首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel technique for visualizing turbulent flow data from a gravel-bed river is presented. The time development of flow velocity and shear stress at three heights is displayed using a computer program. This can be used to observe how the fluctuations of velocity and shear stress interact both spatially and temporally. We highlight examples of flow events which are important for the understanding of flow dynamics. The visualization suggests that the turbulent flow-field is characterized not only by coherence over time at a point, but also by spatial interdependence between points. We suggest that this new visualization approach will assist further interpretation of statistical analyses of turbulent signals, as well as focusing future measurement strategies by providing a clearer spatio-temporal picture of the flow structure.  相似文献   

2.
The dispersal of cluster bedforms is examined in a short, partially braided reach of the River Quoich, northeast Scotland, after minor flood events in 1989 and 1990. In all cases, the eventual dispersal of clusters occurred without prior removal of the obstacle clast. Since none of the obstacle clasts was dispersed in 1989 and only two-thirds by 1990, obstacle clasts probably form a less significant delay to sediment entrainment than previously assumed and represent a relatively immobile component of bed sediment.  相似文献   

3.
In a 350 m wide reach of the braided, gravel-bed Ashley River, the surface layer of the bed material was sampled in 141 areas of homogeneous graded sediment along seven cross-sections, and 30 kg bulk samples were collected at 86 randomly selected locations along the cross-sections. At one location, a single 854 kg sample composed of 28 subsamples was also collected. Analysis of the single large sample indicate that accurate determination of mean grain size D at that site requires, desirably, a sample of ~ 100 kg, but that samples in which the weight of the largest stone is less than 5 per cent of the total weight have unbiased estimates of D. Spatial variability of bulk material is such that 228 and 50 samples are needed to estimate D to ± 10 and ± 20 per cent respectively of the true value; requirements for estimating inclusive graphic standard duration are only 11 and 3 respectively. The grain-size distribution of the surface layer is only weakly related to the bulk material beneath. The results of ‘Wolman sampling’ along 12 cross-sections at two pace intervals (average 120 stones per cross-section) indicate that estimation of overall surface D to ±10 and ±20 per cent would require sampling along 64 and 14 cross-sections respectively. It is concluded that accurate characterization of bed sediment in gravel-bed rivers is very demanding of labour and resources, and that careful planning is needed to ensure efficiency and meaningful results.  相似文献   

4.
Accurate evaluation and prediction of bedload transport are crucial in studies of fluvial hydrodynamic characteristics and river morphology.This paper presents a one-dimensional numerical model based on the one-dimensional lateral distribution method(1 D-LDM) and six classic bedload transport formulae that can be used to simulate hydrodynamic characteristics and bedload transport discharge in cross sections.Two gravel-bed rivers,i.e.the Danube River located approximately 70 km downstream from Br...  相似文献   

5.
Bedload transport measurements in two upland streams are considered as a function of the excess stream power exerted on the bed by the flow. During low flows when the framework gravels remain undisturbed, fine sediments are winnowed from the bed-surface layer once a threshold of 3·4 W m?2 is exceeded and the transport rate is strongly supply limited. However for stream powers in excess of 15 W m?2 framework gravels are mobilized and the efficiency of the transport process approaches a local maximum of about 1 per cent for discharges up to 2/3 of bankfull. An inverse depth dependence in the efficiency of the transport process was noted but although bedload calibre increased as a function of discharge its influence on efficiency could not be demonstrated. However it was suspected that the size-sorting relationships of the bed-material in a number of rivers in relation to the transport efficiency might profitably be examined further.  相似文献   

6.
GSTARS is a series of computer models developed by the U.S. Bureau of Reclamation for alluvial river and reservoir sedimentation studies while the authors were employed by that agency. The first version of GSTARS was released in 1986 using Fortran IV for mainframe computers. GSTARS 2.0 was released in 1998 for personal computer application with most of the code in the original GSTARS revised, improved, and expanded using Fortran IV/77. GSTARS 2.1 is an improved and revised GSTARS 2.0 with graphical user interface. The unique features of all GSTARS models are the conjunctive use of the stream tube concept and of the minimum stream power theory. The application of minimum stream power theory allows the determination of optimum channel geometry with variable channel width and cross-sectional shape. The use of the stream tube concept enables the simulation of river hydraulics using one-dimensional numerical solutions to obtain a semi-two- dimensional presentation of the hydraulic conditions along and across an alluvial channel. According to the stream tube concept, no water or sediment particles can cross the walls of stream tubes, which is valid for many natural rivers. At and near sharp bends, however, sediment particles may cross the boundaries of stream tubes. GSTARS3, based on FORTRAN 90/95, addresses this phenomenon and further expands the capabilities of GSTARS 2.1 for cohesive and non-cohesive sediment transport in rivers and reservoirs. This paper presents the concepts, methods, and techniques used to develop the GSTARS series of computer models, especially GSTARS3.  相似文献   

