首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Subterranean estuaries are characterized by the mixing of terrestrially derived groundwater and seawater in a coastal aquifer. Subterranean estuaries, like their river water-seawater counterparts on the surface of the earth, represent a major, but less visible, hydrological and geochemical interface between the continents and the ocean. This article is the first in a two-part series on the biogeochemistry of the subterranean estuary at the head of Waquoit Bay (Cape Cod, MA, USA). The pore-water distributions of salinity, Fe and Mn establish the salt and redox framework of this subterranean estuary. The biogeochemistry of Fe, Mn, P, Ba, U and Th will be addressed from the perspective of the sediment composition. A second article will focus on the groundwater and pore-water chemistries of Fe, Mn, U and Ba.Three sediment cores were collected from the head of Waquoit Bay where the coastal aquifer consists of permeable sandy sediment. A selective dissolution method was used to measure the concentrations of P, Ba, U and Th that are associated with “amorphous (hydr)oxides of iron and manganese” and “crystalline Fe and Mn (hydr)oxides.” The deeper sections of the cores are characterized by large amounts of iron (hydr)oxides that are precipitated onto organic C-poor quartz sand from high-salinity pore waters rich in dissolved ferrous iron. Unlike Fe (hydr)oxides, which increase with depth, the Mn (hydr)oxides display midcore maxima. This type of vertical stratification is consistent with redox-controlled diagenesis in which Mn (hydr)oxides are formed at shallower depths than iron (hydr)oxides. P and Th are enriched in the deep sections of the cores, consistent with their well-documented affinity for Fe (hydr)oxides. In contrast, the downcore distribution of Ba, especially in core 3, more closely tracks the concentration of Mn (hydr)oxides. Even though Mn (hydr)oxides are 200-300 times less abundant than Fe (hydr)oxides in the cores, Mn (hydr)oxides are known to have an affinity for Ba which is many orders of magnitude greater than iron (hydr)oxides. Hence, the downcore distribution of Ba in Fe (hydr)oxide rich sediments is most probably controlled by the presence of Mn (hydr)oxides. U is enriched in the upper zones of the cores, consistent with the formation of highly reducing near-surface sediments in the intertidal zone at the head of the Bay. Hence, the recirculation of seawater through this type of subterranean estuary, coupled with the abiotic and/or biotic reduction of soluble U(VI) to insoluble U(IV), leads to the sediments acting as a oceanic net sink of U. These results highlight the importance of permeable sediments as hosts to a wide range of biogeochemical reactions, which may be impacting geochemical budgets on scales ranging from coastal aquifers to the continental shelf.  相似文献   

2.
Porewater (i.e., groundwater) samples were collected from multi-level piezometers across the freshwater-saltwater seepage face within the Indian River Lagoon subterranean estuary along Florida’s (USA) Atlantic coast for analysis of the rare earth elements (REE). Surface water samples for REE analysis were also collected from the water column of the Indian River Lagoon as well as two local rivers (Eau Gallie River, Crane Creek) that flow into the lagoon within the study area. Concentrations of REEs in porewaters from the subterranean estuary are 10-100 times higher than typical seawater values (e.g., Nd ranges from 217 to 2409 pmol kg−1), with submarine groundwater discharge (SGD) at the freshwater-saltwater seepage face exhibiting the highest REE concentrations. The elevated REE concentrations for SGD at the seepage face are too high to be the result of simple, binary mixing between a seawater end-member and local terrestrial SGD. Instead, the high REE concentrations indicate that geochemical reactions occurring within the subterranean estuary contribute substantially to the REE cycle. A simple mass balance model is used to investigate the cycling of REEs in the Indian River Lagoon and its underlying subterranean estuary. Mass balance modeling reveals that the Indian River Lagoon is approximately at steady-state with respect to the REE fluxes into and out of the lagoon. However, the subterranean estuary is not at steady-state with respect to the REE fluxes. Specifically, the model suggests that the SGD Nd flux, for example, exported from the subterranean estuary to the overlying lagoon waters exceeds the combined input to the subterranean estuary from terrestrial SGD and recirculating marine SGD by, on average, ∼100 mmol day−1. The mass balance model also reveals that the subterranean estuary is a net source of light REEs (LREE) and middle REEs (MREE) to the overlying lagoon waters, but acts as a sink for the heavy REEs (HREE). Geochemical modeling and statistical analysis further suggests that this fractionation occurs, in part, due to the coupling between REE cycling and iron redox cycling within the Indian River Lagoon subterranean estuary. The net SGD flux of Nd to the Indian River Lagoon is ∼7-fold larger than the local effective river flux to these coastal waters. This previously unrecognized source of Nd to the coastal ocean could conceivably be important to the global oceanic Nd budget, and help to resolve the oceanic “Nd paradox” by accounting for a substantial fraction of the hypothesized missing Nd flux to the ocean.  相似文献   

