首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mobility and microbially mediated solubilization of Au and As in regolith materials from two Au mines in Australia, i.e., the Peak Hill Gold Mine in semi-arid New South Wales and the Hit or Miss Gold Mine in tropical northern Queensland, was studied using a combination of geochemical and microbiological techniques. Gold is highly mobile in both environments, the mobility of Au increases with increasing degree of weathering of host materials, and the resident microbiota are capable of mediating its solubilization. The results of the microcosm experiments demonstrate that the activity of microorganisms needs to be taken into account when studying the mobility and solubilization of Au in the Australian regolith. In primary, unweathered mineralization material from the Hit or Miss mine 99 wt% of Au was extracted only in the strongest final step of the sequential extractions, in concentrated aqua regia. In alteration zone material from the Peak Hill Gold Mine 80 wt% of Au was associated with the operationally defined Mn and Fe oxides. In contrast, in auriferous soils overlying mineralization at both sites 90-95 wt% of Au was associated with the operationally defined exchangeable, clay-bound and organic fractions. Microcosm experiments were incubated biologically active and inactive (sterilized) in 1:4 (w/v) aqueous slurries at 25 °C in the dark for up to 95 days. In biologically active microcosms with soils from the Peak Hill- and the Hit or Miss Gold Mines approximately 55 wt% (907 ng g−1 d.w. soil) and 20 wt% (233 ng g−1 d.w. soil) of the total Au, respectively, was solubilized during the incubation. In contrast, no or significantly lower Au concentrations were observed in biologically inactive microcosms. The mobility and microbially mediated release of As was limited at both sites and appears to be mostly controlled by abiotic adsorption and desorption on Mn- and Fe-oxides. Arsenic has a low solubility in the more mobile fractions and is mostly associated with Mn- and Fe-oxides and the residual fraction. The release of As was not elevated in biologically active compared to inactive microcosms from the Peak Hill Gold Mine. In contrast, in biologically active microcosms with samples from the Hit or Miss Mine elevated concentrations of As were detected in solution compared to the biologically inactive experiments.  相似文献   

2.
Sediments from the Aquia aquifer in coastal Maryland were collected as part of a larger study of As in the Aquia groundwater flow system where As concentration are reported to reach levels as high as 1072 nmol kg−1, (i.e., ∼80 μg/L). To test whether As release is microbially mediated by reductive dissolution of Fe(III) oxides/oxyhydroxides within the aquifer sediments, the Aquia aquifer sediment samples were employed in a series of microcosm experiments. The microcosm experiments consisted of sterilized serum bottles prepared with aquifer sediments and sterilized (i.e., autoclaved), artificial groundwater using four experimental conditions and one control condition. The four experimental conditions included the following scenarios: (1) aerobic; (2) anaerobic; (3) anaerobic + acetate; and (4) anaerobic + acetate + AQDS (anthraquinone-2,6-disulfonic acid). AQDS acts as an electron shuttle. The control condition contained sterilized aquifer sediments kept under anaerobic conditions with an addition of AQDS. Over the course of the 27 day microcosm experiments, dissolved As in the unamended (aerobic and anaerobic) microcosms remained constant at around ∼28 nmol kg−1 (2 μg/L). With the addition of acetate, the amount of As released to the solution approximately doubled reaching ∼51 nmol kg−1 (3.8 μg/L). For microcosm experiments amended with acetate and AQDS, the dissolved As concentrations exceeded 75 nmol kg−1 (5.6 μg/L). The As concentrations in the acetate and acetate + AQDS amended microcosms are of similar orders of magnitude to As concentrations in groundwaters from the aquifer sediment sampling site (127-170 nmol kg−1). Arsenic concentrations in the sterilized control experiments were generally less than 15 nmol kg−1 (1.1 μg/L), which is interpreted to be the amount of As released from Aquia aquifer sediments owing to abiotic, surface exchange processes. Iron concentrations released to solution in each of the microcosm experiments were higher and more variable than the As concentrations, but generally exhibited similar trends to the As concentrations. Specifically, the acetate and acetate + AQDS amended microcosm typically exhibited the highest Fe concentrations (up to 1725 and 6566 nmol kg−1, respectively). The increase in both As and Fe in the artificial groundwater solutions in these amended microcosm experiments strongly suggests that microbes within the Aquia aquifer sediments mobilize As from the sediment substrate to the groundwaters via Fe(III) reduction.  相似文献   

