首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《水文科学杂志》2013,58(3):524-530
Abstract

Detection efficiencies of alternative groundwater monitoring networks were evaluated in relation to distance to a buffer zone (contaminant migration) boundary. This boundary establishes a distance limit within which contaminant plumes should pass through monitoring wells, located on curvilinear segments (monitoring loci) near a waste storage facility. Alternative strategies allocated monitoring wells to loci at specified distances, measured parallel to groundwater flow, from the downgradient boundaries of a landfill. One approach constrained wells to equal spacing, measured perpendicular to groundwater flow. Compressing well locations 10% closer to the downgradient corner of the landfill rendered alternative monitoring configurations. Computations by a monitoring efficiency model indicated: (a) networks largely maintained detection efficiency for different contaminant migration boundaries; (b) one network most efficiently attained a target detection capability for all contaminant migration boundaries; and (c) compressed networks slightly outperformed equal-spaced counterparts. Compressed networks with more wells along closer monitoring loci best maintained the detection efficiency when shifting the contaminant migration boundary closer to the landfill. Procedures described in this paper may be useful for examining trade-offs between monitoring efficiency and distance limits of contaminant travel at landfills posing potential hazards to underlying groundwater.  相似文献   

2.
Hassan AE 《Ground water》2006,44(5):710-722
A long-term monitoring well network is developed using complementary and simple approaches in conjunction with a stochastic ground water flow and transport model. The development is illustrated for a case study of a U.S. nuclear testing site (Shoal) that is undergoing environmental restoration. The network design builds on three different, yet complementary, tools for locating the monitoring wells with a main objective of detection monitoring. The first tool is applied to select potential siting horizons where monitoring wells could be located. The second tool is used to place monitoring wells in locations with high success probability. The success here is defined as the detection of migrating stochastic plumes before a certain mass percentage reaches a compliance boundary. The third tool is used to analyze detection efficiency of multiple combinations of three wells. Seventy-six different three-well networks are selected from 20 candidate locations and are evaluated for detection efficiency. From the 76 networks analyzed, 28 attain detection efficiency close to or above 70%. The results of the different analyses provide multiple alternatives for the locations of the three wells, which will become part of the long-term monitoring network at Shoal. A number of combinations are equally good, and the final choice will depend on practical considerations and future agreements between model sponsor and regulators.  相似文献   

3.
Ground water quality networks for monitoring phreatic drinking water wellfields are generally established for two main purposes: (1) the short-term safeguarding of public water supply and (2) signaling and predicting future quality changes in the extracted ground water. Six monitoring configurations with different well locations and different screen depths and lengths were evaluated using a numerical model of the 3D ground water flow toward a partially penetrating pumping well in a phreatic aquifer. Travel times and breakthrough curves for observation and pumping wells were used to judge the effectiveness of different design configurations for three monitoring objectives: (1) early warning; (2) prediction of future quality changes; and (3) evaluation of protection measures inside a protection zone. Effectiveness was tested for scenarios with advective transport, first-order degradation, and linear sorption. It is shown that the location and especially the depth of the observation wells should be carefully chosen, taking into account the residence time from the surface to the observation well, the residual transit times to the extraction well, and the transformation and retardation rates. Shallow monitoring was most functional for a variety of objectives and conditions. The larger the degradation rates or retardation, the shallower should the monitoring be for effective early warning and prediction of future ground water quality. The general approach followed in the current study is applicable for many geohydrological situations, tuning specific monitoring objectives with residence times and residual transit times obtained from a site-specific ground water flow model.  相似文献   

