共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a new approach to estimate high-resolution teleseismic receiver functions using a simultaneous iterative time-domain sparse deconvolution. This technique improves the deconvolution by using reweighting strategies based on a Cauchy criterion. The resulting sparse receiver functions enhance the primary converted phases and its multiples. To test its functionality and reliability, we applied this approach to synthetic experiments and to seismic data recorded at station ABU, in Japan. Our results show Ps conversions at approximately 4.0 s after the primary P onset, which are consistent with other seismological studies in this area. We demonstrate that the sparse deconvolution is a simple, efficient technique in computing receiver functions with significantly greater resolution than conventional approaches. 相似文献
2.
Upper mantle stratification by P and S receiver functions 总被引:11,自引:0,他引:11
3.
Efficient calculation of differential seismograms for lithospheric receiver functions 总被引:18,自引:0,他引:18
G. E. Randall 《Geophysical Journal International》1989,99(3):469-481
4.
5.
Shear wave statics using receiver functions 总被引:1,自引:0,他引:1
D. van Manen J. O. A. Robertsson A. Curtis R. Ferber H. Paulssen 《Geophysical Journal International》2003,153(3):F1-F5
6.
Patricia Persaud Xyoli Pérez-Campos Robert W. Clayton 《Geophysical Journal International》2007,170(2):687-699
Receiver functions (RFs) from teleseismic events recorded by the NARS-Baja array were used to map crustal thickness in the continental margins of the Gulf of California, a newly forming ocean basin. Although the upper crust is known to have split apart simultaneously along the entire length of the Gulf, little is known about the behaviour of the lower crust in this region. The RFs show clear P -to- S wave conversions from the Moho beneath the stations. The delay times between the direct P and P -to- S waves indicate thinner crust closer to the Gulf along the entire Baja California peninsula. The thinner crust is associated with the eastern Peninsular Ranges batholith (PRB). Crustal thickness is uncorrelated with topography in the PRB and the Moho is not flat, suggesting mantle compensation by a weaker than normal mantle based on seismological evidence. The approximately W–E shallowing in Moho depths is significant with extremes in crustal thickness of ∼21 and 37 km. Similar results have been obtained at the northern end of the Gulf by Lewis et al., who proposed a mechanism of lower crustal flow associated with rifting in the Gulf Extensional Province for thinning of the crust. Based on the amount of pre-Pliocene extension possible in the continental margins, if the lower crust did thin in concert with the upper crust, it is possible that the crust was thinned during the early stages of rifting before the opening of the ocean basin. In this case, we suggest that when breakup occurred, the lower crust in the margins of the Gulf was still behaving ductilely. Alternatively, the lower crust may have thinned after the Gulf opened. The implications of these mechanisms are discussed. 相似文献
7.
8.
Analysis of the crustal velocity structure of the British Isles using teleseismic receiver functions
J. P. Tomlinson P. Denton P. K. H. Maguire D. C. Booth 《Geophysical Journal International》2006,167(1):223-237
The onshore crustal and upper mantle velocity structure of the British Isles has been investigated by teleseismic receiver function analysis. The results of the study augment the dense offshore and sparse onshore models of the velocity structure beneath the area. In total almost 1500 receiver functions have been analysed, which have been calculated using teleseismic data from 34 broadband and short-period, three-component seismic recording instruments. The crustal structure has primarily been investigated using 1-D grid search and forward modelling techniques, returning crustal thicknesses, bulk crustal Vp / Vs ratio and velocity-depth models. H −κ stacking reveals crustal thicknesses between 25 and 36 km and Vp / Vs ratios between 1.6 and 1.9. The crustal thicknesses correlate with the results of previous seismic reflection and refraction profiles to within ±2 km. The significant exceptions are the stations close to the Iapetus Suture where the receiver function crustal thicknesses are up to 5 km less than the seismic refraction Moho. This mismatch could be linked to the presence of underplated magmatic material at the base of the crust. 1-D forward modelling has revealed subcrustal structures in northern Scotland. These correlate with results from other UK receiver function studies, and correspond with the Flannan and W-reflectors. The structures are truncated or pinch out before they reach the Midland Valley of Scotland. The isolated subcrustal structure at station GIM on the Isle of Man may be related to the closure of the Iapetus Ocean. 相似文献
9.
10.
11.
Thickness estimates of the upper-mantle transition zone from bootstrapped velocity spectrum stacks of receiver functions 总被引:1,自引:0,他引:1
We modify the receiver-functions stacking technique known as velocity spectrum stacking (VSS) so as to estimate combinations of velocity model ( VP and VS ) and depth that stack the Ps conversion from upper-mantle discontinuities most coherently. We find that by estimating the differences in the depths to the 660 and 410 km discontinuities using velocities that maximize the stacked amplitudes of P410s and P660s phases we can estimate the thickness of the transition zone more accurately than the depths to either of these discontinuities. We present two examples indicating that the transition zone beneath Obninsk, Russia, is 252±6 km thick and that beneath Pasadena, California, is only 220±6 km thick. 相似文献
12.