3.
The effect of glucose, chicken manure, and filter mud on the ammonium and nitrate concentrations, ammonia-oxidizing bacterial community and bacterial community in latosolic red soils during the incubation of microcosms was investigated. The soil nitrate concentration was significantly lower in the glucose-treated soil than in the filter mud or chicken manure-treated soil from days 2 and 5 to 21 of incubation. The ammonia-oxidizing bacteria community composition, measured by terminal restriction fragment length polymorphism analysis, was different among the treatments 9 days after incubation, suggesting that the control soil without external fertilization had a low 283-bp (Nitrosospira) fragment relative abundance (27 %) compared with the glucose-treated (62 %), filter mud (73 %) and chicken manure (78 %) samples. Additionally, 491-bp fragments (Nitrosomonas) were detected in all the soil treatments except for the control soil, and 48-bp fragments (from different Nitrosomonas) were detected in the chicken manure-treated soil. The bacterial community structure was markedly changed in the glucose-treated soil on day 9 and in the filter mud-treated soil on day 31, indicating that the effect of filter mud on the bacterial community is delayed compared to the effect of glucose. The chicken manure-treated soil showed less change, similar to that of the control soil. Glucose fertilization greatly increased the soil bacterial abundance and functional diversity; however, the chicken manure and filter mud did not stimulate soil bacterial activity on day 9. These results indicated that nitrification may have been somewhat suppressed in the glucose-treated soils, which was possibly related to the improving ammonia-oxidizing bacterial community, bacterial community and activity via the available carbon application. The filter manure and chicken manure treatments demonstrated fewer effects. These results suggest that organic carbon quality, e.g., increasing the available carbon, regulates the nitrification process and is beneficial to reducing soil nitrogen losses.  相似文献   

4.
The Pb sorption capacity of apatite ore mine tailings and its potential to act as a remediation agent in a Pb polluted areas were investigated. The tailings, originating from the Siilinjärvi carbonatite complex in Finland, consist mainly of phlogopite and calcite accompanied by apatite residues. The ability of the tailings to retain Pb from an aqueous solution was investigated using an isotherm technique. Furthermore, in a 3-month incubation experiment, uncontaminated mineral soil was amended with untreated tailings and with tailings artificially weathered with acid to increase the quantity of Al and Fe (hydr)oxides. Tailings of two particle-sizes (∅ > 0.2 mm and ∅ < 0.2 mm) somewhat differing in their mineralogical composition were investigated as separate amendments. All tailings materials were added to the soil in two dosages (5 g and 10 g of tailings per 125 g of soil). Following incubation, tailings-induced changes in the Pb sorption capacity of the soil were investigated with the isotherm technique. Finally, to investigate the distribution of sorbed Pb among various chemical pools, the soil samples amended with tailings were contaminated with Pb and then subjected to sequential fractionation analysis. The results revealed efficient removal of Pb from an aqueous solution by the tailings, presumably through precipitation and surface complexation mechanisms. Amending the soil with the tailings increased the mass-based maximum Pb sorption capacity from 10.8 mg kg−1 of the control soil to 14–20.5 mg kg−1 for the untreated tailings and to 32.1–72.1 mg kg−1 for the acid-treated material. The tailings transferred Pb from the exchangeable pool to the non-extracted one and thereby substantially decreased its bioavailability. The material with a particle diameter of less than 0.2 mm had a higher mass-based Pb sorption capacity than the large-sized material. The results suggest that the tailings may potentially serve as an immobilizing agent in polluted areas.  相似文献   