4.
The Geo Flowmeter is manufactured by K.V. Associates of Falmouth, Massachusetts, and is used to determine ground water flow direction and velocity in monitoring wells or open boreholes. It operates by emitting heat pulses and measuring subsequent temperature increases carried by the ground water movement. The meter can be used in wells as small as 2 inches in diameter and only a single well is required for determination of ground water flow direction and rate.
This paper is a case history of the use of the Geo Flowmeter in a complex hydrogeologic setting consisting of a partially above grade landfill located between a navigable waterway and a large storm water impoundment basin. Mounding effects of the landfill, tidal changes in the channel, varying water levels in the impoundment basin and a complex substrate (alternating layers of sand, silt and clay) presented a challenge for ground water interpretation and analysis. The Geo Flowmeter was lowered into existing monitoring wells surrounding the landfill to determine ground water flow direction and rate. Sensitivity of the meter was sufficient to distinguish two separate flow directions in a single well screen. Later investigation involving installation of piezometers, long-term ground water level monitoring and plotting of ground water contours verified initial findings of the meter.
This article presents numerous graphs and pictures to illustrate field use of the instrument and discusses advantages and disadvantages of its use. Actual field data collected is included to provide a basis for evaluating the accuracy of the instrument and identifying situations where it may be used.  相似文献   

5.
In the past 30 to 40 years, floodplain areas of large rivers, such as the Missouri River, have been extensively used for large industrial and municipal landfills. Many of these sites are now causing varying degrees of ground water contamination. Rapid geophysical characterization techniques have proven useful for delineation of anomalous areas indicative of potential contaminant plumes. These methods have also resulted in a cost effective approach to the location and number of monitoring wells.
An effective technique to initially characterize ground water contamination at such landfills along the Missouri River in northwestern Missouri involved a combination of electrical resistivity and electromagnetic conductivity methods. Resistivity was used to obtain soundings of the alluvium by using a modified Wenner array and to corroborate shallow electromagnetic conductivity measurements by using short Wenner array electrode spacings.
Upon confirmation of similar measurements of the upper soils for the two methods, numerous electromagnetic conductivity traverses were made at each landfill site. The data generated from these surveys were graphed and contoured to delineate anomalous areas. Based on the geophysical study, a ground water monitoring well network was then designed for each landfill.
As a result, a minimal number of wells were required to initially characterize the ground water quality at these two sites. In general, analysis of water samples from these wells displayed good correlation with the geophysical results.  相似文献   

6.
The Geochemistry of Boron in a Landfill Monitoring Program   总被引:1,自引:0,他引:1  
Ground water monitoring data collected during the past eight years at a permitted municipal solid waste (MSW) disposal facility located in the midwestern United States indicated fluctuations in typical leachate indicator parameter concentrations. Apparent trends in the data inferred leachate outbreak, generating suspicion as to the integrity of the landfill liner. Eight ground water monitoring wells were installed in three distinct geologic units at the landfill facility, including glacial drift, silurian dolomite, and a post-glacial peat fen, which is downgradient from the landfill. Piezometer nests were used to define ground water gradients at the site. Using boron as an indicator, the occurrence of analytes of concern in the downgradient monitoring wells were shown to be indicative of the natural geochemistry of site ground water. This work emphasizes the importance of understanding site hydrogeology during the interpretation of ground water quality data.  相似文献   

7.
Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site.
Leaf samples of broad-leafed cottonwood, Populus deltoides , were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or "well plant," functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby.
Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.  相似文献   

8.
The presence of stones, solid waste, and other obstructions can deflect small-diameter driven wells during installation, leading to deviations of the well from its intended position. This could lead to erroneous results, especially for measurements of ground water levels by water level meters. A simple method was developed to measure deviations from the intended positions of well screens and determine correction factors required for proper measurement of ground water levels in nonvertical wells. The method is based upon measurement of the hydrostatic pressure in the bottom of a water column, which is established in the well lube. The method was used to correct water level measurement in wells driven through a landfill site. Errors of up to 27 cm in water level were observed at the landfill site. The correction of the water level measurements had a significant effect on estimated local ground water flow directions.  相似文献   

