首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deposition and storage of fine‐grained (<62·5 μm) sediment in the hyporheic zone of gravel bed rivers frequently represents an important cause of aquatic habitat degradation. The particle size characteristics of such fine‐grained bed sediment (FGBS) exert an important control on its hydrodynamic properties and environmental impact. Traditionally, particle size analysis of FGBS in gravel bed rivers has focused on the absolute size distribution of the chemically dispersed mineral fraction. However, recent work has indicated that in common with fluvial suspended sediment, significant differences may exist between the absolute and the in situ, or effective, particle size composition of FGBS, as a result of the existence of aggregates, or composite particles. In the investigation reported in this paper, sealable bed traps that could be remotely opened to sample sediment deposited during specific storm runoff events and a laser back‐scatter probe were used to quantify the temporal and spatial variability of both the absolute and effective particle size composition of FGBS, and the associated suspended sediment from four gravel bed rivers in the Exe Basin, Devon, UK. The absolute particle size distributions of both the FGBS and suspended sediment evidenced c. >95%<62·5 μm sized primary particles and displayed a seasonal winter–summer fining, while the opposite trend was displayed by the effective particle size distribution of the FGBS and suspended sediment. The effective particle size distributions of both were typically highly aggregated, comprising up to 68%>62·5 μm sized particles. Spatial variation in the effective particle size and aggregation parameters was of secondary importance relative to temporal variation. The effective particle size distribution of the FGBS was consistently coarser and more aggregated than the associated suspended sediment and there was evidence of aggregate break‐up in samples of resuspended bed sediment. The implications of these findings for sediment transport modelling are considered. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Research over the last decade has shown that the suspended sediment loads of many rivers are dominated by composite particles. These particles are also known as aggregates or flocs, and are commonly made up of constituent mineral particles, which evidence a wide range of grain sizes, and organic matter. The resulting in situ or effective particle size characteristics of fluvial suspended sediment exert a major control on all processes of entrainment, transport and deposition. The significance of composite suspended sediment particles in glacial meltwater streams has, however, not been established. Existing data on the particle size characteristics of suspended sediment in glacial meltwaters relate to the dispersed mineral fraction (absolute particle size), which, for certain size fractions, may bear little relationship to the effective or in situ distribution. Existing understanding of composite particle formation within freshwater environments would suggest that in‐stream flocculation processes do not take place in glacial meltwater systems because of the absence of organic binding agents. However, we report preliminary scanning electron microscopy data for one Alpine and two Himalayan glaciers that show composite particles are present in the suspended sediment load of the meltwater system. The genesis and structure of these composite particles and their constituent grain size characteristics are discussed. We present evidence for the existence of both aggregates, or composite particles whose features are largely inherited from source materials, and flocs, which represent composite particles produced by in‐stream flocculation processes. In the absence of organic materials, the latter may result solely from electrochemical flocculation in the meltwater sediment system. This type of floc formation has not been reported previously in the freshwater fluvial environment. Further work is needed to test the wider significance of these data and to investigate the effective particle size characteristics of suspended sediment associated with high concentration outburst events. Such events make a major contribution to suspended sediment fluxes in meltwater streams and may provide conditions that are conducive to composite particle formation by flocculation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
This study examines the particle size characteristics of hillslope soils and fluvial suspended sediments in an agricultural catchment. Samples of surface runoff and stream flow were collected periodically and analysed for the size distributions of the effective (undispersed) sediment. This sediment was subsequently dispersed and the ultimate size distributions determined. The median effective particle size of stream suspended sediment was considerably coarser than the median ultimate particle size, indicating that most of the load included a substantial proportion of aggregates. Moreover, the proportion of fine material (i.e. silt and clay) increased, and the proportion of sand-sized material decreased, with increasing discharge. This decrease in sediment size with increased flow, which is contrary to the traditional assumption of a positive discharge/particle size relationship, is thought to reflect: (i) the influx of silt and clay, predominantly the former, originating on the catchment slopes and brought to the stream by overland flow along vehicle wheelings, roads and tracks; and (ii) erosion of fine material from the channel bed and banks. During large storms, however, the proportion of sand-sized sediment increased during the rising limb of the hydrograph, as a result of the entrainment of coarser source material from the valley floor during overbank flooding. The stream suspended sediment was finer than the catchment soils and considerably finer than material eroding from the catchment slopes during storms. The degree of clay and silt enrichment in the suspended sediments was largely the result of preferential deposition of the coarser fraction during the transport and delivery of sediment from its source to basin outlet. The data from this study confirm that a significant mode of sediment transport in fluvial systems is in the form of aggregates, and that the dispersed sediment size distribution is inappropriate for determining the transportability of sediment by flow. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
