首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Knowing the shapes and spin states of near-Earth asteroids is essential to understanding their dynamical evolution because of the Yarkovsky and YORP effects. Delay-Doppler radar imaging is the most powerful ground-based technique for imaging near-Earth asteroids and can obtain spatial resolution of <10 m, but frequently produces ambiguous pole direction solutions. A radar echo from an asteroid consists of a pattern of speckles caused by the interference of reflections from different parts of the surface. It is possible to determine an asteroid’s pole direction by tracking the motion of the radar speckle pattern. Speckle tracking can potentially measure the poles of at least several radar targets each year, rapidly increasing the available sample of NEA pole directions. We observed the near-Earth asteroid 2008 EV5 with the Arecibo planetary radar and the Very Long Baseline Array in December 2008. By tracking the speckles moving from the Pie Town to Los Alamos VLBA stations, we have shown that EV5 rotates retrograde. This is the first speckle detection of a near-Earth asteroid.  相似文献   

2.
We consider the kinetic problem of charged-particle acceleration in a magnetic trap with converging magnetic mirrors. We show that for a positive electrostatic potential of the trap plasma relative to the mirrors, the efficiency of confinement and acceleration increases for electrons and decreases for ions.  相似文献   

3.
An array of seven atmospheric Cherenkov telescopes was commissioned at a high altitude site in Hanle in the Ladakh region of the Himalayas. The array called HAGAR has been designed to observe celestial γ-rays of energy >100 GeV. Each telescope is altitude-azimuth mounted and carries seven parabolic mirrors whose optic axes are co-aligned with the telescope axis. The telescopes point and track a celestial source using a PC-based drive control system. Two important issues in positioning of each HAGAR telescope are pointing accuracy of telescope axis and co-alignment of mirrors’ optic axes with the telescope axis. We have adopted a three pronged strategy to address these issues, namely use of pointing models to improve pointing accuracy of the telescopes, RA-DEC scan technique to measure the pointing offsets of the mirrors and mechanical fine-tuning of off-axis mirrors by sighting a distant stationary light source. This paper discusses our efforts in this regard as well as the current status of pointing and monitoring of HAGAR telescopes.  相似文献   

4.
《Icarus》1986,65(1):83-109
We investigate the mechanical equilibrium and collisional transport processes in differentially rotating dense particle disks in which the filling factor is not small, so that the ordinary Boltzmann kinetic theory is not accurate. Our treatment is based on the Enskog theory of dense hard sphere gases, except that the spheres are inelastic. We show that the viscous instability which has been suggested as a source of the structure in Saturn's B ring does not arise in our models. However, the ring may be subject to a phase transition similar to the liquid-solid transition seen in molecular dynamics simulations of elastic hard spheres; in this case the ring could have alternating zero-shear (“solid”) and high-shear (“liquid”) zones.  相似文献   

5.
If sensitive enough, future missions for nuclear astrophysics will be a great help in understanding supernovae explosions. In contrast to coded-mask instruments, both crystal diffraction lenses and grazing angle mirrors offer a possibility to construct a sensitive instrument to detect γ-ray lines in supernovae. We report on possible implementations of grazing angle mirrors and simulations carried out to determine their performance.  相似文献   

6.
X-ray reflectivity measurements were performed on several thin foil gold mirrors fabricated in TIFR for a Soft X-ray Imaging Telescope. The mirrors were made from thin aluminum foils with a reflecting layer of sputtered gold transferred from a smooth glass mandrel using an epoxy. X-ray reflectivity measurements were performed on a sample of randomly selected mirrors using CuK α (8.05 keV), CrK α (5.41 keV) X-rays and also at several energies in the energy range of 155–300 eV using the synchrotron source Indus-1. It was found that the roughness of the low-density top gold layer as obtained from the fitting of X-ray reflectivity data for CuK α radiation is relatively more as compared to that obtained from the CrK α radiation. This indicates that in the mirrors made by this process, the upper surfaces are smoother as compared to the deeper layers. It was also observed that the critical angle almost vanishes in the very low energy range of 290–300 eV due to strong absorption effects of the low density material sitting on top of these mirrors. Due to this absorption effect, efficiency of these mirrors reduces in this energy range. This is first time that reflectivity measurements are being reported for very soft X-rays (≤ 300 eV) for mirrors made for any X-ray astronomy mission.  相似文献   

7.
Nested thin foil reflectors have made possible light weight, inexpensive and fast grazing incidence X-ray mirrors for astronomical spectroscopy over a broad band. These mirrors were developed at Goddard for the US Shuttle program and were flown on NASA's shuttleborne Astro-l mission in December 1990. Presently, the Japan/US collaborative spectroscopic mission ASCA, nearing its third year of successful operation in earth orbit, carries, four such mirrors, weighing less than 40 kg and giving total effective areas of 1200 and 420 cm2 at l and 8 keV respectively. The 420 kg observatory is the best possible example of how conical foil mirrors opened areas of research that could not have been otherwise addressed with available resources. In this paper, we will briefly review the development and performance of our first generation foil mirrors. We will also describe progress toward improving their imaging capability to prime them for use in future instruments. Such a goal is highly desirable, if not necessary for this mirror technology to remain competitive for future applications.  相似文献   