9.
Ground water monitoring networks can provide vital information for sustainable water resources management. This involves the measurement of ground water level, solute concentration, or both. This article deals with the former. It optimizes network distribution of piezometer or data sampling wells to effectively monitor ground water levels under an irrigation region while retaining adequate overall measurement accuracy. This article presents a structured process for applying principal component analysis (PCA) in optimizing a ground water monitoring network in an irrigation area of Australia. The PCA functions, distributed with the MATLAB package, were used to determine relative contributions of individual piezometers in capturing the spatiotemporal variation of ground water levels. Kriging gridding interpolation algorithm was used to render the data surface presentations and determine spatial differences in piezometeric surfaces using different number of data sets. The results show that the overall difference of ground water level between the original piezometer network and the optimized networks after the PCA process was applied is less than 20%, while the total number of piezometers in the optimized network is reduced by 63%, which will save the time and cost to monitor ground water levels in the irrigation area.  相似文献   

10.
Data from an existing network of ground water monitoring wells at the U.S. Department of Energy (DOE) Hoe Creek Underground Coal Gasification (UCG) Experimental Site indicated that organic contaminants, particularly phenols produced during gasification experiments, were threatening neighboring ground water resources. The existing monitoring well network was sparse and further definition of the extent and direction of contaminant migration was needed. Additionally, water level data, important in determining flow directions, was incomplete. A field program was designed and implemented to locate and define the organic contamination and expand the existing ground water monitoring program. The program utilized field analysis of phenol for contaminant detection and well location, followed by completion using gas-drive ground water samplers/piezometers. Geophysical logging was used to permit optimum placement of the samplers. The geologic aspects of the site posed some interesting problems to the installation of the samplers. The contaminant plume edge was defined in the east, west and south directions during the field program. Further work is needed in the north direction.  相似文献   

11.
In this paper we present a hydrologic application of a new statistical learning methodology called support vector machines (SVMs). SVMs are based on minimization of a bound on the generalized error (risk) model, rather than just the mean square error over a training set. Due to Mercer's conditions on the kernels, the corresponding optimization problems are convex and hence have no local minima. In this paper, SVMs are illustratively used to reproduce the behavior of Monte Carlo-based flow and transport models that are in turn used in the design of a ground water contamination detection monitoring system. The traditional approach, which is based on solving transient transport equations for each new configuration of a conductivity field, is too time consuming in practical applications. Thus, there is a need to capture the behavior of the transport phenomenon in random media in a relatively simple manner. The objective of the exercise is to maximize the probability of detecting contaminants that exceed some regulatory standard before they reach a compliance boundary, while minimizing cost (i.e., number of monitoring wells). Application of the method at a generic site showed a rather promising performance, which leads us to believe that SVMs could be successfully employed in other areas of hydrology. The SVM was trained using 510 monitoring configuration samples generated from 200 Monte Carlo flow and transport realizations. The best configurations of well networks selected by the SVM were identical with the ones obtained from the physical model, but the reliabilities provided by the respective networks differ slightly.  相似文献   

12.
Modeling effects of multinode wells on solute transport   总被引:1,自引:0,他引:1  
Long-screen wells or long open boreholes with intraborehole flow potentially provide pathways for contaminants to move from one location to another in a ground water flow system. Such wells also can perturb a flow field so that the well will not provide water samples that are representative of ground water quality a short distance away from the well. A methodology is presented to accurately and efficiently simulate solute transport in ground water systems that include wells longer than the grid spacing used in a simulation model of the system and hence are connected to multiple nodes of the grid. The methods are implemented in a MODFLOW-compatible solute-transport model and use MODFLOW's Multi-Node Well Package but are generic and can be readily implemented in other solute-transport models. For nonpumping multinode wells (used to simulate open boreholes or observation wells, for example) and for low-rate pumping wells (in which the flow between the well and the ground water system is not unidirectional), a simple routing and local mixing model was developed to calculate nodal concentrations within the borehole. For high-rate pumping multinode wells (either withdrawal or injection, in which flow between the well and the ground water system is in the same direction at all well nodes), complete and instantaneous mixing in the wellbore of all inflows is assumed.  相似文献   

