首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the new solar radiospectrograph of the University of Athensoperating at the Thermopylae Station since 1996. Observations cover thefrequency range from 110 to 688 MHz. The radiospectrograph has a 7-meterparabolic antenna and two receivers operating in parallel. One is a sweepfrequency receiver and the other a multichannel acousto-optical receiver.The data acquisition system consists of a front-end VME based subsystem anda Sun Sparc-5 workstation connected through Ethernet. The two subsystems areoperated using the VxWorks real-time package. The daily operation is fullyautomated: pointing of the antenna to the sun, starting and stopping theobservations at pre-set times, data acquisition, data compression by`silence suppression', and archiving on DAT tapes. The instrument can beused either by itself to study the onset and evolution of solar radio bursts or in conjunction with other instruments including theNançay Decametric Array and the WIND/WAVES RAD1 and RAD2 low frequencyreceivers to study associated interplanetary phenomena.  相似文献   

2.
A low frequency (40–150 MHz) radioheliograph for observations of the solar corona is in operation for the last few years at the Gauribidanur radio observatory, about 100 km north of Bangalore. The array has 32 antenna groups and a 1-bit digital correlator system consisting of 1024 channels is used as the back-end receiver. This paper describes the latter and results of the associated system tests.  相似文献   

3.
We present recent developments of the ARTEMIS IV solar radio spectrograph operating at Thermopylae, central Greece. Observations are obtained daily in total intensity and in the frequency range from 20 to 650 MHz, using two antennas and two receivers. We are now in the process of developing a new system that will record consecutively the intensity of right-hand and left-hand polarized waves using one of the antennas and the same receivers.  相似文献   

4.
Cho  K.-S.  Kim  K.-S.  Moon  Y.-J.  Dryer  M. 《Solar physics》2003,212(1):151-163
A new solar radio spectrograph to observe solar radio bursts has been installed at the Ichon branch of the Radio Research Laboratory, Ministry of Information and Communication, Korea. The spectrograph consists of three different antennas to sweep a wide band of frequencies in the range of 30 MHz ∼ 2500 MHz. Its daily operation is fully automated and typical examples of solar radio bursts have been successfully observed. In this paper we describe briefly its hardware and data processing methods. Then we present coronal shock speeds estimated for 34 type II bursts from May 1998 to November 2000 and compare them with those from other observatories. We also present the close relationship between onset time of type II bursts and X-ray flares as well as their associations with coronal mass ejections.  相似文献   

5.
Some 15% of solar flares having a soft X-ray flux above GOES class C5 are reported to lack coherent radio emission in the 100 – 4000 MHz range (type I – V and decimetric emissions). A detailed study of 29 such events reveals that 22 (76%) of them occurred at a radial distance of more than 800″ from the disk center, indicating that radio waves from the limb may be completely absorbed in some flares. The remaining seven events have statistically significant trends to be weak in GOES class and to have a softer non-thermal X-ray spectrum. All of the non-limb flares that were radio-quiet above 100 MHz were accompanied by metric type III emission below 100 MHz. Out of 201 hard X-ray flares, there was no flare except near the limb (R>800″) without coherent radio emission in the entire meter and decimeter range. We suggest that flares above GOES class C5 generally emit coherent radio waves when observed radially above the source.  相似文献   

6.
Fine structure observations of the frequency spectrum of the S-component in the solar radio emission are described. Measurements were carried out in August 1976 and August 1977 using a 22 m parabolic antenna and a radiospectrograph operating over the frequency range 5.0 to 7.0 GHz, with the resolution 60 MHz. Measurement techniques are described. Fine structures (150–800 MHz) as great as 20% of the local source radiation level were observed in radio emission spectra of a number of these sources. The spectrum structures observed were changed in the process of active region development.  相似文献   

7.
This article describes the observations of a type III radio burst observed at 103 MHz simultaneously by the two radio telescopes situated at Rajkot (22.3°N, 70.7°E) and Thaltej (23°N, 72.4°E). This event occurred on September 30, 1993 at about 0430 UT and lasted for only half a minute. The event consisted of several sharp spikes in a group. The rise and fall time of these are comparable, however the peaks of individual spikes varied by a factor of four. The comparison of these observations with the data of solar radio spectrograph HiRAS indicates that this was a metric radio burst giving highest emission at about 103 MHz.  相似文献   