7.
Dominant discharge may be defined as that discharge which transports most bed sediment in a stream that is close to steady-state conditions. The concept is examined in relation to two single thread gravel-bedded streams. One stream is alluvial and free to adjust its geometry whilst in the other, channel capacity and form are partially constrained by cohesive till-banks and a heavily compacted bed. The total quantity of bedload and its calibre were measured for every flood over a six year period, so that the relationship between the grain-size of bedload and the most effective discharge could be examined in the context of thresholds for channel change. The dominant discharge concept was applicable to the alluvial stream in that the bankfull value is an effective discharge for maintaining channel capacity. The concept applied less well to the ‘non-alluvial’ stream. Although in both streams the bankfull value was exceeded for less than 0.34 per cent of the time, overbank flows are important in instigating channel change. It is only during overbank flows that the largest bed material is entrained in quantity. For within-channel flows a threshold separates flows which winnow fine matrix from those which entrain the finer bed gravels. This threshold occurred at 60 per cent bankfull. It was concluded that the dominant discharge concept can be applied to streams close to steady-state which are alluvial, competent, and free to adjust their boundaries. An important proviso is that two channel-stability domains can be recognized. These domains represent channel maintenance and channel adjustment and are defined by intrinsic thresholds in the bed material entrainment function.  相似文献   

8.
Relative bedload transport rate and hydraulic parameters were measured on two occasions in a reach of the braided, gravel-bedded Ohau River. Each reach contained a deep, fast-flowing chute leading to an area of diverging, shallow flow which contained a middle bar. The measurements are self-consistent, and indicate that, where flow is concentrated in a deep chute, shear stress is high, but where flow diverges, depth, slope and shear stress decrease. In the first survey, the bed was scoured in the chute and sediment transport rates were high, but where flow diverged sediment transport rate decreased. It appears that deposition leads to bar growth, bar growth in turn reduces slope and depth, deposition is encouraged, and the bar continues to grow vertically, laterally and upstream. In the second survey no sediment transport was observed, despite hydraulic conditions very similar to the first survey. The absence of sediment transport is attributed to the cessation of sediment supply to the river channel.  相似文献   

9.
Evolution of bed material mobility and bedload grain size distributions under a range of discharges is rarely observed in braiding gravel-bed rivers. Yet, the changing of bedload grain size distributions with discharge is expected to be different from laterally-stable, threshold, channels on which most gravel bedload theory and observation are based. Here, simultaneous observations of flow, bedload transport rate, and morphological change were made in a physical model of a gravel-bed braided river to document the evolution of grain size distributions and bed mobility over three experimental event hydrographs. Bedload transport rate and grain size distributions were measured from bedload samples collected in sediment baskets. Morphological change was mapped with high-resolution (~1 mm precision) digital elevation models generated from close-range digital photogrammetry. Bedload transport rates were extremely low below a discharge equivalent to ~50% of the channel-forming discharge (dimensionless stream power ~70). Fractional transport rates and plots of grain size distributions indicate that the bed experienced partial mobility at low discharge when the coarsest grains on the bed were immobile, weak selective mobility at higher discharge, and occasionally near-equal mobility at peak channel-forming discharge. The transition to selective mobility and increased bedload transport rates coincided with the lower threshold for morphological change measured by the morphological active depth and active width. Below this threshold discharge, active depths were of the order of D90 and active widths were narrow (< 3% of wetted width). Above this discharge, both increased so that at channel-forming discharge, the active depth had a local maximum of 9D90 while active width was up to 20% of wetted width. The modelled rivers approached equal mobility when rates of morphological change were greatest. Therefore, changes in the morphological active layer with discharge are directly connected to the conditions of bed mobility, and strongly correlated with bedload transport rate. © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
11.
《国际泥沙研究》2023,38(5):769-779
It is important to understand the effects of ice cover on sediment transport in cold climates, where sub-freezing temperatures affect water bodies for a significant part of the year. The literature contains many studies on sediment transport in open channel flow, and several studies on sediment transport in completely ice-covered flow. There has been little or no research on sediment transport in partially ice-covered channels. In the current study, laboratory experiments were done in a rectangular flume to quantify the impact of border ice presence on the sediment transport rate. The effects of ice cover extent and changing flow strengths on sediment transport distribution also were investigated, and the results were compared to those for fully ice-covered and open channel flow. The ice coverage ratios considered were 0 (representing the open water condition), 0.25, 0.50, 0.67, and 1 (representing fully ice-covered flow). The partial ice cover was found to impact the sediment transport distribution within the channel. The effect of ice coverage extent on sediment transport distribution was more significant at lower flow strengths and became negligible at higher flow strengths. The conventional equations for sediment transport in open channel flow and fully ice-covered flow that relate the dimensionless bedload transport rate to the flow strength were found to be applicable to estimate the total cross-section-averaged bedload transport for partially ice-covered flow when modified appropriately. Empirical coefficients for these equations were determined using the experimental data.  相似文献   

