首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a review of methods for stochastic representation of non-Gaussian random fields. One category of such methods is through transformation from Gaussian random fields, and the other category is through direct simulation. This paper also gives a reflection on the simulation of non-Gaussian random fields, with the focus on its primary application for uncertainty quantification, which is usually associated with a large number of simulations. Dimension reduction is critical in the representation of non-Gaussian random fields with the aim of efficient uncertainty quantification. Aside from introducing the methods for simulating non-Gaussian random fields, critical components related to suitable stochastic approaches for efficient uncertainty quantification are stressed in this paper. Numerical examples of stochastic groundwater flow are also presented to investigate the applicability and efficiency of the methods for simulating non-Gaussian random fields for the purpose of uncertainty quantification.  相似文献   

2.
Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in which the shale plays, core observations indicate abundant random non-tectonic micro- fractures in the producing shales. The non-tectonic micro-fractures are different from tectonic fractures and are characterized by being irregular, curved, discontinuous, and randomly distributed. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. Two-dimensional computational modeling studies have been used in an initial attempt toward understanding how naturally random fractured reservoirs respond during hydraulic fracturing. The aim of the paper is to investigate the effect of random non-tectonic fractures on hydraulic fracturing. The numerical models with random non-tectonic micro-fractures are built by extracting the fractures of rock blocks after repeated heating and cooling, using a digital image process. Simulations were conducted as a function of: (1) the in-situ stress ratio; (2) internal friction angle of random fractures; (3) cohesion of random fractures; (4) operational variables such as injection rate; and (5) variable injection rate technology. A sensitivity study reveals a number of interesting observations resulting from these parameters on the shear stimulation in a natural fracture system. Three types of fracturing networks were observed from the studied simulations, and the results also show that variable injection rate technology is most promising for producing complex fracturing networks. This work strongly links the production technology and geomechanical evaluation. It can aid in the understanding and optimization of hydraulic fracturing simulations in naturally random fractured reservoirs.  相似文献   

3.
弹性随机介质模型的特征频率   总被引:14,自引:7,他引:7       下载免费PDF全文
为研究弹性随机介质模型中的波场特征,本文使用弹性波动方程正演模拟了平面波在二维弹性随机介质模型中的传播.通过大量正演模拟,我们首先发现若使用不同频率的瑞克子波作为震源函数,计算散射波场的能量相对值ΔE,则对每一个固定的随机介质模型,ΔE都会在某一个与模型对应的震源频率f*处达到最大值.本文由此提出了随机介质模型的特征频率这一新的概念.本文充分说明了特征频率的客观存在性;给出了相应的计算方法;进一步全面研究了随机介质中的各种模型特征(如自相关长度、背景速度、扰动标准差以及模型尺寸等)与模型的特征频率之间的关系;并得到了若干结论和相应的经验关系表达式.  相似文献   

4.
A stochastic thin-layer method is developed for the analysis of wave propagation in a layered half-space. A random field of shear moduli in the layered system is considered in terms of multiple correlated random variables. Expanding the random moduli and uncertain responses by means of Hermite polynomial chaos expansions and applying the Galerkin method in the spatial as well as stochastic domains, stochastic versions of thin-layer methods for a layered half-space in plane strain and antiplane shear are obtained. In order to represent the infinite half-space, continued-fraction absorbing boundary conditions are included in the thin-layer models of the half-space. Using these stochastic methods, dynamic responses of a layered half-space subjected to line loads are examined. Means, coefficients of variance, and probability density functions of the half-space responses with a varying correlation coefficient of the shear moduli are computed and verified by comparison with Monte Carlo simulations. It is demonstrated that accurate probabilistic dynamic analysis is possible using the developed stochastic thin-layer methods for a layered half-space.  相似文献   

5.
This study is an extension of the stochastic analysis of transient two-phase flow in randomly heterogeneous porous media (Chen et al. in Water Resour Res 42:W03425, 2006), by incorporating direct measurements of the random soil properties. The log-transformed intrinsic permeability, soil pore size distribution parameter, and van Genuchten fitting parameter are treated as stochastic variables that are normally distributed with a separable exponential covariance model. These three random variables conditioned on given measurements are decomposed via Karhunen–Loève decomposition. Combined with the conditional eigenvalues and eigenfunctions of random variables, we conduct a series of numerical simulations using stochastic transient water–oil flow model (Chen et al. in Water Resour Res 42:W03425, 2006) based on the KLME approach to investigate how the number and location of measurement points, different random soil properties, as well as the correlation length of the random soil properties, affect the stochastic behavior of water and oil flow in heterogeneous porous media.  相似文献   