5.
The dacite pumice erupted from Mt. Pinatubo on June 15, 1991 (whole-rock, rhyolitic groundmass glasses and homogenized melt inclusions) has been analyzed using inductively coupled plasma-mass spectrometry (ICP-MS), nanosecond and femtosecond laser ablation ICP-MS and secondary ion mass spectrometry (SIMS) to evaluate its ore-forming potential. Data suggest that adakite magmas are metal-rich and concentrate ore metals during magmatic differentiation. Sulfides segregate in limited amounts under the hydrous, oxidizing conditions typical of adakitic magmas resulting in incompatible behavior for Au (6-22 ppb), Cu (26-77 ppm), and Pb, Mo, As, and Sb in melts of dacitic to rhyolitic compositions. Metal transfer from this adakite magma to the coexisting aqueous phase was favored by the peraluminous composition of the rhyolitic melt and high aqueous chloride concentrations. Mass balance calculations suggest that the pre-eruptive aqueous phase could have extracted a minimum of 100 t Au and 5 × 105 t Cu from the Mt. Pinatubo magma. Our data suggest that intrusives having adakitic signatures are genetically associated with Au-Cu and Cu-Mo mineralization, auriferous porphyry copper deposits, and epithermal gold veins. High H2O, Cl, Sr/Y, Pb/Ce, Mo/Ce, As/Ce and Sb/Ce in Mt. Pinatubo melts reflect the contribution of deep fluids derived from subducted sediments and altered MORBs in the dacite genesis. The slab-derived fluids carrying mobile elements are likely responsible for the enrichment of adakite magmas in gold, associated metals and H2O, and may explain the exceptional ore-forming potential of adakite magmatism.  相似文献   

6.
To improve the usefulness and accuracy of modeling Earth's anthrobiogeochemical metal cycles, global maps at approximately 1° × 1° are produced of the concentrations and masses of Fe, Al, Cu, and Zn contained in continental sediments and soils. The maps generated utilize inverse distance weighting (IDW) and cokriging to generate new estimates for geospatially weighted mean global concentrations for these metallic micronutrients. Sediment metal concentration maps are generated from IDW of sediment samples; global soil maps are produced via cokriging upon an underlying parent rock dataset composed of both surface bedrock and sediment samples. Derived are independent estimates for the global mean concentrations in continental sediments (Fe = 3.1 wt.%, Al = 6.1 wt.%, Cu = 45 μg/g, Zn = 86 μg/g) and soils (Fe = 2.5 wt.%, Al = 3.9 wt.%, Cu = 17 μg/g, Zn = 50 μg/g). While continental sediment concentrations for Cu are within the range of previous estimates, Zn concentrations are relatively higher, ~ 20 μg/g above previous estimates. Fe and Al are slightly depleted (~ 1 wt.%) in continental sediments relative to previous estimates, likely ascribable to sampling bias and error inherent in the comparative methodologies. Besides an estimated global mean, metal concentrations in soils are also broken down by FAO soil group. Metal masses in sediments and soils remain within 30% of previous, non-spatial estimates. These maps also illustrate the discernable spatial variability across the Earth's surface. Despite data gaps, maps of metal mass show regional patterns such as the high quantities of Al in the soils and biomass of the Amazonia and Congo regions. Concentrations of metals are relatively high in the anthrosols of China. Finally, this analysis highlights those areas for which generating and providing publically available geochemical data should be prioritized. For instance, gypsisols, lixisols, and nitisols have little to no analytical data available on metal contents. A sensitivity analysis suggests that the most poorly constrained soil metal concentrations occur in the thick, old tropical soils of central Africa and the anthrosols of eastern China.  相似文献   

7.
The cell membrane phospholipid (PL) inventory of microbial populations in a Siberian permafrost soil of the Lena Delta was analysed to examine as to how the microbial populations within different horizons of the active layer were adapted to the extreme temperature gradient in this environment. One surface-near and one permafrost-near soil sample were taken from the active layer on Samoylov Island in the southern central Lena Delta (Siberia) and in each case incubated at 4 and 28 °C. Subsequently, the phospholipid cell membrane composition of the indigenous microbial populations was qualitatively and quantitatively determined and compared. In both horizons, the incubation at 4 °C is characterized by a shift in the PL inventory to more short chain fatty acids. A significant trend in the proportions of saturated and unsaturated fatty acids, however, was not detected. A higher proportion of both short chain and unsaturated fatty acids counterbalances the effect of decreasing cell membrane fluidity with decreasing environmental temperature. Thus, the adaptation of the permafrost microbial populations within the different horizons to varying ambient temperature conditions appears to be mainly regulated by the chain length of the phospholipid fatty acids. Although there is almost no change in the proportions of unsaturated fatty acids between the 4 and 28 °C incubation experiments, the permafrost-near horizon in general contains more unsaturated fatty acids than the surface-near horizon and a higher proportion of short chain fatty acids. This suggests that the lipid inventory of the microbial population nearer to the perennially frozen ground is more adapted to lower temperatures than that of the microbial community from the surface-near horizon, which seems to show a higher flexibility toward higher temperature conditions. The permafrost-near horizon appears to be dominated by psychrophilic species, while the surface-near horizon is characterized by a mesophilic-dominated microbial community.  相似文献   