13.
A confined aquifer may become unconfined near the pumping wells when the water level falls below the confining unit in the case where the pumping rate is great and the excess hydraulic head over the top of the aquifer is small. Girinskii's potential function is applied to analyze the steady ground water flow induced by pumping wells with a constant-head boundary in a mixed confined-unconfined aquifer. The solution of the single-well problem is derived, and the critical radial distance at which the flow changes from confined to unconfined condition is obtained. Using image wells and the superposition method, an analytic solution is presented to study steady ground water flow induced by a group of pumping wells in an aquifer bounded by a river with constant head. A dimensionless function is introduced to determine whether a water table condition exists or not near the pumping wells. An example with three pumping wells is used to demonstrate the patterns of potentiometric surface and development of water table around the wells.  相似文献   

14.
Ground water monitoring is considered to be a significant component of the geological service in the U.S.S.R. Currently, the total number of ground water monitoring wells exceeds 30,000. They are divided into two categories, which are the first class, or basic observation wells, and the second class, or auxiliary observation wells. The main objectives of both monitoring networks are briefly described. The general scheme of ground water monitoring organization is also presented.  相似文献   

15.
Two borehole geophysical methods—electromagnetic induction and natural gamma radiation logs—were used to vertically delineate landfill leachate plumes in a glacial aquifer. Geophysical logs of monitoring wells near two land-fills in a glacial aquifer in west-central Vermont show that borehole geophysical methods can aid in interpretation of geologic logs and placement of monitoring well screens to sample landfill leachate plumes.
Zones of high electrical conductance were delineated from the electromagnetic log in wells near two landfills. Some of these zones were found to correlate with silt and clay units on the basis of drilling and gamma logs. Monitoring wells were screened specifically in zones of high electrical conductivity that did not correlate to a silt or clay unit. Zones of high electrical conductivity that did not correlate to a silt or clay unit were caused by the presence of ground water with a high specific conductance, generally from 1000 to 2370 μS/cm (microsiemens per centimeter at 25 degrees Celsius). Ambient ground water in the study area has a specific conductance of approximately 200 to 400 μS/cm. Landfill leachate plumes were found to be approximately 5 to 20 feet thick and to be near the water table surface.  相似文献   

16.
The municipal landfill at the Complexe Environnemental de Saint-Michel (CESM) in Montreal, which is the third largest in North America, is located in a former quarry in fractured limestone. Impressive measures are taken to monitor and control biogas and leachate generated at the site. Leachate containment is presently performed with a pumping well completed within the waste. The efficiency of the well in controlling off-site leachate migration is questioned because field observations strongly suggest that the nearby former Francon quarry is diverting local ground water flow. To address this issue, four additional hydraulic control options are considered: (1) increased pumping at the existing waste well; (2) new pumping wells in the rock on the eastern limit of the site; (3) new injection wells in the rock on the eastern limit; and (4) combination of new injection wells at the same location and new water supply wells upgradient of the landfill. We evaluated the four hydraulic control options at the CESM using two coupled models: (1) a decision model based on an objective function weighting the risk, costs, and benefits of each option translated into dollar units; and (2) a numerical ground water flow model to represent the effect of operational conditions and ascertain success. Decision analysis offers a quantitative unbiased tool to evaluate the potential and relative cost of each option, but qualitative considerations and judgment still must be used for a complete evaluation. Our analysis confirms that scenario 4, which was the intuitively favored option, represents the best containment strategy.  相似文献   