3.
Dissolved Fe concentrations in subterranean estuaries, like their river-seawater counterparts, are strongly controlled by non-conservative behavior during mixing of groundwater and seawater in coastal aquifers. Previous studies at a subterranean estuary of Waquoit Bay on Cape Cod, USA demonstrate extensive precipitation of groundwater-borne dissolved ferrous iron and subsequent accumulation of iron oxides onto subsurface sands. Waquoit Bay is thus an excellent natural laboratory to assess the mechanisms of Fe-isotope fractionation in redox-stratified environments and determine potential Fe-isotope signatures of groundwater sources to coastal seawater. Here, we report Fe isotope compositions of iron-coated sands and porewaters beneath the intertidal zone of Waquoit Bay. The distribution of pore water Fe shows two distinct sources of Fe: one residing in the upward rising plume of Fe-rich groundwater and the second in the salt-wedge zone of pore water. The groundwater source has high Fe(II) concentration consistent with anoxic conditions and yield δ56Fe values between 0.3 and −1.3‰. In contrast, sediment porewaters occurring in the mixing zone of the subterranean estuary have very low δ56Fe values down to −5‰. These low δ56Fe values reflect Fe-redox cycling and result from the preferential retention of heavy Fe-isotopes onto newly formed Fe-oxyhydroxides. Analysis of Fe-oxides precipitated onto subsurface sands in two cores from the subterranean estuary revealed strong δ56Fe and Fe concentration gradients over less than 2m, yielding an overall range of δ56Fe values between −2 and 1.5‰. The relationship between Fe concentration and δ56Fe of Fe-rich sands can be modeled by the progressive precipitation of Fe-oxides along fluid flow through the subterranean estuary. These results demonstrate that large-scale Fe isotope fractionation (up to 5‰) can occur in subterranean estuaries, which could lead to coastal seawater characterized by very low δ56Fe values relative to river values.  相似文献   

4.
Submarine Groundwater Discharge(SGD), an important part of global water cycle, is recently recognized as a research highlight on the land ocean interaction in the coastal zone. Firstly, This paper analyzes the components and driving force of SGD, and summarizes the main estimating methods of SGD and its individual strengths and weaknesses. Secondly, the paper describes the important role of SGD in transporting dissolved mass into the costal ocean and significant impacts on the ecological environment of costal ocean, and through analyzing the biogeochemical process in the mixing zone of fresh salt water, indicates the important position of subterranean estuary in studying submarine groundwater discharge. Finally, the paper points out the major problems currently existing in SGD research, then presents the future research direction.  相似文献   

5.
Previous work has documented large fluxes of freshwater and nutrients from submarine groundwater discharge (SGD) into the coastal waters of a few volcanic oceanic islands. However, on the majority of such islands, including Moorea (French Polynesia), SGD has not been studied. In this study, we used radium (Ra) isotopes and salinity to investigate SGD and associated nutrient inputs at five coastal sites and Paopao Bay on the north shore of Moorea. Ra activities were highest in coastal groundwater, intermediate in coastal ocean surface water, and lowest in offshore surface water, indicating that high-Ra groundwater was discharging into the coastal ocean. On average, groundwater nitrate and nitrite (N + N), phosphate, ammonium, and silica concentrations were 12, 21, 29, and 33 times greater, respectively, than those in coastal ocean surface water, suggesting that groundwater discharge could be an important source of nutrients to the coastal ocean. Ra and salinity mass balances indicated that most or all SGD at these sites was saline and likely originated from a deeper, unsampled layer of Ra-enriched recirculated seawater. This high-salinity SGD may be less affected by terrestrial nutrient sources, such as fertilizer, sewage, and animal waste, compared to meteoric groundwater; however, nutrient-salinity trends indicate it may still have much higher concentrations of nitrate and phosphate than coastal receiving waters. Coastal ocean nutrient concentrations were virtually identical to those measured offshore, suggesting that nutrient subsidies from SGD are efficiently utilized.  相似文献   