Most of the existing data on the effective particle size characteristics of fluvial suspended sediment derive from instantaneous sampling methods that may not be representative of the overall suspended sediment loads. This presents difficulties when there is a need to incorporate effective particle size data into numerical models of floodplain sedimentation and sediment‐associated contaminant transfer. We have used a field‐based water elutriation apparatus (WEA) to assemble a large (36 flood) database on the time‐integrated nature of the effective and absolute particle size characteristics of suspended sediment in four subcatchments of the River Exe basin of southwest England. These catchments encompass a wide range of terrains and fluvial environments that are broadly representative of much of the UK and temperate, low relief northwest Europe. The WEA provides important data on the physical characteristics of composite particles that are not attainable using other methods. This dataset has allowed, for the first time, detailed interbasin comparisons of the time‐integrated particle size characteristics of suspended sediment and reliable estimates of the contribution of five effective size classes to the mean annual suspended sediment load of the study catchments. The suspended sediment load of each river is dominated by composite rather than primary particles, with, for example, almost 60% (by mass) of the sediment load of the River Exe at Thorverton transported as composite particles > 16 µm in size. All the effective size classes contain significant clay components. A key outcome of this study is the recognition that each catchment has a distinctive time‐integrated effective particle size signature. In addition, the time‐integrated effective particle size characteristics of the suspended loads in each of the catchments display much greater spatial variability than the equivalent absolute particle size distributions. This indicates that the processes producing composite particles vary significantly between these catchments, and this has important implications for our understanding of the dynamics of suspended sediment properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Q. He  D. E. Walling 《水文研究》1998,12(7):1079-1094
River floodplains have been widely recognized as important sinks for storing suspended sediment and associated contaminants transported by river systems. The grain size composition of floodplain deposits exerts an important influence on contaminant concentrations, and commonly exhibits significant spatial variability in response to the dynamic nature of overbank flow and sediment transport. Information on the spatial variability of the grain size composition of overbank deposits is therefore essential for developing an improved understanding of the processes controlling sediment transport on floodplains, and for investigating the fate of sediment-associated contaminants. Such information is also important for validating existing floodplain sedimentation models. This paper reports the results of a study aimed at investigating the spatial variability of the grain size composition of floodplain sediments at different spatial scales, through analysis of surface sediment samples representative of contemporary floodplain deposits collected from frequently inundated floodplain sites on five British lowland rivers. Significant lateral and downstream variations in the grain size composition of the sediment deposits have been identified in the study reaches. An attempt has been made to relate the observed spatial distribution of the grain size composition of the overbank deposits to the local floodplain geometry and topography. The importance of the particle size characteristics of the suspended sediment transported by the rivers in influencing the spatial variability of the grain size composition of the overbank sediments deposited on these floodplains is also considered. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Flow, sediment transport and bed deformation in alluvial rivers normally exhibit multiple time scales. Enhanced knowledge of the time scales can facilitate better approaches to the understanding of the fluvial processes. Yet prior studies of the time scales are based upon the concept of sediment transport capacity at low concentrations, which however is not generally applicable. This paper presents new formulations of the time scales of fluvial flow, suspended sediment transport and bed deformation, under the framework of shallow water hydrodynamics, non-capacity sediment transport and the theory of characteristics for the hyperbolic governing equations. The time scale of bed deformation in relation to that of flow depth is demonstrated to delimit the applicability region of mathematical river models, and the time scale of suspended sediment transport relative to that of the pertinent flow information is analyzed to address if the concept of sediment transport capacity is applicable. For shallow flows with high sediment concentrations, bed deformation may considerably affect the flow and a fully coupled model is normally required. In contrast, for deep flows at low sediment concentrations, a decoupled model is mostly justified. This pilot study of the time scales delivers a new theoretical basis, on which the interaction between flow, suspended sediment transport and bed deformation can be potentially better characterized.  相似文献   

7.