6.
Contaminant transport models under random sources   总被引:1,自引:0,他引:1  
  相似文献   

7.
In this paper we describe the transport of pollution in groundwater in the neighbourhood of a well in a uniform background flow. We compute the rate at which contaminated particles reach the well as a function of the place of the source of pollution. The motion of a particle in a dispersive flow is seen as a random walk process. The Fokker-Planck equation for the random motion of a particle is transformed using the complex potential for the advective flow field. The resulting equation is solved asymptotically after a stretching transformation. Finally, the analytical solution is compared with results from Monte Carlo simulations with the random walk model. The method can be extended to arbitrary flow fields. Then by a numerical coordinate transformation the analytical results can still be employed.  相似文献   

8.
Both Eulerian and Lagrangian reactive transport simulations in natural media require selection of a parameter that controls the “promiscuity” of the reacting particles. In Eulerian models, measurement of this parameter may be difficult because its value will generally differ between natural (diffusion-limited) systems and batch experiments, even though both are modeled by reaction terms of the same form. And in Lagrangian models, there previously has been no a priori way to compute this parameter. In both cases, then, selection is typically done by calibration, or ad hoc. This paper addresses the parameter selection problem for Fickian transport by deriving, from first principles and D (the diffusion constant) the reaction-rate-controlling parameters for particle tracking (PT) codes and for the diffusion–reaction equation (DRE). Using continuous time random walk analysis, exact reaction probabilities are derived for pairs of potentially reactive particles based on D and their probability of reaction provided that they collocate. Simultaneously, a second PT scheme directly employing collocation probabilities is derived. One-to-one correspondence between each of D, the reaction radius specified for a PT scheme, and the DRE decay constant are then developed. These results serve to ground reactive transport simulations in their underlying thermodynamics, and are confirmed by simulations.  相似文献   

9.
The results obtained in Part I (Soil Dynam. Earth. Engng, 1996, 15, 119-27) of this work for modelling harmonic wave propagation through viscoelastic heterogeneous media that exhibit a small random fluctuation of their material properties about mean values are now used here to investigate SH wave propagation in two naturally occurring media, namely sandstone and topsoil. These results are in the form of depth dependent, deterministic mean values and non-isotropic covariances for both the wave speed profile in the medium and for the fundamental solution in terms of displacement due to a unit point source. The results are also compared against conventional Monte Carlo simulations.  相似文献   

10.
随机弹性介质中地震波散射衰减分析(英文)   总被引:2,自引:0,他引:2  
地震波衰减一直是许多学科研究的热点,因为可以反映介质的特性。导致地震波衰减的因素很多,如:传播过程中由于能量扩散导致的几何衰减,固体岩石内部晶粒间相对滑移导致的摩擦衰减,岩石结构不均匀引起的地震波散射衰减。本文主要从统计的观点出发,通过多次数值模拟的方法研究纵波散射在随机弹性介质中所引发的衰减。首先用随机理论建立了二维空间随机弹性介质模型,然后用错格伪谱法的数值方法模拟了波在随机介质中的传播,再通过波场中虚拟检波器的记录,用谱比法估计了弹性波在随机介质中的散射衰减。不同非均匀程度随机弹性介质中的数值结果表明:介质不均匀程度越高,散射衰减越大;在散射体尺寸小于波长的前提下,不同散射体尺寸的计算结果说明:散射体尺寸越大,弹性波衰减越明显。最后提出了一种不均匀孔隙介质中流体流动衰减的方法。通过对随机孔隙介质中地震波的总衰减和散射衰减分别进行了计算,并定量得出了随机孔隙介质中流体流动衰减,结果表明:在实际地震频段下,当介质不均匀尺度101米量级时,散射衰减比流体流动衰减要大,散射衰减是地震波在实际不均匀岩石孔隙介质中衰减的主要原因。  相似文献   

11.
Numerical simulations of variable-density flow and solute transport have been conducted to investigate dense plume migration for various configurations of 2D fracture networks. For orthogonal fractures, simulations demonstrate that dispersive mixing in fractures with small aperture does not stabilize vertical plume migration in fractures with large aperture. Simulations in non-orthogonal 2D fracture networks indicate that convection cells form and that they overlap both the porous matrix and fractures. Thus, transport rates in convection cells depend on matrix and fracture flow properties. A series of simulations in statistically equivalent networks of fractures with irregular orientation show that the migration of a dense plume is highly sensitive to the geometry of the network. If fractures in a random network are connected equidistantly to the solute source, few equidistantly distributed fractures favor density-driven transport. On the other hand, numerous fractures have a stabilizing effect, especially if diffusive transport rates are high. A sensitivity analysis for a network with few equidistantly distributed fractures shows that low fracture aperture, low matrix permeability and high matrix porosity impede density-driven transport because these parameters reduce groundwater flow velocities in both the matrix and the fractures. Enhanced molecular diffusion slows down density-driven transport because it favors solute diffusion from the fractures into the low-permeability porous matrix where groundwater velocities are smaller. For the configurations tested, variable-density flow and solute transport are most sensitive to the permeability and porosity of the matrix, which are properties that can be determined more accurately than the geometry and hydraulic properties of the fracture network, which have a smaller impact on density-driven transport.  相似文献   