8.
We present the results of the analysis of thirteen events consisting of dm-spikes observed in Toruń between 15 March 2000 and 30 October 2001. The events were obtained with a very high time resolution (80 microseconds) radio spectrograph in the 1352 – 1490 MHz range. These data were complemented with observations from the radio spectrograph at Ondřejov in the 0.8 – 2.0 GHz band. We evaluated the basic characteristics of the individual spikes (duration, spectral width, and frequency drifts), as well as their groups and chains, the location of their emission sources, and the temporal correlations of the emissions with various phases of the associated solar flares. We found that the mean duration and spectral width of the radio spikes are equal to 0.036 s and 9.96 MHz, respectively. Distributions of the duration and spectral widths of the spikes have positive skewness for all investigated events. Each spike shows positive or negative frequency drift. The mean negative and positive drifts of the investigated spikes are equal to −776 MHz s−1 and 1608 MHz s−1, respectively. The emission sources of the dm-spikes are located mainly at disk center. We have noticed two kinds of chains, with and without frequency drifts. The mean durations of the chains vary between 0.067 s and 0.509 s, while their spectral widths vary between 7.2 MHz and 17.25 MHz. The mean duration of an individual spike observed in a chain was equal to 0.03 s. While we found some agreement between the global characteristics of the groups of spikes recorded with the two instruments located in Toruń and Ondřejov, we did not find any one-to-one relation between individual spikes.  相似文献   

9.
Lezniak  J. A.  Webber  W. R. 《Solar physics》1974,37(2):477-482
Quasi-periodic solar emission has been observed with a radio spectrograph operating at 18–28 MHz during weak decametric continuum on August 22, 1972. The continuum activity was observed simultaneously on fixed frequency receivers at 18 MHz and at 26 MHz. The pulsations showed a mean period of 4 s and a sharp low-frequency cut-off at 24 MHz. Spectral characteristics of these and similar pulsations observed by other workers are examined and shown to be consistent with an interpretation based on an oscillating magnetic flux tube in the solar corona.  相似文献   

10.
A new radio spectropolarimeter for solar radio observation has been developed at Tohoku University and installed on the Iitate Planetary Radio Telescope (IPRT) at the Iitate observatory in Fukushima prefecture, Japan. This system, named AMATERAS (the Assembly of Metric-band Aperture TElescope and Real-time Analysis System), enables us to observe solar radio bursts in the frequency range between 150 and 500 MHz. The minimum detectable flux in the observation frequency range is less than 0.7 SFU with an integration time of 10 ms and a bandwidth of 61 kHz. Both left and right polarization components are simultaneously observed in this system. These specifications are accomplished by combining the large aperture of IPRT with a high-speed digital receiver. Observational data are calibrated and archived soon after the daily observation. The database is available online. The high-sensitivity observational data with the high time and frequency resolutions from AMATERAS will be used to analyze spectral fine structures of solar radio bursts.  相似文献   

11.
We analyze the high-frequency drift radio structures observed by the spectrometer at Purple Mountain Observatory (PMO) over the frequency range of 4.5 – 7.5 GHz during the 18 March 2003 solar flare. The drifting structures take place before the soft X-ray maximum, almost at the maximum of hard X-ray flux at 25 – 50 keV. For the first time, the positive drift in this kind of radio structures is detected in such a high frequency range. Their global drifting rate is roughly estimated as 3.6 GHz s−1. They appear in four groups, lasting in total for less than 6 s, and have a broad bandwidth of more than 2 GHz but a smaller ratio of the bandwidth of the drifting structures to mean frequency than that of the lower frequency range. The lifetime of each individual burst in this event can be derived by using the high temporal resolution of the spectrometer at PMO and has an average value of 36.3 ms. Since the negative drifting structures observed in the 0.6 – 4.5 GHz frequency range were interpreted to be a radio signature of a plasmoid ejected upward (moving out of the Sun), the present observation may imply that it is possible for a plasmoid to move downward during a solar flare. However, for a confirmation of this suggestion direct radio imaging observation would be needed.  相似文献   

12.
太阳射电尖峰辐射(spike)的窄频带是一个具有特征性的参数,不但可从它计算出Spike辐射源区的小尺度结构,而且观测结果与Spike辐射理论可相互验证.我们利用云南天文台0.5 MHz频率分辨率的射电频谱观测资料,作出了230—300MHz频段上单个Spike带宽分布,并由此给出一群Spike源区的最可几尺度为151km,最大源区尺度为830km.  相似文献   