12.
Data from Turkey Brook are used to demonstrate that the interaction between gravel bedforms, flow resistance and bedload transport is a dynamic one, both between and within hydrographs. and that creation of a significant component of form drag through construction of microforms (pebble clusters) may precede the eventual break-up of the bed in a transport event. This process of drag augmentation', which can be seen as a feedback mechanism delaying transport and can be likened to dilation of a soil tested in a direct shear apparatus, itself appears to be dependent on the characteristics of turbulence, and therefore involves feedback at a finer resolution than envisaged by Hassan and Reid (1990).  相似文献   

13.
Field experiments were conducted on bed load transport in the Diaoga River, a mountain stream in southwest China, to study the variation of bed load transport with varying sediment supply. The rate of bed load transport is greatly affected by incoming sediment (load and size). Under the same flow conditions, bed load transport rates may differ by three orders of magnitude depending on whether measurements were taken before or after the first flood of the year. The relation of the "bed load transport rate versus flow intensity" appears to have similar characteristics as a clockwise looped-rating curve. Experiments also were conducted during the non-flood season to study bed load transport processes with different incoming load from an upstream section. Bed load with different sizes can be grouped into two types: traveling bed load and structural bed load. Traveling bed load is composed of sediment finer than a critical size, De, and its transport rate depends mainly on the incoming sediment rate. The incoming sediment rate can alter the rate of bed load transport by three orders of magnitude. Structural bed load is composed of coarser sediment and its transport rate closely relies on the flow intensity.  相似文献   

14.
Seventy-eight riffle to riffle and 80 bend spacings along eleven coarse-bedload, low sinuosity stream channels in upland Britain have been surveyed. Frequency distributions of these spacings are notably right-skewed. The most common repeating distances between riffles and bend inflections are between 4 and 6 channel widths although spacings up to 20 widths are also present. Riffle and pool locations around bends at different stages of planform development indicate that change is largely through increased sinuosity between two consecutive riffles of an original straight reach. Observed straight segments exhibit alternating riffles and pools evenly spaced at 4-6 widths, and most bends have similarly spaced riffles at their inflections in plan, with the intermediate pool at their apex. However angular deflections between axial lines joining inflections indicate existing sequences of bends did not develop from a single straight reach. Bends which are significantly longer than 4-6 widths are of low sinuosity and represent variability in naturally irregular planforms rather than arcs in advanced stages of meander growth. Adjusted bed topography around such long bends takes two forms. Either a single riffle-pool cycle is present with one or both bed forms being longer than average, or a 4-6 widths spacing is maintained by more than one riffle-pool sequence. Locally, the cross-section characteristics of riffles and pools are also influenced by planform location.  相似文献   