6.
Subterranean estuary occupies the transition zone between hypoxic fresh groundwater and oxic seawater, and between terrestrial and marine sediment deposits. Consequently, we hypothesize, in a subterranean estuary, biogeochemical reactions of Fe respond to submarine groundwater discharge (SGD) and sea level rise. Porewater and sediment samples were collected across a 30-m wide freshwater discharge zone of the Indian River Lagoon (Florida, USA) subterranean estuary, and at a site 250 m offshore. Porewater Fe concentrations range from 0.5 μM at the shoreline and 250 m offshore to about 286 μM at the freshwater-saltwater boundary. Sediment sulfur and porewater sulfide maxima occur in near-surface OC-rich black sediments of marine origin, and dissolved Fe maxima occur in underlying OC-poor orange sediments of terrestrial origin. Freshwater SGD flow rates decrease offshore from around 1 to 0.1 cm/day, while bioirrigation exchange deepens with distance from about 10 cm at the shoreline to about 40 cm at the freshwater-saltwater boundary. DOC concentrations increase from around 75 μM at the shoreline to as much as 700 μM at the freshwater-saltwater boundary as a result of labile marine carbon inputs from marine SGD. This labile DOC reduces Fe-oxides, which in conjunction with slow discharge of SGD at the boundary, allows dissolved Fe to accumulate. Upward advection of fresh SGD carries dissolved Fe from the Fe-oxide reduction zone to the sulfate reduction zone, where dissolved Fe precipitates as Fe-sulfides. Saturation models of Fe-sulfides indicate some fractions of these Fe-sulfides get dissolved near the sediment-water interface, where bioirrigation exchanges oxic surface water. The estimated dissolved Fe flux is approximately 0.84 μM Fe/day per meter of shoreline to lagoon surface waters. Accelerated sea level rise predictions are thus likely to increase the Fe flux to surface waters and local primary productivity, particularly along coastlines where groundwater discharges through sediments.  相似文献   

7.
We have determined the concentration and isotopic composition of Os and Sr in the estuarine waters from the Godavari delta in Peninsular India. Additionally, we have obtained the concentration and isotopic composition of Os and Al concentration in selected suspended particulate matter recovered on 0.45 μm filters. The Na, K, Mg, and Ca concentrations of water samples obtained along salinity gradients from two distributary channels in the delta display a general two component mixing between river- and sea-water. The data also reveal that Al behaves non-conservatively and is affected by interactions with suspended particulates. The 87Sr/86Sr ratio of the riverine end member is 0.716303 and shows a linear decrease with salinity to seawater value and Sr isotope systematics indicate that its behavior is conservative in the estuary.The 187Os/188Os ratio of the Godavari river end-member is 1.24 and within error of the average eroding upper continental crust. The concentration and isotopic composition of Os through the two salinity transects shows that its behavior in the Godavari estuary is complex and non-conservative. By comparing the Al/Os ratios and Os isotopes in the waters with those of the suspended particulate we find that both Os gains and losses occur in the water column. However, in one of the distributaries (Vasishta) the Os concentration of suspended load increases and that of dissolved load decreases with increasing salinity towards the Bay of Bengal end-member. We infer that there is removal of seawater Os at higher salinities. The estimated mean residence time of Os in the oceans is 37 ± 14 (2σ) kyr. A comparison of the Os concentration of the Bay of Bengal and the Indian Ocean waters indicates that the rainout rate of Os in Bay of Bengal is 30% faster than that in the open ocean and suggests that the observed discrepancy between the mean residence time calculated from mass balance considerations and that estimated from the relaxation of the Os isotopic ratio in marine record may not be real as the relaxation time experiments likely estimate the residence time for a basin/sub-basin and not for the entire ocean.  相似文献   