8.
The biomineralization of U(VI) phosphate as a result of microbial phosphatase activity is a promising new bioremediation approach to immobilize uranium in both aerobic and anaerobic conditions. In contrast to reduced uranium minerals such as uraninite, uranium phosphate precipitates are not susceptible to changes in oxidation conditions and may represent a long-term sink for uranium in contaminated environments. So far, the biomineralization of U(VI) phosphate has been demonstrated with pure cultures only. In this study, two uranium contaminated soils from the Department of Energy Oak Ridge Field Research Center (ORFRC) were amended with glycerol phosphate as model organophosphate source in small flow-through columns under aerobic conditions to determine whether natural phosphatase activity of indigenous soil bacteria was able to promote the precipitation of uranium(VI) at pH 5.5 and 7.0. High concentrations of phosphate (1-3 mM) were detected in the effluent of these columns at both pH compared to control columns amended with U(VI) only, suggesting that phosphatase-liberating microorganisms were readily stimulated by the organophosphate substrate. Net phosphate production rates were higher in the low pH soil (0.73 ± 0.17 mM d−1) compared to the circumneutral pH soil (0.43 ± 0.31 mM d−1), suggesting that non-specific acid phosphatase activity was expressed constitutively in these soils. A sequential solid-phase extraction scheme and X-ray absorption spectroscopy measurements were combined to demonstrate that U(VI) was primarily precipitated as uranyl phosphate minerals at low pH, whereas it was mainly adsorbed to iron oxides and partially precipitated as uranyl phosphate at circumneutral pH. These findings suggest that, in the presence of organophosphates, microbial phosphatase activity can contribute to uranium immobilization in both low and circumneutral pH soils through the formation of stable uranyl phosphate minerals.  相似文献   

9.
Auriferous cherts in the Middle Carboniferous Jinchang Formation are the dominant host rocks of auriferous quartz veins and mixed orebodies comprised of gold-bearing quartz veins and cherts in the Mojiang gold deposit.The rocks exhibit sedimentary texture and structure and are composed of hot-water deposited minerals.The FeO,Fe2O3,Au and Ag contents of the auriferous cherts are high;the Cr,Ni and Co contents are also high but significantly variable;MnO/TiO2 and TFe/TiO2 ratios are relatively higy.As viewed from a few diagrams that distinguish different chert formations,the auriferous cherts are in or near the range of hot-water deposited cherts.Because the correlation coefficients between Au contents and those of Cr, Ni of the rocks are negative,a great Au amount in the cherts might not be brought about by later hydrothermal alterations.The rare-earth elements,O and Si isotopic compositions of the auriferous cherts demonstrate that the cherts belong to hot-water deposited rocks.The later hydrothermal alterations made the petrochemical compositions of the cherts deviate from the characteristics of hot-water deposition.In general,the geological and geochemical features of the auriferous cherts demonstrate that the rocks were formed by hot water deposition.  相似文献   

10.
We have performed experiments to evaluate Au solubility in natural, water-saturated basaltic melts as a function of oxygen fugacity. Experiments were carried out at 1000 °C and 200 MPa, and oxygen fugacity was controlled at the fayalite-magnetite-quartz (FMQ) oxygen fugacity buffer and FMQ + 4. All experiments were saturated with a metal-chloride aqueous solution loaded initially as a 10 wt% NaCl eq. fluid. The stable phase assemblage at FMQ consists of basalt melt, olivine, clinopyroxene, a single-phase aqueous fluid, and metallic Au. The stable phase assemblage at FMQ + 4 consists of basalt melt, clinopyroxene, magnetite-spinel solid solution, a single-phase aqueous fluid, and metallic Au. Silicate glasses (i.e., quenched melt) and their contained crystalline material were analyzed by using both electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Measured Au concentrations in the quenched melt range from 4.8 μg g−1 to 0.64 μg g−1 at FMQ + 4, and 0.54 μg g−1 to 0.1 μg g−1 at FMQ. The measured solubility of Au in olivine and clinopyroxene was consistently below the LA-ICP-MS limit of detection (i.e., 0.1 μg g−1). These melt solubility data place important limitations on the dissolved Au content of water-saturated, Cl- and S-bearing basaltic liquids at geologically relevant fO2 values. The new data are compared to published, experimentally-determined values for Au solubility in dry and hydrous silicate liquids spanning the compositional range from basalt to rhyolite, and the effects of melt composition, oxygen fugacity, pressure and temperature are discussed.  相似文献   