12.
This paper gives the exact solution in terms of the Karhunen–Loève expansion to a fractional stochastic partial differential equation on the unit sphere \({\mathbb {S}}^{2} \subset {\mathbb {R}}^{3}\) with fractional Brownian motion as driving noise and with random initial condition given by a fractional stochastic Cauchy problem. A numerical approximation to the solution is given by truncating the Karhunen–Loève expansion. We show the convergence rates of the truncation errors in degree and the mean square approximation errors in time. Numerical examples using an isotropic Gaussian random field as initial condition and simulations of evolution of cosmic microwave background are given to illustrate the theoretical results.  相似文献   

13.
Simulation of multigaussian stochastic fields can be made after a Karhunen-Loéve expansion of a given covariance function. This method is also called simulation by Empirical Orthogonal Functions. The simulations are made by drawing stochastic coefficients from a random generator. These numbers are multiplied with eigenfunctions and eigenvalues derived from the predefined covariance model. The number of eigenfunctions necessary to reproduce the stochastic process within a predefined variance error, turns out to be a cardinal question. Some ordinary analytical covariance functions are used to evaluate how quickly the series of eigenfunctions can be truncated. This analysis demonstrates extremely quick convergence to 99.5% of total variance for the 2nd order exponential (‘gaussian’) covariance function, while the opposite is true for the 1st order exponential covariance function. Due to these convergence characteristics, the Karhunen-Loéve method is most suitable for simulating smooth fields with ‘gaussian’ shaped covariance functions. Practical applications of Karhunen-Loéve simulations can be improved by spatial interpolation of the eigenfunctions. In this paper, we suggest interpolation by kriging and limits for reproduction of the predefined covariance functions are evaluated.  相似文献   

14.
Simulation of multigaussian stochastic fields can be made after a Karhunen-Loéve expansion of a given covariance function. This method is also called simulation by Empirical Orthogonal Functions. The simulations are made by drawing stochastic coefficients from a random generator. These numbers are multiplied with eigenfunctions and eigenvalues derived from the predefined covariance model. The number of eigenfunctions necessary to reproduce the stochastic process within a predefined variance error, turns out to be a cardinal question. Some ordinary analytical covariance functions are used to evaluate how quickly the series of eigenfunctions can be truncated. This analysis demonstrates extremely quick convergence to 99.5% of total variance for the 2nd order exponential (‘gaussian’) covariance function, while the opposite is true for the 1st order exponential covariance function. Due to these convergence characteristics, the Karhunen-Loéve method is most suitable for simulating smooth fields with ‘gaussian’ shaped covariance functions. Practical applications of Karhunen-Loéve simulations can be improved by spatial interpolation of the eigenfunctions. In this paper, we suggest interpolation by kriging and limits for reproduction of the predefined covariance functions are evaluated.  相似文献   

15.
Hydrologic risk analysis for dam safety relies on a series of probabilistic analyses of rainfall-runoff and flow routing models, and their associated inputs. This is a complex problem in that the probability distributions of multiple independent and derived random variables need to be estimated in order to evaluate the probability of dam overtopping. Typically, parametric density estimation methods have been applied in this setting, and the exhaustive Monte Carlo simulation (MCS) of models is used to derive some of the distributions. Often, the distributions used to model some of the random variables are inappropriate relative to the expected behaviour of these variables, and as a result, simulations of the system can lead to unrealistic values of extreme rainfall or water surface levels and hence of the probability of dam overtopping. In this paper, three major innovations are introduced to address this situation. The first is the use of nonparametric probability density estimation methods for selected variables, the second is the use of Latin Hypercube sampling to improve the efficiency of MCS driven by the multiple random variables, and the third is the use of Bootstrap resampling to determine initial water surface level. An application to the Soyang Dam in South Korea illustrates how the traditional parametric approach can lead to potentially unrealistic estimates of dam safety, while the proposed approach provides rather reasonable estimates and an assessment of their sensitivity to key parameters.  相似文献   