8.
The contribution of terrigenous organic matter (TOM) to high molecular weight dissolved and particulate organic matter (POM) was examined along the salinity gradient of the Delaware Estuary. Dissolved organic matter (DOM) was fractionated by ultrafiltration into 1–30 kDa (HDOM) and 30 kDa–0.2 μm (VHDOM) nominal molecular weight fractions. Thermochemolysis with tetramethylammonium hydroxide (TMAH) was used to release and quantify lipids and lignin phenols. Stable carbon isotopes, fatty acids and lignin content indicated shifts in sources with terrigenous material in the river and turbid region and a predominantly algal/planktonic signal in the lower estuary and coastal ocean. Thermochemolysis with TMAH released significant amounts of short chain fatty acids (C9–C13), not seen by traditional alkaline hydrolysis, which appear to be associated with the macromolecular matrix. Lignin phenol distributions in HDOM, VHDOM and particles followed predicted sources with higher concentrations in the river and turbid region of the estuary and lower concentrations in the coastal ocean. TOM comprised 12% of HDOM within the coastal ocean and up to 73% of HDOM within the turbid region of the estuary. In the coastal ocean, TOM from high molecular weight DOM comprised 4% of total DOC. The annual flux of TOM from the Delaware Estuary to the coastal ocean was estimated at 2.0×1010 g OC year−1 and suggests that temperate estuaries such as Delaware Bay can be significant sources of TOM on a regional scale.  相似文献   

9.
Site-specific variation in the trace element composition of fish otoliths can be used to identify fish to source, but the mechanisms controlling elemental composition are poorly understood. Environmental influences on the deposition of barium (Ba), copper (Cu), manganese (Mn), and strontium (Sr) in the otoliths of mudsuckers (Gillichthys mirabilis) were tested using a reciprocal field transplant experiment, in which fish from 3 estuaries were transplanted to each of the 3 estuaries. Fish originating from the 3 estuaries showed no differences in otolith chemistry that might reflect acclimation to past conditions in their home estuary or genetic differences among populations, which simplifies the interpretation of otolith chemistry. Cu and Mn concentrations in otoliths differed according to the site of transplant. Cu in otoliths showed the same pattern of difference among estuaries as did Cu in sediments, but there was no correspondence between Cu in otoliths and dissolved Cu. Ranked differences among estuaries in otolith Mn matched the ranking of estuary-specific differences in dissolved Mn, and there was no correspondence between the concentration of Mn in otoliths and sediments. Fish transplanted to different estuaries showed no differences in otolith concentrations of Ba or Sr, and the concentrations of Ba and Sr in the water column showed a similar lack of difference among estuaries. This study provides field evidence supporting the conclusion that the elemental composition of otoliths reflects environmental conditions to which fish have been recently exposed, but whether that correlation is with trace elements in the sediment or water column can vary.  相似文献   

10.
Seasonal (Spring and Summer 2002) concentrations of dissolved (<0.22 μm) trace metals (Ag, Al, Co, Cu, Mn, Ni, Pb), inorganic nutrients (NO3, PO4, Si), and DOC were determined in groundwater samples from 5 wells aligned along a 30 m shore-normal transect in West Neck Bay, Long Island, NY. Results show that significant, systematic changes in groundwater trace metal and nutrient composition occur along the flowpath from land to sea. While conservative mixing between West Neck Bay water and the groundwaters explains the behavior of Si and DOC, non-conservative inputs for Co and Ni were observed (concentration increases of 10- and 2-fold, respectively) and removal of PO4 and NO3 (decreases to about half) along the transport pathway. Groundwater-associated chemical fluxes from the aquifer to the embayment calculated for constituents not exhibiting conservative behavior can vary by orders of magnitude depending on sampling location and season (e.g. Co, 3.4 × 102– 8.2 × 103 μmol d−1). Using measured values from different wells as being representative of the true groundwater endmember chemical composition also results in calculation of very different fluxes (e.g., Cu, 6.3 × 103 μmol d−1 (inland, freshwater well) vs. 2.1 × 105 μmol d−1(seaward well, S = 17 ppt)). This study suggests that seasonal variability and chemical changes occurring within the subterranean estuary must be taken into account when determining the groundwater flux of dissolved trace metals and nutrients to the coastal ocean.  相似文献   