11.
《Applied Geochemistry》1995,10(5):517-529
A study to test the use of hydrogeochemical methods for gold prospecting was carried out in the Osilo area, northern Sardinia. The study area, covering about 30 km2 is characterised by Tertiary andesitic rocks. Gold concentrations up to several ppm, associated with abundant pyrite, arsenopyrite, stibnite, tetrahedrite and electrum, and subordinate galena, sphalerite and chalcopyrite, are present in quartz veins associated with a polyphase, incipient and pervasive alteration of the andesitic rocks.Forty-eight water samples (17 streams, 29 springs and 2 boreholes) were analysed for Au and a wide range of major and trace elements, both in solution (< 0.4 μm) and in suspension. Background values for dissolved Au were below the detection limit of the methods used (between 0.3 and 0.5 ng L−1 Au). Gold concentrations in solution up to 3 ng L−1 were found in waters draining the mineralised vein system. The observed dispersion of Au in surface waters was restricted to about 500 m from the auriferous veins. Dissolved Au anomalies do not vary significantly in water samples, taken monthly over a one year period, suggesting that the dispersion of Au is unaffected by seasonal conditions in the Osilo area. For samples where Au was detected both in solution and in suspension, the Au content of the suspended matter was usually lower than that in solution.The best indicators of Au mineralisation, apart from Au itself, both in solution and in suspension, were As and Sb which showed a dispersion clearly related to the known auriferous veins.  相似文献   

12.
The combination of low pH and high concentrations of nitrate and radionuclides in the subsurface is representative of many sites within the U.S. nuclear weapons complex managed by the Department of Energy (DOE), including the DOE’s Environmental Remediation Sciences Program Field Research Center (ORFRC), in Oak Ridge, Tennessee. In order to provide a further understanding of the coupled microbiological and geochemical processes limiting radionuclide bioremediation, we determined the rates and pathways of terminal-electron accepting processes (TEAPs) in microcosm experiments using close to in situ conditions with ORFRC subsurface materials. At the in situ pH range of 4-5, carbon substrate utilization and TEAP rates were diminished, such that nitrate was not depleted and metal reduction was prevented. Upon biostimulation by pH neutralization and carbon substrate addition, TEAPs were stimulated to rates that rival those measured in organic-rich surficial sediments of aquatic environments, and extremely high nitrate concentrations (0.4-0.5 M) were not found to be toxic to microbial metabolism. Metal reduction under neutral pH conditions started once nitrate was depleted to low levels in response to biostimulation. Acidity controlled not only the rates but also the pathways of microbial activity. Denitrification predominated in sediments originating from neutral pH zones, while dissimilatory nitrate reduction to ammonium occurred in neutralized acidic microcosms amended with glucose. Electron donors were determined to stimulate microbial metabolism leading to metal reduction in the following order: glucose > ethanol > lactate > hydrogen. In microcosms of neutralized acidic sediments, 80-90% of C equivalents were recovered as fermentation products, mainly as acetate. Due to the stress imposed by low pH on microbial metabolism, our results indicate that the TEAPs of acidic subsurface sediment are inherently different from those of neutral pH environments and neutralization will be necessary to achieve sufficient metabolic rates for radionuclide remediation.  相似文献   

13.
Chloroform is a common groundwater pollutant but also a natural compound in forest ecosystems. Leaching of natural chloroform from forest soil to groundwater was followed by regular analysis of soil air and groundwater from multilevel wells at four different sites in Denmark for a period of up to 4 a. Significant seasonal variation in chloroform was observed in soil air 0.5 m below surface ranging at one site from 120 ppb by volume in summer to 20 ppb during winter. With depth, the seasonal variation diminished gradually, ranging from 30 ppb in summer to 20 ppb during winter, near the groundwater table. Chloroform in the shallowest groundwater ranged from 0.5–1.5 μg L−1 at one site to 2–5 μg L−1 at another site showing no clear correlation with season. Comparing changes in chloroform in soil air versus depth with on-site recorded meteorological data indicated that a clear relationship appears between rain events and leaching of chloroform. Chloroform in top soil air co-varied with CO2 given a delay of 3–4 weeks providing evidence for its biological origin. This was confirmed during laboratory incubation experiments which further located the fermentation layer as the most chloroform producing soil horizon. Sorption of chloroform to soils, examined using 14C–CHCl3, correlated with organic matter content, being high in the upper organic rich soils and low in the deeper more minerogenic soils. The marked decrease in chloroform in soil with depth may in part be due to microbial degradation which was shown to occur at all depths by laboratory tests using 14C–CHCl3.  相似文献   