17.
A method is presented to design monitoring networks for detecting groundwater pollution at industrial sites. The goal is to detect the pollution at some distance from the site’s boundary so that it can be cleaned up or hydrologically contained before contaminating groundwater outside the site. It is assumed that pollution may occur anywhere on the site, that transport is by advection only and that no retardation and chemical reactions take place. However, the approach can be easily extended to include designated (and uncertain) source areas, dispersion and reactive transport. The method starts from the premise that it is impossible to detect 100% of all the contaminant plumes with reasonable costs and therefore seeks a balance between the risk of pollution and network density. The design approach takes account of uncertainty in the flow field by simulating realisations of conductivity, groundwater head and associated flow fields, using geostatistical simulation and a groundwater flow model. The realisations are conditioned to conductivity and head observations that may already be present on the site. The result is an ensemble of flow fields that is further analysed using a particle track program. From this the probability of missing a contaminant plume originating anywhere on the terrain can be estimated for a given network. From this probability follows the risk, i.e. the expected costs of an undetected pollution. The total costs of the monitoring strategy are calculated by adding the risk of pollution to the costs of installing and maintaining the monitoring wells and the routinely performed chemical analyses. By repeating this procedure for networks of varying well numbers, the best network is chosen as the one that minimises total cost. The method is illustrated with a simulated example showing the added worth of exploratory wells for characterising hydraulic conductivity of a site.  相似文献   

18.
A systematic approach is presented for the design of a multiphase vadose zone monitoring system recognizing that, as in ground water monitoring system design, complete subsurface coverage is not practical. The approach includes identification and prioritization of vulnerable areas: select ion of cost-effective indirect monitoring methods that will provide early warning of contaminant migration: selection of direct monitoring methods for diagnostic confirmation; identification of background monitoring locations; and identification of an appropriate temporal monitoring plan. An example of a monitoring system designed for a solid waste landfill is presented and utilized to illustrate the approach and provide details of system implementation. The example design described incorporates the use of neutron moisture probes deployed in both vertical and horizontal access tubes beneath the lcachate recovery collection system of the landfill. Early warning of gaseous phase contaminant migration is monitored utilizing whole-air active soil gas sampling points deployed in gravel- filled trenches beneath the subgrade. Diagnostic confirmation of contaminant migration is provided utilizing pore- liquid samplers. Conservative tracers can be used to distinguish between chemical species released by a landfill from those attributable to other (e.g. off-site) sources or present naturally in the subsurface. A discussion of background monitoring point location is also presented.  相似文献   

19.
A statistical trend methodology is used to compare ground water quality between eight landfill sites in western Michigan as a case study. Monitoring data were collected over a 15-year period on 36 parameters at an upgradient and downgradient well selected at each of the eight sites. This yielded a total of 576 monitoring data sets available for analysis. New trend and contamination indices are introduced that are used to compare ground water contamination between these eight sites. These indices are used to assess each landfill's relative potential for environmental harm.
Many questions remain unanswered, but what is demonstrated here is that this type of methodology has the potential to be used to assess trends of ground water chemistry concentrations at landfill sues in a region. A specific purpose of such an assessment could be to provide a quantified basis for the prioritization of funds allocated for cleanup of contaminated landfill sites. Having a technical capability to reduce large amounts of ground water monitoring data to appropriate summaries, which then can be used to assess environmental contamination between several sites, could also have important economic and health implications in other settings. Hopefully this paper will encourage further development of such technologies for these purposes.  相似文献   

20.
From the mid-1940s through the 1980s, large volumes of waste water were discharged at the Hanford Site in southeastern Washington State, causing a large-scale rise (>20 m) in the water table. When waste water discharges ceased in 1988, ground water mounds began to dissipate. This caused a large number of wells to go dry and has made it difficult to monitor contaminant plume migration. To identify monitoring wells that will need replacement, a methodology has been developed using a first-order uncertainty analysis with UCODE, a nonlinear parameter estimation code. Using a three-dimensional, finite-element ground water flow code, key parameters were identified by calibrating to historical hydraulic head data. Results from the calibration period were then used to check model predictions by comparing monitoring wells' wet/dry status with field data. This status was analyzed using a methodology that incorporated the 0.3 cumulative probability derived from the confidence and prediction intervals. For comparison, a nonphysically based trend model was also used as a predictor of wells' wet/dry status. Although the numerical model outperformed the trend model, for both models, the central value of the intervals was a better predictor of a wet well status. The prediction interval, however, was more successful at identifying dry wells. Predictions made through the year 2048 indicated that 46% of the wells in the monitoring well network are likely to go dry in areas near the river and where the ground water mound is dissipating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号