11.
Environmental factors that influence annual variability and spatial differences (within and between estuaries) in eelgrass meadows (Zostera marine L.) were examined within Willapa Bay, Washington, and Coos Bay, Oregon, over a period of 4 years (1998–2001). A suite of eelgrass metrics were recorded annually at field sites that spanned the estuarine gradient from the marine-dominated to mesohaline region of each estuary. Plant density (shoots m?2) of eelgrass was positively correlated with summer estuarine salinity and inversely correlated with water temperature gradients in the estuaries. Eelgrass density, biomass, and the incidence of flowering plants all increased substantially in Willapa Bay, and less so in Coos Bay, over the duration of the study. Warmer winters and cooler summers associated with the transition from El Niño to La Niña ocean conditions during the study period corresponded with this increase in eelgrass abundance and flowering. Large-scale changes in climate and nearshore ocean conditions may exert a strong regional influence on eelgrass abundance that can vary annually by as much as 700% in Willapa Bay. Lower levels of annual variability observed in Coos Bay may be due to the stronger and more direct influence of the nearshore Pacific Ocean on the Coos Bay study sites. The results suggest profound effects of climate variation on the abundance and flowering of eelgrass in Pacific Northwest coastal estuaries.  相似文献   

12.
Estuaries are productive and ecologically important ecosystems, incorporating environmental drivers from watersheds, rivers, and the coastal ocean. Climate change has potential to modify the physical properties of estuaries, with impacts on resident organisms. However, projections from general circulation models (GCMs) are generally too coarse to resolve important estuarine processes. Here, we statistically downscaled near-surface air temperature and precipitation projections to the scale of the Chesapeake Bay watershed and estuary. These variables were linked to Susquehanna River streamflow using a water balance model and finally to spatially resolved Chesapeake Bay surface temperature and salinity using statistical model trees. The low computational cost of this approach allowed rapid assessment of projected changes from four GCMs spanning a range of potential futures under a high CO2 emission scenario, for four different downscaling methods. Choice of GCM contributed strongly to the spread in projections, but choice of downscaling method was also influential in the warmest models. Models projected a ~2–5.5 °C increase in surface water temperatures in the Chesapeake Bay by the end of the century. Projections of salinity were more uncertain and spatially complex. Models showing increases in winter-spring streamflow generated freshening in the Upper Bay and tributaries, while models with decreased streamflow produced salinity increases. Changes to the Chesapeake Bay environment have implications for fish and invertebrate habitats, as well as migration, spawning phenology, recruitment, and occurrence of pathogens. Our results underline a potentially expanded role of statistical downscaling to complement dynamical approaches in assessing climate change impacts in dynamically challenging estuaries.  相似文献   