1 INTRODUCTION The particle size of sediment eroded from basins can provide basic information about erosion processes (Meyer et al., 1980), which can be divided into sheet wash sediment processes on hill slopes and fluvial sediment processes in rivers. In…  相似文献   

8.
An in-channel surficial depositional feature (surficial fine-grained laminae) composed of loosely bound fine sediment deposited during low flow conditions has often been observed in river systems in south-western Ontario. The physical characteristics of this feature have been determined by a direct observation image analysis system. This sediment consists primarily of flocculated fine-grained material. The size distributions of surficial fine-grained laminae and suspended sediment were not significantly different. Each distribution is bimodal in nature and shows a characteristic grain size deficiency in the 4-5 μm size range. This observation suggests that flocculation and not low discharge or low competence is the dominant mechanism for the formation of surficial fine-grained laminae under conditions of low flow in fluvial systems of south-western Ontario. A quantitative assessment of this feature shows its potential importance as a source of fine-grained sediment and associated contaminants for downstream transport.  相似文献   

9.
Fine‐grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time‐integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

Available data on suspended sediment transported by rivers in the Maghreb are reviewed for 130 drainage basins. These data allow a new estimate to be proposed for the delivery of river sediment to both the Atlantic Ocean and the Mediterranean Sea from the Maghreb region. The influences of several environmental factors (precipitation, runoff, drainage area size and lithology) on mechanical erosion and fluvial sediment transport are analysed. Finally, a multiple regression model is proposed to estimate the river sediment yields in the Maghreb.  相似文献   

11.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Field data are essential in evaluating the adequacy of predictive equations for sediment transport. Each dataset based on the sediment transport rates and other relevant information gives an increased understanding and improved quantification of different factors influencing the sediment transport regime in the specific environment. Data collected for 33 sites on 31 mountain streams and rivers in Central Idaho have enabled the analysis of sediment transport characteristics in streams and rivers with different geological, topographic, morphological, hydrological, hydraulic, and sedimentological characteristics. All of these streams and rivers have armored, poorly sorted bed material with the median particle size of surface layer coarser than the subsurface layer. The fact that the largest particles in the bedload samples did not exceed the median particle size of the bed surface material indicates that the armor layer is stable for the observed flow discharges (generally bankfull or less, and in some cases two times higher than bankfull discharge). The bedload transport is size‐selective. The transport rates are generally low, since sediment supply is less than the ability of flow to move the sediment for one range of flow discharges, or, the hydraulic ability of the stream is insufficient for entrainment of the coarse bed material. Detailed analyses of bedload transport rates, bedload and bed material characteristics were performed for each site. The obtained results and conclusions are used to identify different influences on bedload transport rates in analyzed gravel‐bed rivers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Samples of surficial fine-grained laminae (SFGL) were collected in three south-western Ontario rivers. Each sediment sample was subjected to a sequential extraction procedure designed to partition particulate metals (Cd, Pb, Cu, Zn) into five operationally defined fractions: (1) exchangeable; (2) bound to carbonates; (3) bound to Fe-Mn oxides; (4) bound to organic matter; and (5) residual. Particulate phosphus was sequentially extracted from the sediment samples into three fractions: (1) non-apatite inorganic P; (2) apatite P; and (3) organic P. The major accumulate phases of trace metals in SFGL are carbonates, Fe-Mn oxides and organic matter. The content of NAIP in SFGL ranged from 17 to 38% of total particulate P. Compared with suspended and bed sediments, levels of P and trace metals in SFGL were lower at the study sites. A conceptual overview of physical, chemical and biological processes influencing formation of SFGL and the potential role of this fine-grained sediment for contaminant transport in fluvial systems is presented.  相似文献   

14.
