300 cal. yr BP. Betula pubescens established 10100 cal. yr BP at 280 m a.s.l. and expanded up to near the summit during the next 700 years. Birch woodland prevailed on the mountain plateau until 3300 cal. yr BP. Local Pinus sylvestris stands are recorded up to 400 m a.s.l. at 8450 cal. yr BP and >548 m a.s.l. about 8160 cal. yr BP. Alnus incana expanded from 400 to nearly 790 m a.s.l. during the period 7900–7600 cal. yr BP. The maximum forest distribution lasted until ca. 6000 cal. yr BP. Marked climatic deteriorations caused lowering of the forest‐lines around 4600 and 3000 cal. yr BP. Reconstruction of the summer temperature indicated mean July temperatures at 400 m a.s.l. of 1.5–3°C above the present during the period of maximum forest expansion, whereas >3°C above the present temperature at 548 m a.s.l. This is in accordance with other regional temperature reconstructions from northern Europe. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Palynological results from Liastemmen indicate a tripartite division of the Late Weichselian. In the pleniglacial period, from deglaciation ca. 14000 BP to ca. 13000 BP, Artemisia-dominated pioneer vegetation on disturbed, mineral-soil was strongly influenced by cold winters and katabatic winds. The Late Weichselian Interstadial (ca. 13000 BP-ca. 11000 BP) comprises a Salix-shrub consolidation phase, and from ca. 12700 BP a tree-birch phase. In the last 500 years of this period July and January means are estimated to about 16°C and between ?2°C and ?6°C, respectively. In the Younger Dryas Stadial (ca. 11000 BP-ca. 10200 BP) Artemisia-dominated vegetation returns. Three brief climatic deteriorations (ca. 12 250 BP, 11 700 BP, and 11 300 BP), unfavourable to woody vegetation on humus soils, are demonstrated within the interstadial. Critical climatic factors include cool winters and strong winds, exposing vegetation and soil to frost, drought, and erosion. The oldest and strongest oscillation, probably involving local deforestation, is correlated with the ‘Older Dryas deterioration’. Boreal-circumpolar, eurasiatic, and arctic-alpine plants dominated the late-glacial flora. For the majority of the late-glacial taxa a northward migration is demonstrated. This may also apply for Papaver radicatum, Pinguicula alpina, and Primula scandinavica, all with bicentric distributions in Norway today.  相似文献   

18.
Pollen analysis from Sandvikvatn has elucidated the local Late Weichselian vegetational and climatic history since deglaciation about 14,000 B.P. The pleniglacial period, the first of three climatic main periods and ending c. 13,600 B.P., is an Artemisia -dominated pioneer vegetation on disturbed mineral soils. The Late Weichselian Interstadial (13,600-11,000 B.P.) comprises a Salix -shrub consolidation phase and, from 12,900 B.P., a birch-forest optimum phase. In the Younger Dryas Stadial (11,000–10,100 B.P.) the Artemisia -dominated pioneer vegetation returns. Three climatic oscillations are demonstrated at intervals of about 500 years within the Interstadial. The oldest two, about 12,500 and 12,000 B.P., could both have been connected with the 'Older Dryas'. Cold winters and strong winds, causing soil erosion and drought, are suggested as important factors during the climatic periods unfavourable to woody vegetation. In the pleniglacial and Younger Dryas periods the winds are assumed to be katabatic. During the whole Late Weichselian southern species dominate locally. A northwards spread is demonstrated for the majority of the local late-glacial taxa, including the endemic Primula scandinavica and also Papaver radicatum and Aconitum , both previously discussed as part of the hypothesis of Weichselian ice-free refugia.  相似文献   

19.
Up to four nested Neoglacial moraines occur in front of glaciers on Lyngshalvöya. Lichenometric measurements at 21 glaciers demonstrate that these represent five episodes of glacier expansion, one of which predated the Little Ice Age. Lichenometric, dendrochronological and historical evidence indicates that the oldest Little Ice Age moraines date to the mid-18th century, and the youngest to A.D. 1910-30. At nine small glaciers the A.D. 1910-30 moraine represents the Neoglacial maximum; only larger glaciers were more extensive in the 18th century. It is inferred that conditions for glacier growth were less favourable in the 18th century than in A.D. 1880–1910 because of low winter snowfall. Comparison of the relative magnitude of 18th- and 20th-century advances on Lyngshalvöya with those of southern Norway suggests that the diminished winter precipitation was due to the southerly location of the North Atlantic oceanic polar front in the 18th century, which resulted in a reduction in winter cyclonic activity in northern Scandinavia but in an increase in snowfall farther south.  相似文献   

20.
Luoto, T. P. & Sarmaja‐Korjonen, K. 2011: Midge‐inferred Holocene effective moisture fluctuations in a subarctic lake, northern Lapland. Boreas, 10.1111/j.1502‐3885.2011.00217.x. ISSN 0300‐9483. We examined fossil midge (Diptera: Chironomidae) assemblages from Lake Várddoaijávri, northern Finland to track Holocene effective moisture variability. Application of a midge‐based water‐depth calibration model showed that the early Holocene was characterized by a high water level compared with the Holocene average, but the inferred values decreased at c. 8000 cal. a BP and increased again towards c. 6000 cal. a BP. The inferred water level decreased at c. 5500 cal. a BP, but increased again towards c. 4000 cal. a BP. Between 4000 and 3000 cal. a BP the lake experienced two rapid events of lower water level. A relatively high water level detected at c. 3000 cal. a BP was followed by a lowering towards c. 2000 cal. a BP. The time period from c. 2000 cal. a BP onwards was characterized by a general rise in lake level towards the present. Overall, the present reconstruction shows a close correspondence in its trends to previous lake‐level records in the region. Two common core taxa, Paratanytarsus and Corynocera ambigua, did not correlate significantly with water depth in the calibration data, creating a potential error source for the present lake‐level reconstruction. However, statistical analysis showed a clear community response to long‐term lake‐level changes, and therefore the major trends in Holocene effective moisture patterns were revealed. The present palaeoclimatic information can also serve as valuable background data when assessing the effects of the present climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号