13.
We investigated the distribution of meroplankton and water properties off southern Washington and simultaneously measured time series of larval abundance and water properties in two adjacent estuaries, Grays Harbor and Willapa Bay. The cruise period, in late May 1999, coincided with large variation in the alongshore wind stress that caused dynamic change in the position of the Columbia River plume, coastal upelling and downwelling, and offshore phytoplankton production. In the coastal ocean, meroplankton groups responded differently to this wind event and the associated advection of water masses. Dungeness crab (Cancer magister) megalopae were largely indifferent to the wide salinity variation, and were found throughout the surveyed area in both plume and recently upwelled waters. Megalopae of kelp crab (Pugettia producta) and hermit crab (Pagurus spp). were more abundant in upwelled water and low numbers were caught in the plume water. Barnacle cyprids appeared to track the advective transport suggesting that they may be more passively dispersed. Within the estuaries, hydrography responded rapidly and synchronously to variation in wind stress. Intrusions of both plume and newly upwelled waters were detected at estuarine sites, depending on the type of water present at the coast, indicating a tight link between the estuaries and the coastal ocean in this region. A 90-d record ofC. magister megalopae abundance was made at 3 estuarine sites using light traps. The bulk of theC. magister recruitment was limited to a relatively brief period in late May through June. Within this window, megalopae occurred in distinct pulses of 3–5 d interspaced with periods of low or zero abundance.C. magister megalopae recruited to the estuaries over a wide range of wind forcing, and were transported into the estuary within varied water types. There were no periodic patterns indicative of spring-neap tidal variations in the abundance time series. Abundance was only weakly cross-correlated between the adjacent Grays Harbor and Willapa Bay estuaries, which contrasts with the more synchronous estuarine-coastal linkages measured for water properties. These results suggest the interaction of larval aggregation size in the ocean with estuary-ocean exchange processes likely controls patterns of estuarine recruitment.  相似文献   

14.
Six profiles of dissolved barium covering the entire salinity range of the Delaware River and Bay estuary from March through September 1996 were collected and analyzed. The profiles are similar to one another in both shape and magnitude except for one attribute. A sudden (≤24 days), nearly complete (>90%) removal of dissolved Ba in midestuary occurs in mid-May followed by an 80% recovery in early June. This removal appears to be temporally and spatially coupled to the end of the spring bloom. Based on such episodic behavior, and on recent work with flocculation of diatom exudates, we conclude that the Ba depletion is caused by barite precipitation in the estuary during the late stages of the bloom. This would imply that lower estuary and inner coastal margin sediments associated with eutrophic estuaries receive a seasonal pulse of barite. The suddenness of this event also implies that sedimentary barite is strongly influenced by high productivity events.Comparison of the riverine Ba concentration with the effective riverine end member after desorptive barium release yields an estimated 30–40 nM Ba available from the suspended sediments as they enter the estuary. This estimate is supported by excess barium in unfiltered samples over filtered samples taken from the river and also by calculations done elsewhere.  相似文献   

15.
Jamaica Bay, NY, is a highly urbanized estuary within the boroughs of New York City conspicuously lacking published information on dissolved trace metal concentrations. The current study examines the distribution and cycling of trace metals in that embayment with data gathered during cruises in November 2004, April 2005, and June 2006. Most of the metal distributions (Fe, Zn, Co, Ag, Cu, Pb, Ni) in the water column are explained by the input of substantial volumes of treated wastewater effluent. However, several lines of evidence suggest that submarine groundwater discharge (SGD) is also an important source of dissolved Fe, Zn, Co, Ni, and isotopically distinct stable Pb ratios (206Pb, 207Pb, 208Pb) in the Bay. Conversely, the recirculated seawater component of SGD is an apparent sink for dissolved Mo. This study provides the first measurements of dissolved trace metals in the Jamaica Bay water column and subterranean estuary and provides evidence for trace metal input due to SGD.  相似文献   

16.
Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaquina Estuary (Oregon, USA) as well as the relationships between physical forcing and gross oceanic input of nutrients and phytoplankton. The ocean is the dominant source of dissolved inorganic nitrogen (DIN) and phosphate to the lower portion of Yaquina Bay during the dry season (May through October). During this time interval, high levels of dissolved inorganic nitrogen (primarily in the form of nitrate) and phosphate entering the estuary lag upwelling favorable winds by 2 days. The nitrate and phosphate levels entering the bay associated with coastal upwelling are correlated with the wind stress integrated over times scales of 4–6 days. In addition, there is a significant import of chlorophyll a to the bay from the coastal ocean region, particularly during July and August. Variations in flood-tide chlorophyll a lag upwelling favorable winds by 6 days, suggesting that it takes this amount of time for phytoplankton to utilize the recently upwelled nitrogen and be transported across the shelf into the estuary. Variations in water properties determined by ocean conditions propagate approximately 11–13 km into the estuary. Comparison of nitrogen sources to Yaquina Bay shows that the ocean is the dominant source during the dry season (May to October) and the river is the dominant source during the wet season with watershed nitrogen inputs primarily associated with nitrogen fixation on forest lands.  相似文献   