14.
The devolatilization model of the metasomatized lithospheric mantle without pre-enriched gold has been proposed to account for the giant gold mineralization. An excellent example is the world-class Jiaodong gold province with >5000 tonnes Au resources in the eastern North China Craton. The auriferous fluid transport and gold enrichment during wallrock alterations are two vital processes to determine the giant gold mineralization formation in this province. However, the effects of the fluid-rock interaction with alterations on the auriferous fluid transport and gold enrichment still keep poor understanding, which leads the above model to be imperfect. The giant Jiaojia goldfield in this province recorded a wallrock alteration evolution from K-feldspar alteration to pyrite-sericite-quartz alteration, and some parts of the latter can become gold orebodies when the gold grade is >1 ppm. This study conducts thermodynamic fluid-rock interaction modeling to reveal auriferous fluid transport and coupled relationship between gold enrichment and alteration mineral assemblage based on the alteration-mineralization and ore fluid characteristics of the goldfield. The modeling of fluid-rock interaction with cooling indicates the transformation of Au-Cl complexes to Au-S complexes combined with the total sulfur concentration decrease by pyrite precipitation when cooling from ∼460 °C can trigger the dispersive gold precipitation, which should hinder the gold long-range transport to lower ambient temperature. The high oxygen fugacity at >400 °C can enhance Au-Cl complexes stability, and the low pH can maintain high total sulfur concentration in the auriferous fluid, both of which facilitate the long-range gold transport to a lower-temperature environment. The auriferous fluid would acquire higher pH by the buffering of feldspars or sericite, which was beneficial for the high-efficiency precipitations of pyrite and gold. The ankerite-siderite assemblage without pyrophyllite in the pyrite-sericite-quartz alteration zone indicates that a cumulative fluid to rock mass ratio (f/r) of 3.8–4.8 should be needed for the transformation from K-feldspar alteration to pyrite-sericite-quartz alteration according to the fluid-rock interaction modeling at 300 °C and 2000 bar. In the case of auriferous fluids with ≤200 ppb Au concentration, the single fluid-rock interaction can only elevate the gold grade to ≤0.69–0.87 ppm in the pyrite-sericite-quartz alteration zone at f/r 3.8–4.8. Therefore, the fracture-induced fluid flow coupled with fluid-rock interaction is proposed to the prerequisite to elevate the gold grade to >1 ppm in the pyrite-sericite-quartz alteration zone. The metasomatized lithospheric mantle volume for the required ore fluid and Au in the Jiaodong province is estimated according to the modeling results and alteration-mineralization characteristics, which provides a link between the mantle without abnormal Au enrichment and the alteration-mineralization processes.  相似文献   

15.
Geochemical and mineralogical investigations have been carried out on laterite profiles developed in the Lake Sonfon Au district of northern Sierra Leone. The area is underlain by Archean metavolcanics and constitutes part of the Sula Mountains greenstone belt, which is mineralized in Au. Extensive lateritization has affected the rocks of this region, resulting in a profile which from bottom to top consists typically of a decomposed bedrock zone, a pisolitic laterite layer and a duricrust layer. Both the pisolitic and duricrust layers of the laterite are sometimes punctuated by lenses of ironstones containing high amounts of Cu, Zn, Ni, Co and Ce. Gold occurs as small grains within the heavy mineral fraction recovered from the decomposed rock zones and pisolitic layers of the profiles and also in gravels of streams draining the area. The mineralogy of the duricrust and pisolitic layers is dominated by goethite, gibbsite and quartz, with minor amounts (<5% by volume) of ilmenite, magnetite, haematite, rutile and kaolinite. The kaolinite content increases towards the decomposed rock zone, where talc, vermiculite and other layer lattice silicates become abundant. The heavy-mineral fraction of stream sediments is composed essentially of ilmenite, magnetite, haematite, and traces of rutile, zircon, tourmaline and Au. The Au grains are often characterized by a 10–200-μm-wide rim having a much lower content of Ag (0.3 wt.% or lower) than the grain interior (about 5 wt.% on average). Dissolution effects are also observed on the grain surfaces. It is considered that Au derived from the amphibolite parent rock is dissolved, transported, and redeposited during laterization.The duricrust cover of the laterite profiles is characterized by high contents of Fe2O3 (ca. 60 wt.%) and Al2O3 (ca. 32wt.%) and low content of SiO2 (ca. 9 wt.%). In comparison, the pisolitic layer is higher in SiO2 (ca. 18 wt.%) as well as a slightly higher in Al2O3 (ca. 34 wt.%). Lateritic weathering has resulted in the removal of CaO, Na2O, MgO and SiO2, with relative enrichment of Fe2O3 and Al2O3. The geochemical distribution of the trace elements in the laterite profiles can be related to the occurrence of the auriferous mineralization. The significance of these observations is discussed in relation to the origin of the lateritic Au and the role of the associated trace elements as indicators of the mineralization.  相似文献   