In arid zones, many active aeolian dunes terminate at ephemeral and perennial desert rivers. The desert rivers show very high rates of sediment transport that cause deleterious downstream effects on the river system and ecology. High sediment loading has been attributed to severe water erosion of sparsely covered watersheds during infrequent but heavy rainfall. Although aeolian erosion is known to lead to high rates of wind‐blown sand transport, direct confirmation of whether the aeolian processes accelerate or inhibit fluvial sediment loss is lacking. Here, we show that an aeolian‐fluvial cycling process is responsible for the high rate of suspended sediment transport in a Sudalaer ephemeral desert channel in the Ordos Plateau of China. Frequent aeolian processes, but low frequency (once every 3 years on average) flooding, occur in this region. Wind‐blown saltating grains appeared to be unable to cross the desert channel because of interruption of channel‐induced recirculating air flow, and therefore tended to settle in the channel during the windy seasons, leading to channel narrowing. During flooding, this narrowed channel was found to yield a threefold increase in suspended sediment loading and a 3.4‐fold increase in the weight percentage of the 0.08–0.2 mm sediment fraction on 18 July 2012. Loss of stored aeolian sand due to channel erosion accounted for about half of the total sediment yield in this watershed. These findings show that aeolian processes play an essential role in accelerating the sediment yield from a watershed characterized by aeolian‐fluvial interplay and also suggest that the drier the region and the greater the aeolian process, the more the aeolian process contributes to fluvial sediment yield. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Quantifying sediment flux within rivers is a challenge for many disciplines due, mainly, to difficulties inherent to traditional sediment sampling methods. These methods are operationally complex, high cost, and high risk. Additionally, the resulting data provide a low spatial and temporal resolution estimate of the total sediment flux, which has impeded advances in the understanding of the hydro-geomorphic characteristics of rivers. Acoustic technologies have been recognized as a leading tool for increasing the resolution of sediment data by relating their echo intensity level measurements to suspended sediment. Further effort is required to robustly test and develop these techniques across a wide range of conditions found in natural river systems. This article aims to evaluate the application of acoustic inversion techniques using commercially available, down-looking acoustic Doppler current profilers (ADCPs) in quantifying suspended sediment in a large sand bed river with varying bi-modal particle size distributions, wash load and suspended-sand ratios, and water stages. To achieve this objective, suspended sediment was physically sampled along the Paraná River, Argentina, under various hydro-sedimentological regimes. Two ADCPs emitting different sound frequencies were used to simultaneously profile echo intensity level within the water column. Using the sonar equation, calibrations were determined between suspended-sand concentrations and acoustic backscatter to solve the inverse problem. The study also analyzed the roles played by each term of the sonar equation, such as ADCP frequency, power supply, instrument constants, and particle size distributions typically found in sand bed rivers, on sediment attenuation and backscatter. Calibrations were successfully developed between corrected backscatter and suspended-sand concentrations for all sites and ADCP frequencies, resulting in mean suspended-sand concentration estimates within about 40% of the mean sampled concentrations. Noise values, calculated using the sonar equation and sediment sample characteristics, were fairly constant across evaluations, suggesting that they could be applied to other sand bed rivers. © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Channel bifurcations can be found in river network systems from high gradient gravel-bed rivers to fine-grained low gradient deltas. In these systems, bifurcations often evolve asymmetrically such that one downstream channel silts up and the other deepens and, in most cases, they eventually avulse. Past analytical and numerical studies showed that symmetric bifurcations are unstable in high and low Shields stress conditions resulting in asymmetric bifurcations and avulsion, while they can be stable in the mid-Shields range, but this range is smaller for larger width-to-depth ratio. Here, using a one-dimensional (1D) numerical model, we show that effects of sediment grain size and of channel slope are much larger than expected for low-gradient systems when a sediment transport relation is used that separates between bedload and suspended load transport. We found that the range of Shields stress conditions with unstable symmetric bifurcations expanded for lower channel slopes and for finer sediment. In high sediment mobility, suspended load increasingly dominates the sediment transport, which increases the sediment transport nonlinearity and lowers the relative influence of the stabilizing transverse bedslope-driven flux. Contrary to previous works, we found another stable symmetric solution in high Shields stress, but this only occurs in the systems with small width-to-depth ratio. This indicates that suspended load-dominated bifurcations of lowland rivers are more likely to develop into highly asymmetric channels than previously thought. This explains the tendency of channel avulsion observed in many systems.  相似文献   

17.