17.
Material transfer between estuaries and the nearshore zone has long been of interest, but information on the processes affecting Pacific Northwest estuaries has lagged behind other areas. The west coast of the U.S. is a region of seasonally variable upwelling that results in enhanced phytoplankton production in the nearshore zone. We examined estuarine-nearshore links over time by measuring physical oceanographic variables and chlorophylla concentration from an anchor station in South Slough, Oregon. Data was collected during 24-h cruises conducted at approximately weekly intervals during summer 1996 and spring 1997. The results demonstrate that the physical oceanography of this estuarine site was strongly influenced by the coastal ocean. Marine water reached the estuarine site on every sampled tide, and chlorophylla was clearly advected into the estuary with this ocean water. In contrast, phytoplankton concentrations were comparatively reduced in the estuarine water. There were, however, large fluctuations in the import of chlorophyll over the course of the summer. These variations likely reflect upwelling-generated phytoplankton production in the coastal ocean and subsequent cross-shelf transport to the estuary. Suspension feeding organisms in South Slough likely depend on the advection of this coastally-derived phytoplankton. The large allochthonous chlorophyll input measured for this system appears dissimilar from most estuaries studied to date. Previous investigations have focused on the outwelling and inwelling of materials in estuaries. We must now consider the influence of coastal upwelling and downwelling processes on estuarine material exchange.  相似文献   

18.
Volcanogenic sediments are typically rich in Fe and Mn-bearing minerals that undergo substantial alteration during early marine diagenesis, however their impact on the global biogeochemical cycling of Fe and Mn has not been widely addressed. This study compares the near surface (0-20 cm below sea floor [cmbsf]) aqueous (<0.02 μm) and aqueous + colloidal here in after ‘dissolved’ (<0.2 μm) pore water Fe and Mn distributions, and ancillary O2(aq), and solid-phase reactive Fe distributions, between two volcanogenic sediment settings: [1] a deep sea tephra-rich deposit neighbouring the volcanically active island of Montserrat and [2] mixed biosiliceous-volcanogenic sediments from abyssal depths near the volcanically inactive Crozet Islands archipelago. Shallow penetration of O2(aq) into Montserrat sediments was observed (<1 cmbsf), and inferred to partially reflect oxidation of fine grained Fe(II) minerals, whereas penetration of O2(aq) into abyssal Crozet sediments was >5 cmbsf and largely controlled by the oxidation of organic matter. Dissolved Fe and Mn distributions in Montserrat pore waters were lowest in the surface oxic-layer (0.3 μM Fe; 32 μM Mn), with maxima (20 μM Fe; 200 μM Mn) in the upper 1-15 cmbsf. Unlike Montserrat, Fe and Mn in Crozet pore waters were ubiquitously partitioned between 0.2 μm and 0.02 μm filtrations, indicating that the pore water distributions of Fe and Mn in the (traditionally termed) ‘dissolved’ size fraction are dominated by colloids, with respective mean abundances of 80% and 61%. Plausible mechanisms for the origin and composition of pore water colloids are discussed, and include prolonged exposure of Crozet surface sediments to early diagenesis compared to Montserrat, favouring nano-particulate goethite formation, and the elevated dissolved Si concentrations, which are shown to encourage fine-grained smectite formation. In addition, organic matter may stabilise authigenic Fe and Mn in the Crozet pore waters. We conclude that volcanogenic sediment diagenesis leads to a flux of colloidal material to the overlying bottom water, which may impact significantly on deep ocean biogeochemistry. Diffusive flux estimates from Montserrat suggest that diagenesis within tephra deposits of active island volcanism may also be an important source of dissolved Mn to the bottom waters, and therefore a source for the widespread hydrogenous MnOx deposits found in the Caribbean region.  相似文献   

19.
20.
We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ∼5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ∼25% of DOC and ∼50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号