Wavelet modelling of broad-band receiver functions 总被引:2,自引:0,他引:2
Qingju Wu Yonghua Li Ruiqing Zhang Rongsheng Zeng 《Geophysical Journal International》2007,170(2):534-544
We present a wavelet modelling approach to invert for S -wave velocities from broad-band receiver functions. Taking spline function as the basic wavelet, the broad-band receiver function is decomposed into five resolution scales by Mallat's pyramid algorithm. The linearized least-squares inversion procedure is applied to every resolution scale. The fifth-scale approximation of receiver function is first inverted to recover the slowly varying background velocity variations with respect to a reference model. This solution is then taken as the initial model for fitting the fourth-scale wavelet coefficients of receiver function to further tune the solution to resolve sharper variations. This procedure is iteratively carried out up to the first-scale wavelet coefficients of receiver function. In this manner, the model neighbourhood containing the global minimum is first searched from the coarsest-scale receiver function, and the search gradually focuses on the global minimum by introducing finer-scale information of receiver function. Noise-free synthetic receiver function tests show that wavelet modelling of receiver functions can guide a certain range of initial models to converge to the true velocity distribution. Tests on actual data indicate that wavelet modelling can provide results very similar to those inferred by joint inversion of receiver function and surface wave dispersion. 相似文献
13.
Several years of broad-band teleseismic data from the GRSN stations have been analysed for crustal structure using P -to- S converted waves at the crustal discontinuities. An inversion technique was developed which applies the Thomson-Haskell formalism for plane waves without slowness integration. The main phases observed are Moho conversions, their multiples in the crust, and conversions at the base of the sediments. The crustal thickness derived from these data is in good agreement with results from other studies. For the Gräfenberg stations, we have made a more detailed comparison of our model with a previously published model obtained from refraction seismic experiments. The refraction seismic model contains boundaries with strong velocity contrasts and a significant low-velocity zone, resulting in teleseismic waveforms that are too complicated as compared to the observed simple waveforms. The comparison suggests that a significant low-velocity zone is not required and that internal crustal boundaries are rather smooth. 相似文献
14.
Crustal structure beneath western and eastern Iceland from surface waves and receiver functions 总被引:1,自引:0,他引:1
Zhijun Du G. R. Foulger B. R. Julian R. M. Allen G. Nolet W. J. Morgan B. H. Bergsson P. Erlendsson S. Jakobsdottir S. Ragnarsson R. Stefansson K. Vogfjord 《Geophysical Journal International》2002,149(2):349-363
15.
The crustal structure beneath the northwest fjords, Iceland, from receiver functions and surface waves 总被引:1,自引:0,他引:1
Five broad-band seismic stations were operated in the northwest fjords area of Iceland from 1996 to 1998 as part of the Iceland Hotspot project. The structures of the upper 35 km or so beneath these stations were determined by the modelling and joint inversion of receiver functions and regional surface wave phase velocities. More than 40 teleseismic events and a few regional events containing high-quality surface wave trains were used. Although the middle period passband of the seismograms is corrupted by oceanic microseismic noise, which hinders the interpretation of structural details, the inversions reveal the overall features. Many profiles obtained exhibit large velocity gradients in the upper 5 km or so, smaller zero gradients below this, and, at ~23 km depth, a zone 2–4 km thick with higher velocity gradients. The two shallower intervals are fairly consistent with the 'upper' and 'lower' crust, defined by Flovenz (1980 ). The deep zone of enhanced velocity gradient seems to correspond to the sharp reflector first reported by Bjarnason et al . (1993 ) and identified by them as the 'Moho'. However, this type of structure is not ubiquitous beneath the northwest fjords area. The distinctiveness of the three intervals is variable, and in some cases a structure with velocity gradient increasing smoothly with depth is observed. We term these two end-members structures of the first and second types respectively. Structures of the second type correlate with older areas. Substantial variation in fundamental structure is to be expected in Iceland because of the great geological heterogeneity there. 相似文献
16.
17.
18.
19.
S receiver functions from 67 broad-band seismic stations in the western United States clearly reveal the existence of a mantle discontinuity with velocity reduction downward, which we interpret as the lithosphere–asthenosphere boundary (LAB). The average depth of the LAB is ∼70 km. The boundary is relatively sharp with an overall sharpness of less than 20 km. The boundary is more prominent south of the Mendocino Triple Junction, where the Farallon Plate has completely subducted. This may indicate partial melts at the base of the lithosphere caused by the upwelling of the asthenospheric flow through the slab window. A double low velocity zone is observed at base of the lithosphere beneath southern Sierra Nevada, implying a second melting zone at a depth of ∼100 km, well correlated with previous studies of lithospheric delamination in the area. 相似文献
20.