8.
Heikki Salo  Jürgen Schmidt 《Icarus》2010,206(2):390-409
We study viscous instability of planetary rings in terms of N-body simulations. We show that for rings composed of fairly elastic particles (e.g. as in Hatzes et al. [Hatzes, A., Bridges, F.G., Lin, D.N.C., 1988. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 1091-1115]) the instability may lead to the spontaneous formation of dense ringlets in a background of lower density. In most parts of Saturn’s rings the particle collisions are probably much more dissipative, as suggested by the presence of self-gravity wakes, and classic viscous instability should be suppressed. However, our results demonstrate that the mechanism of viscous instability itself is valid. The dynamical effects of size-dependent elasticity in a system with a size distribution have never been studied before. We show that this may in principle lead to a size-selective viscous instability, small particles concentrating on ringlets against the more uniform background of large particles.  相似文献   

9.
New three-dimensional hydrodynamic simulations of hypervelocity impacts into the crust of Titan were undertaken to determine the fraction of liquid water generated on the surface of Saturn's largest moon over its history and, hence, the potential for surface—modification of hydrocarbons and nitriles by exposure to liquid water. We model in detail an individual impact event in terms of ejecta produced and melt generated, and use this to estimate melt production over Titan's history, taking into account the total flux of the impactors and its decay over time. Our estimates show that a global melt layer at any time after the very beginning of Titan's history is improbable; but transient melting local to newly formed craters has occurred over large parts of the surface. Local maxima of the melt are connected with the largest impact events. We also calculate the amount of volatiles delivered at the impact with various impact velocities (from 3 km/s for possible Hyperion fragments to 11 km/s for Jupiter family comets) and their retention as a possible source of Titan's atmosphere. We find the probability of impact ejecta escaping Titan with its modern dense and thick atmosphere is rather low, and dispersal of Titan organics throughout the rest of the Solar System requires impactors tens of kilometers in diameter. Water ice melting and exposure of organics to liquid water has been widespread because of impacts, but burial or obscuration of craters by organic deposits or cryovolcanism is aided by viscous relaxation. The largest impactors may breach an ammonia-water mantle layer, creating a circular albedo contrast rather than a crater.  相似文献   

10.
It is shown that viscous liquid film flow (VLF-flow) on the surfaces of slopes of martian dunes can be a low-temperature rheological phenomenon active today on high latitudes. A quantitative model indicates that the VLF-flows are consistent with the flow of liquid brines similar to that observed by imaging at the Phoenix landing site. VLF-flows depend on the viscosity, dynamics, and energetics of temporary darkened liquid brines. The darkening of the flowing brine is possibly, at least partially, attributed to non-volatile ingredients of the liquid brines. Evidence of previous VLF-flows can also be seen on the dunes, suggesting that it is an ongoing process that also occurred in the recent past.  相似文献   

11.
We consider the behavior of charged particles with an anisotropic initial velocity distribution in a magnetic trap with approaching mirrors in connection with the problem of particle acceleration in solar flares. We show that, irrespective of the charge sign, the efficiency of confinement and acceleration increases with increasing anisotropy factor of the initial distribution α = (T/T)1/2. For a positive electric potential of the trap plasma relative to the mirrors, the emerging additional effect of ion expulsion form the trap increases with αi. The derived estimate of the electric potential suggests an amplification of the initial perturbation and the development of instability.  相似文献   

12.
Irregular structure in planetary rings is often attributed to the intrinsic instabilities of a homogeneous state undergoing Keplerian shear. Previously these have been analysed with simple hydrodynamic models. We instead employ a kinetic theory, in which we solve the linearised moment equations derived in Shu and Stewart 1985 for a dilute ring. This facilitates an examination of velocity anisotropy and non-Newtonian stress, and their effects on the viscous and viscous/gravitational instabilities thought to occur in Saturn's rings. Because we adopt a dilute gas model, the applicability of our results to the actual dense rings of Saturn are significantly curtailled. Nevertheless this study is a necessary preliminary before an attack on the difficult problem of dense ring dynamics. We find the Shu and Stewart formalism admits analytic stability criteria for the viscous overstability, viscous instability, and thermal instability. These criteria are compared with those of a hydrodynamic model incorporating the effective viscosity and cooling function computed from the kinetic steady state. We find the two agree in the ‘hydrodynamic limit’ (i.e., many collisions per orbit) but disagree when collisions are less frequent, when we expect the viscous stress to be increasingly non-Newtonian and the velocity distribution increasingly anisotropic. In particular, hydrodynamics predicts viscous overstability for a larger portion of parameter space. We also numerically solve the linearised equations of the more accurate Goldreich and Tremaine 1978 kinetic model and discover its linear stability to be qualitatively the same as that of Shu and Stewart's. Thus the simple collision operator adopted in the latter would appear to be an adequate approximation for dilute rings, at least in the linear regime.  相似文献   