16.
Trace and minor elements in sphalerite: A LA-ICPMS study   总被引:18,自引:0,他引:18  
Sphalerite is an important host mineral for a wide range of minor and trace elements. We have used laser-ablation inductively coupled mass spectroscopy (LA-ICPMS) techniques to investigate the distribution of Ag, As, Bi, Cd, Co, Cu, Fe, Ga, Ge, In, Mn, Mo, Ni, Pb, Sb, Se, Sn and Tl in samples from 26 ore deposits, including specimens with wt.% levels of Mn, Cd, In, Sn and Hg. This technique provides accurate trace element data, confirming that Cd, Co, Ga, Ge, In, Mn, Sn, As and Tl are present in solid solution. The concentrations of most elements vary over several orders of magnitude between deposits and in some cases between single samples from a given deposit. Sphalerite is characterized by a specific range of Cd (typically 0.2-1.0 wt.%) in each deposit. Higher Cd concentrations are rare; spot analyses on samples from skarn at Baisoara (Romania) show up to 13.2 wt.% (Cd2+ ↔ Zn2+ substitution). The LA-ICPMS technique also allows for identification of other elements, notably Pb, Sb and Bi, mostly as micro-inclusions of minerals carrying those elements, and not as solid solution. Silver may occur both as solid solution and as micro-inclusions. Sphalerite can also incorporate minor amounts of As and Se, and possibly Au (e.g., Magura epithermal Au, Romania). Manganese enrichment (up to ∼4 wt.%) does not appear to enhance incorporation of other elements. Sphalerite from Toyoha (Japan) features superimposed zoning. Indium-sphalerite (up to 6.7 wt.% In) coexists with Sn-sphalerite (up to 2.3 wt.%). Indium concentration correlates with Cu, corroborating coupled (Cu+In3+) ↔ 2Zn2+ substitution. Tin, however, correlates with Ag, suggesting (2Ag+Sn4+) ↔ 3Zn2+ coupled substitution. Germanium-bearing sphalerite from Tres Marias (Mexico) contains several hundred ppm Ge, correlating with Fe. We see no evidence of coupled substitution for incorporation of Ge. Accordingly, we postulate that Ge may be present as Ge2+ rather than Ge4+. Trace element concentrations in different deposit types vary because fractionation of a given element into sphalerite is influenced by crystallization temperature, metal source and the amount of sphalerite in the ore. Epithermal and some skarn deposits have higher concentrations of most elements in solid solution. The presence of discrete minerals containing In, Ga, Ge, etc. also contribute to the observed variance in measured concentrations within sphalerite.  相似文献   

17.
The chemical composition of native gold and electrum from auriferous vein and gold-silver vein deposits in Japan has been analyzed and summarized. The Ag/Au ratios of native gold and electrum from these two types of deposits are distinct, i.e., 10–20 Ag at % (auriferous vein) and 30–70 Ag at % (gold-silver vein). Thermochemical calculations suggest that the Ag/Au ratio of native gold and electrum should decrease with increasing chloride concentration and temperature. This is consistent with analytical results of native gold and electrum and fluid inclusion studies. Based on the Ag content of native gold and electrum, the Fe content of sphalerite, and the estimated temperatures, it is deduced that the sulfur activity for auriferous vein-type systems was lower than that of gold-silver vein-type systems.  相似文献   