16.
This paper addresses the issue of missing data reconstruction for partially sampled, two-dimensional, rectangular grid images of differentiable random fields. We introduce a stochastic gradient–curvature (GC) reconstruction method, which is based on the concept of a random field model defined by means of local interactions (constraints). The GC reconstruction method aims to match the gradient and curvature constraints for the entire grid with those of the sample using conditional Monte Carlo simulations that honor the sample values. The GC reconstruction method does not assume a parametric form for the underlying probability distribution of the data. It is also computationally efficient and requires minimal user input, properties that make it suitable for automated processing of large data sets (e.g. remotely sensed images). The GC reconstruction performance is compared with established classification and interpolation methods for both synthetic and real world data. The impact of various factors such as domain size, degree of thinning, discretization, initialization, correlation properties, and noise on GC reconstruction performance are investigated by means of simulated random field realizations. An assessment of GC reconstruction performance on real data is conducted by removing randomly selected and contiguous groups of points from satellite rainfall data and an image of the lunar surface.  相似文献   

17.
The Bayesian maximum entropy (BME) method can be used to predict the value of a spatial random field at an unsampled location given precise (hard) and imprecise (soft) data. It has mainly been used when the data are non-skewed. When the data are skewed, the method has been used by transforming the data (usually through the logarithmic transform) in order to remove the skew. The BME method is applied for the transformed variable, and the resulting posterior distribution transformed back to give a prediction of the primary variable. In this paper, we show how the implementation of the BME method that avoids the use of a transform, by including the logarithmic statistical moments in the general knowledge base, gives more appropriate results, as expected from the maximum entropy principle. We use a simple illustration to show this approach giving more intuitive results, and use simulations to compare the approaches in terms of the prediction errors. The simulations show that the BME method with the logarithmic moments in the general knowledge base reduces the errors, and we conclude that this approach is more suitable to incorporate soft data in a spatial analysis for lognormal data.  相似文献   

18.
Highly resolved simulations of groundwater flow, chemical migration and contaminant recovery processes are used to test the applicability of stochastic models of flow and transport in a typical field setting. A simulation domain encompassing a portion of the upper saturated aquifer materials beneath the Lawrence Livermore National Laboratory was developed to hierarchically represent known hydrostratigraphic units and more detailed stochastic representations of geologic heterogeneity within them. Within each unit, Gaussian random field models were used to represent hydraulic conductivity variation, as parameterized from well test data and geologic interpretation of spatial variability. Groundwater flow, transport and remedial extraction of two hypothetical contaminants were made in six different statistical realizations of the system. The effective flow and transport behavior observed in the simulations compared reasonably with the predictions of stochastic theories based upon the Gaussian models, even though more exacting comparisons were prevented by inherent nonidealities of the geologic model and flow system. More importantly, however, biases and limitations in the hydraulic data appear to have reduced the applicability of the Gaussian representations and clouded the utility of the simulations and effective behavior based upon them. This suggests a need for better and unbiased methods for delineating the spatial distribution and structure of geologic materials and hydraulic properties in field systems. High performance computing can be of critical importance in these endeavors, especially with respect to resolving transport processes within highly variable media.©1998 Elsevier Science Limited. All rights reserved  相似文献   

19.
An expression is derived for the probability distribution of excursion lengths above a fixed level, for the specific case of a discrete random process sampled from an underlying, continuous normal process with exponential autocovariance function. The expression can be integrated numerically for small excursion lengths, and used with time-series simulations to qualitatively reveal the form of the distribution. Such computations indicate that excursions lengths are well approximated by a Weibull distribution to at least the 0.95 probability value. The fit improves with increasing fixed level, and with decreasing time constant of the process. In addition, an expression is given for the expected number of crossings of a fixed level, analogous to well known formulae used in estimating expected values for the cases of a continuous process and a discrete stepped process.  相似文献   

20.
The constructed estimator is introduced for the right truncation point of the truncated exponential distribution. The new estimator is most efficient in important ranges of truncation points for finite sample sizes. The introduced inverse mean squared error clearly indicates the good behaviour of the new estimator. The estimation of the scaling parameter is considered in all discussions and computations. The methods and models of the extreme value theory are not appropriate to estimate the truncation point because they work only in the case of very large sample sizes. Furthermore, a procedure for a first goodness-of-fit test is introduced. All this has been researched by extensive Monte Carlo simulations for different truncation points and sample sizes. Finally, the new inference methods are applied at the end for the random distribution of wildfire sizes and earthquake magnitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号