13.
We investigate a model of disc galaxies whereby viscous evolution of the gaseous disc drives material inwards to form a protobulge. We start from the standard picture of disc formation through the settling of gas into a dark halo potential well, with the disc initially coming into centrifugal equilibrium with detailed conservation of angular momentum. We derive generic analytic solutions for the disc–halo system after adiabatic compression of the dark halo, with free choice of the input virialized dark halo density profile and of the specific angular momentum distribution. We derive limits on the final density profile of the halo in the central regions. Subsequent viscous evolution of the disc is modelled by a variation of the specific angular momentum distribution of the disc, providing analytic solutions to the final disc structure. The assumption that the viscous evolution time-scale and the star formation time-scale are similar leads to predictions of the properties of the stellar components. Focusing on small 'exponential' bulges, i.e., ones that may be formed through a disc instability, we investigate the relationship between the assumed initial conditions, such as halo 'formation', or assembly, redshift z f, spin parameter λ , baryonic fraction F , and final disc properties such as global star formation time-scale, gas fraction, and bulge-to-disc ratio. We find that the present properties of discs, such as the scalelength, are compatible with a higher initial formation redshift if the redistribution by viscous evolution is included than if it is ignored. We also quantify the dependence of final disc properties on the ratio F λ , thus including the possibility that the baryonic fraction varies from galaxy to galaxy, as perhaps may be inferred from the observations.  相似文献   

14.
Solar flare energy release mechanisms often neglect the role played by viscous effects. Here we perform incompressible planar reconnection simulations, driven by the Orszag–Tang vortex, for both classical and Braginskii forms of the viscosity. We show that strongly driven “saturated” flux pile-up current layers, which lead to weak reconnection rates at small resistivities, are accompanied by invariant global viscous losses. These results support the notion that viscous dissipation in flaring plasmas can account for a significant fraction of the flare energy release.  相似文献   

15.
A spectrally filtered Optical Frequency Comb (OFC) laser is proposed as a versatile calibration source for astronomical spectrometers in the 1?C2 ??m spectral range. Such a source overcomes the limitations of current calibration lamps providing a uniform spectrum of equally spaced lines with similar intensity and extremely high long-term frequency stability. We present preliminary studies and results of a system which filters the OFC from a 100 MHz comb spacing to 16 GHz one, an adequate spacing for spectrometers with resolving power ????/???>30000. The first approach employs two Fabry-Perot cavities in series, made of dielectric coated mirrors, followed by a non-linear optical broadening system. The limitations of such a filtering process are discussed. These can be overcome by the second approach, based on filtering cavities with metallic coated mirrors.  相似文献   

16.
We describe a method for figuring and testing large aspheric mirrors using a rectangular, flexible lap (the so-called Membrane Tool) and a vibration stabilized interferometer. The rear side of the lap is covered with computer controlled dynamic pressure actuators which determine the amount of material to be removed for surface error correction. This method has been developed in the laboratory and tested to some extent by figuring thef/2.2 primary of the 3.6 m ESO-NTT. We describe the ongoing developments and the manufacturing plan for 8 m-class mirrors.Paper presented at the Symposium on the JNLT and Related Engineering Developments, Tokyo, November 29–December 2, 1988.  相似文献   

17.
18.
We have been working on 3 separate projects that together will give us the ability to make 1 arc second, light weightWolter I optics that work above 40 keV. The three separate tasks are: (a) plasma spraying of metal-coated micro-balloons; (b) coating of the inside of Wolter I mirrors, (c) actuator designs for improving figure quality.We give a progress report on our work on all three areas.  相似文献   

19.
One-armed oscillation modes in the circumstellar discs of Be stars may explain the cyclical variations in their emission lines. We show that a 3D effect, involving vertical motion and neglected in previous treatments, profoundly influences the dynamics. Using a secular theory of eccentric discs that reduces the problem to a second-order differential equation, we show that confined prograde modes are obtained for all reasonable disc temperatures and stellar rotation rates. We confirm these results using a numerical analysis of the full set of linearized equations for 3D isothermal discs including viscous terms that couple the horizontal motions at different altitudes. In order to make these modes grow, viscous damping must be overcome by an excitation mechanism such as viscous overstability.  相似文献   

20.
We investigate the bounce cosmology induced by inhomogeneous viscous fluids in FRW space-time (non necessarily flat), taking into account the early-time acceleration after the bounce. Different forms for the scale factor and several examples of fluids will be considered. We also analyze the relation between bounce and finite-time singularities and between the corresponding fluids realizing this scenarios. In the last part of the work, the study is extended to the framework of f(R)-modified gravity, where the modification of gravity may also be considered as an effective (viscous) fluid producing the bounce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号