18.
张二法 《黄金地质》2002,8(3):43-46
小秦岭地区不同矿化类型的含Au石英脉Au/Ag值有不同的特点,多金属硫化物型一般小于0.8,黄铁矿型介于0.8-2.0之间,少黄铁矿型一般大于2.0。利用Au/Ag值可以大致确定矿脉的矿化类型,判断矿脉的水平,垂向分带和剥蚀深度,预测深部矿脉的矿化类型,东闯金矿床深部Au/Ag值为1.39,预示其深部有可能出现黄铁矿型矿化,深部探矿仍有前景。  相似文献   

19.
Environmental contamination with As and Sb caused by past mining activities at Sb mines is a significant problem in Slovakia. This study is focused on the environmental effects of the 5 abandoned Sb mines on water, stream sediment and soil since the mines are situated in the close vicinity of residential areas. Samples of mine wastes, various types of waters, stream sediments, soils, and leachates of the mine wastes, stream sediments and selected soils were analyzed for As and Sb to evaluate their geochemical dispersion from the mines. Mine wastes collected at the mine sites contained up to 5166 mg/kg As and 9861 mg/kg Sb. Arsenic in mine wastes was associated mostly with Fe oxides, whereas Sb was present frequently in the form of individual Sb, Sb(Fe) and Fe(Sb) oxides. Waters of different types such as groundwater, surface waters and mine waters, all contained elevated concentrations of As and Sb, reaching up to 2150 μg/L As and 9300 μg/L Sb, and had circum-neutral pH values because of the buffering capacity of abundant Ca- and Mg-carbonates. The concentrations of Sb in several household wells are a cause for concern, exceeding the Sb drinking water limit of 5 μg/L by as much as 25 times. Some attenuation of the As and Sb concentrations in mine and impoundment waters was expected because of the deposition of metalloids onto hydrous ferric oxides built up below adit entrances and impoundment discharges. These HFOs contained >20 wt.% As and 1.5 wt.% Sb. Stream sediments and soils have also been contaminated by As and Sb with the peak concentrations generally found near open adits and mine wastes. In addition to the discharged waters from open adits, the significant source of As and Sb contamination are waste-rock dumps and tailings impoundments. Leachates from mine wastes contained as much as 8400 μg/L As and 4060 μg/L Sb, suggesting that the mine wastes would have a great potential to contaminate the downstream environment. Moreover, the results of water leaching tests showed that Sb was released from the solids more efficiently than As under oxidizing conditions. This might partly explain the predominance of Sb over As in most water samples.  相似文献   

20.
The formation of pedogenic carbonate (calcrete) in terrestrial environments is commonly mediated by microorganisms. In Australia, Au-anomalous calcrete is an important sampling medium for geochemical exploration, but current models describing its formation do not include a confirmed microbial component. This study demonstrates that bacterial communities in calcareous sands from dunes overlying the Barns Gold Deposit in semi-arid South Australia, are capable of mediating the biomineralisation of Au-anomalous carbonates. Bacterial enrichment cultures obtained from calcareous sands at three depths (0.1, 0.64 and 2.1 m, plus abiotic control) were incubated in urea and Ca2+-containing growth media (pH 8), unamended and amended with Au (100 parts-per-billion, ppb) as Au–aspartic-acid complex. During the incubation of the enrichment cultures urea was turned over to NH4+ within 96 h to 220 h. The solution pH increased concurrently by approximately 1.2 units, and Au-anomalous Ca-carbonate crystallites were precipitated on cells, which functioned as nucleation sites; no carbonate precipitation was observed in abiotic controls. Compared to the medium, Au was strongly enriched in these carbonates and appeared to be uniformly dispersed in the individual crystallites, as shown using LA-ICP-MS; a similar distribution is present in naturally occurring Au-anomalous calcrete. Phylogenetic 16S rRNA PCR DGGE analyses, shotgun cloning and functional microbial analyses (BioLog, ureC quantitative PCR) demonstrated that naturally occurring and culture-enriched bacterial communities were dominated by alkaliphylic, halotolerant Bacillus spp. The indigenous bacterial communities were capable of utilising amino acids (including l-aspartic acid) and urea, which appears to lead to the destabilisation of the Au–amino acid complexes and concomitant co-precipitation of Au in the Ca-carbonates. In conclusion, a model combining geomicrobial– with evapotranspiration– and plant-based components is likely to best describe the formation of (Au-anomalous) calcrete in semi-arid and arid zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号