15.
16.
A two‐dimensional simulation model of travel distances of individual particles in a gravel‐bed river is presented. The model is based on a number of rules, which include particle size, entrainment, trajectory, distance of movement and entrapment. Particle interactions are controlled by resistance fields defined about each obstacle and critical elevation defined in the model. Resistance fields, particle dropping and critical elevation rules control particle interactions. The interaction rules cause the particles to develop pebble clusters, stone cells and transverse structures (transverse ribs). The simulated travel distances of individual particles are consistent with reported field results. Individual particle travel distances were simulated using two different models; one without interactions between the individual particles and the stationary bed and one with interactions. The case without interactions demonstrates the random nature of sediment transport, and narrow ranges of travel distances. Wider ranges of travel distances, similar to those for natural situations, were obtained for the cases with interactions. The more intense the interaction between the mobile stones and the stationary ones, the wider the range of distances of travel for a given particle size. Modelling the mean travel distance yielded a result similar to that published previously, which was based on empirical data. Well developed bed‐surface structures were obtained for relatively poorly sorted sediment with intense interactions between particles. Transverse structures developed when relatively large particles were allowed to move. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The quantitative bedload transport data that are presently available confirm that the generalized bedload transport rate-stream power relationship is applicable to natural streams. However, the bedload transport rate is not solely dependent upon hydraulic parameters, but also upon the inter-relationship between bed material characteristics and flow properties. Segregation of the surficial bed material, as expressed through the development of an armour coat, limits the availability of transportable material. Under such circumstances observed bedload transport rates are less than the predicted values. The effect which the development of an armoured surface has upon the bedload transport rate is described with reference to bedload and bed material sampling in the Borgne d'Arolla, Valais, Switzerland. The data refer to two periods when the resumption of baseflow conditions following flood events which were of a sufficient magnitude to transport all but the coarsest (0·3–0·5 m) particles on the streambed, provided the opportunity for the bed to adjust to a comparatively stable flow regime. Observed and predicted bedload transport rate-stream power relationships are compared. The theoretical relationship does not adequately describe conditions in some gravel-bed channels, since it fails to take into account the effect which armouring may have upon the supply of transportable material.  相似文献   

18.
Measurements of annual travel distance (Lb) of bed load sediment at 16 locations in Alaska, the intermountain USA, west coast USA and Scotland are strongly correlated with bankfull channel width (r2 = 0·86, p < 0·001). Travel distance of particles is probably limited by trapping in bars, which have a longitudinal spacing proportional to channel width. Increased abundance of woody debris reduces bar spacing and may reduce Lb. Longer cumulative duration of bed load transporting flows in a year appears to increase Lb. Other predictors of annual travel distance such as stream power per unit length, drainage area and bankfull discharge were less well correlated with Lb (r2 ranging from 0·27 to 0·51). Stream power per unit bed area, basal shear stress and slope were not significantly related to Lb (r2 < 0·05). Most correlations were improved when regressions were limited to data from the west coast USA. Travel distance estimates can be used to help identify reaches that may take longer to recover from large, short‐term increases in sediment supply. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

19.
The spatial variability of bed particles of a gravel-bed channel is analysed and treated experimentally in order to simulate the effects of the arrangement of coarse bed elements on the flow resistance law. For the studied bed patterns, characterized by the concentration Γ of coarser elements arranged on the bed layer, a particle arrangement parameter α is proposed. The α parameter is useful for estimating the intercept b0 of the semi-logarithmic flow resistance law deduced by flume measurements carried out for the hydraulic condition of large-scale and transition roughness. The differences between the experimental friction factor parameter values and the ones calculated by the proposed semi-logarithmic relationship are explained by the ratio between the Shields parameter and its critical value. The analysis shows that estimates of the friction factor parameter are not improved by introducing the Froude number into the flow resistance law. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
Discharge characteristics in six adjacent mountainous watersheds in northern New Mexico, U.S.A., vary substantially between basins underlain by different lithologies. Relatively resistant gneisses and granites underlie two basins (drainage areas: 43 and 94 km2) that have high unit discharge (0·010 to 0·14 m3s?1 km?2), high bankfull discharge, and sustained high discharge. Less resistant sandstones and shales underlie four basins (drainage areas: 96 to 215 km2) that have relatively low unit discharge (0·001 to 0·005 m3s?1 km?2), relatively low bankfull discharge, and peak discharges that are not sustained as long as those in the crystalline terrane. Analysis of snowmelt-runoff water budgets suggests that three factors control hydrologic conditions in the basins. First, area-elevation distributions appear to control the timing and amounts of water input. These distributions probably reflect the erosional resistance of the different lithologies. Second, lithology appears to control runoff production in areas having minor amounts of storage. Third, glacial deposits in headwater regions control discharge duration and timing via storage and return flow releases. The amount of return flow released by glacial deposits, however, is probably controlled by the permeability of underlying bedrock. Therefore it appears that the duration, timing, and magnitude of discharge events in the study area are controlled both directly and indirectly by lithology. Stream power and shear stress estimates derived from bankfull discharge and bed-material size data suggest that higher bedload transport rates and larger bedload particle sizes exist in streams draining crystalline rocks than in streams draining sedimentary terrane. It appears that source-area lithology, by controlling discharge production, also influences stream power, bedload transport capabilities, and therefore total amounts of bedload transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号