13.
Maroulis  D.  Dumas  G.  Caroubalos  C.  Bougeret  J. L.  Moussas  X.  Alissandrakis  C.  Patavalis  N. 《Solar physics》1997,172(1-2):353-360
We present the new digital solar radio spectrograph located at the Thermopyles station, Greece, operated by the University of Athens. Observations cover the range from 110 to 600 MHz, using a 7-m parabolic antenna. The reception system uses two techniques in parallel: sweep frequency and multi-channel, the latter being based on the Acousto-Optical technique. The data acquisition system is based on two subsystems, a Sun Sparc-5 workstation and a front end based on a VME Motorola system. The two subsystems are connected through the Ethernet and are operated using the VxWorks real-time package. The daily operation is completely automated: pointing of the antenna to the sun, starting and stopping the observations at pre-set times, acquiring data, compressing data by silence suppression in real time, and archiving the data on a routine manner on DAT tapes. Apart from its usual function, this instrument will be used in conjunction with other instruments, including the Nançay decameter array and the low frequency radio receivers on the Wind spacecraft.  相似文献   

14.
15.
An East – West, one-dimensional radio interferometer array consisting of five parabolic dish antennas has been set up at Cachoeira Paulista (longitude 45°0′20″ W, latitude 22°41′19″ S) for observations of the Sun and some of the strong sidereal sources by the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil. This is Phase-I of the proposed Brazilian Decimetric Array and can be operated at any frequency in the range 1.2 – 1.7 GHz. The instrument has been in operation since November 2004 onwards at 1.6 GHz. The angular and temporal resolutions at this frequency are ∼3′ and 100 ms, respectively. Details of the array, analog/digital receiver system, and a preliminary East – West one-dimensional solar image at the 1.6 GHz are presented in this paper.  相似文献   

16.
Instrumentation for obtaining high time resolution dynamic spectra of solar radio bursts at decimetric wavelengths is described. The spectrograph sweeps the frequency range of 565–1000 MHz at a rate of 100 times per second. All data are recorded both on film and as an analog signal on magnetic tape. The frequency and flux calibrations are discussed. A sampling system which allows the activity at three discrete frequencies to be plotted on a chart recorder is described.  相似文献   

17.
Jupiter flux at 327 MHz was monitored using the Ooty radio telescope from July 12th to July 29th during the collision of comet Shoemaker-Levi 9 with Jupiter. Flux was found to increase steadily from July 17th to July 26th by ∼ 2–5 Jy, after which it declined to its pre-event value. The comparison of 327 MHz observations with those at 840 MHz and 2240 MHz indicates that the enhancement was mainly due to the increased synchrotron emission and the contribution of thermal emission was very small at metric-decimetric frequencies. The enhancement in radio emission was found to be more at 840 MHz than at 327 or 2240 MHz. The steepening of the spectrum between 327 and 840 MHz as well as between 2240 and 840 MHz was also noted.  相似文献   

18.
An interferometer antenna system to observe polarized radio emission from the solar corona at different frequencies in the range 30?–?110 MHz has been commissioned recently by the Indian Institute of Astrophysics at the Gauribidanur Radio Observatory (latitude 13°3612′′N and longitude 77°2707′′E), about 100 km north of Bangalore (http://www.iiap.res.in/centres_radio.htm). This paper describes the antenna system, associated analog/digital receiver setup, calibration scheme, and preliminary results.  相似文献   

19.
The Gauribidanur Radioheliograph   总被引:1,自引:0,他引:1  
A new radio heliograph for obtaining two-dimensional images of the solar corona sequentially at many frequencies in the range 40–150 MHz has been built by the Indian Institute of Astrophysics at the Gauribidanur Radio Observatory (lat. 13°3612 N and long. 77°2707 E) about 100 km north of Bangalore, India. This paper describes various aspects of the antenna system, receiver front end, digital hardware, the data acquisition and the calibration procedure. The performance of the instrument is illustrated with maps of the continuum emission from the undisturbed corona at different frequencies.  相似文献   

20.
A solar radio type II burst (which was seen as two patches of emission, one during 07:00–07:13 UT and other one during 07:20–07:35 UT) was observed on 22 March 1998 using the Madurai radio spectrograph. A broad range of data (from Culgoora and Hiraiso spectrographs, white-light data from SOHO/LASCO and X-ray data from Yohkoh and GOES satellites) was also studied for this event, which was analyzed in comparison with these supplementary data. In addition, the conditions associated with this shock were analyzed quantitatively. From the above investigations, the following conclusions have been made. The temporal relationship between H-alpha flare and burst has shown that the active region AR 8185 is the source of this type II burst. A bright front feature observed with LASCO is also associated with this type II burst and active region AR 8185. The time profile of the shock derived from the first patch of this type II burst coincides with the flare starting time. Also, within error limits, the start time of the CME is same as the flare. Hence, it is not possible to decide whether the type II originated in the flare or was driven by CME. In addition, the investigations of the second patch alone has provided the following results. The inferred shock speed for the second patch of emission is lower than the first and closer to the CME speed. The emission occurred below 50 MHz. These conditions imply that this patch may be a separate burst which might have been produced by the CME alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号