Suspended sediment is conventionally regarded as that sediment transported by a fluid that it is fine enough for turbulent eddies to outweigh settling of the particles through the fluid. Early work in the fluvial field attributed suspension to turbulence, and led to the notion of a critical threshold for maintaining sediment in suspension. However, research on both turbulence structures and the interactions between suspended sediment and bedforms in rivers has shown a more complex story and, although there appear to have been no studies of the impact of bedforms on aeolian suspended sediment concentrations, turbulent flow structures and transport rates of saltating particles have been shown to be affected. This research indicates that suspended sediment neither travels with the same velocity as the flow in which it is suspended, nor is it likely to remain in suspension in perpetuity, even under conditions of steady flow or in unsteady flow the where dimensionless critical threshold is permanently exceeded. Rather, like bedload, it travels in a series of hops, and is repeatedly deposited on the bed where it remains until it is re‐entrained. Is there, therefore, a qualitative difference between suspended and saltating sediment, or is it just a quantitative difference in the size of the jump length and the frequency of re‐entrainment? It is our contention that the distinction of suspension as a separate class of sediment transport is both arbitrary and an unhelpful anthropocentric artefact. If we recognize that sediment transport is a continuum and applies to any fluid medium rather than split into different “processes” based on arbitrary thresholds and fluids, then recognizing the continuity will enable development of an holistic approach sediment transport, and thus sediment‐transport models that are likely to be viable across a wider range of conditions than hitherto. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Earth scientists have traditionally conceptualized rivers and streams as geomorphic machines, whose role is to transfer sediment and to sculpt the landscape. Steady‐state relationships between sediment supply and transport capacity have traditionally been considered normative in fluvial systems. Rivers are hydrological entities, however, whose function is to redistribute excess moisture on land. The geomorphic work of the river – erosion, transport, deposition, etc. – is a byproduct of the hydrological job of the river. There is therefore no reason to expect any particular relationship between sediment supply and transport capacity to develop as a normative condition in fluvial systems. The apparent steady‐state equilibrium slope adjustments of rivers are a byproduct of four basic phenomena: (1) hydraulic selection, which favors channels and branching networks over other flux patterns; (2) water flows along the available path of least resistance; (3) energy dissipation; and (4) finite relaxation times. Recognizing converging trends of stream power or slope and sediment supply as common (but far from inevitable) side effects rather than self‐regulation has important implications for interpreting and predicting fluvial systems, and for river management and restoration. Such trends are variable, transient, contingent, and far from universal. Where they occur, they are an emergent byproduct of fundamental physical mechanisms, not a goal function or attractor state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract The suspended sediment load in the middle Yellow River basin (YRB) cannot be well predicted by capacity‐based transport formulas because a large fraction of suspended sediment load is composed of wash load. This study evaluated the spatial variations of sediment rating curves (SRCs) in the middle YRB. Both power and linear SRCs were used to fit daily flow and suspended sediment concentration (SSC) historical data at 49 gauging stations throughout the middle YRB. The spatial variation in regression coefficients was investigated, and the relationship between regression coefficients and the physical characteristics of watersheds was discussed. The results indicate that SRC regression coefficients vary with drainage area and basin slope, but their responses to these parameters are remarkably different in watersheds with different underlying surfaces, which indicates the significance of sediment availability, erodibility, and grain size distribution. For power SRCs representing sediment transport in unsaturated flows, the regression coefficients are more closely correlated with the drainage area in loess regions and with the basin slope in rock mountain regions. For linear SRCs representing sediment transport in saturated flows, saturated SSCs vary with coarse (particle size > 0.05 mm) and fine (particle size < 0.01 mm) fractions in suspended sediment. The maximum saturated SSC among the different gauging stations is associated with the optimal grain size composition of suspended sediment, which has been proposed for loess regions in previous studies. This study provides theoretical support for estimating the regression parameters for sediment transport modelling, especially in ungauged basins.  相似文献   

20.
A robust method for characterizing the mineralogy of suspended sediment in continental rivers is introduced. It encompasses 3 steps: the filtration of a few milliliters of water, measurements of X-ray energy dispersive spectra using Scanning Electron Microscopy (SEM), and robust machine learning tools of classification. The method is applied to suspended particles collected from various Amazonian rivers. A total of more than 204,000 particles were analyzed by SEM-EDXS (Energy Dispersive X-ray Spectroscopy), i.e. about 15,700 particles per sampling station, which lead to the identification of 15 distinct groups of mineralogical phases. The size distribution of particles collected on the filters was derived from the SEM micrographs taken in the backscattered electron imaging mode and analyzed with ImageJ freeware. The determination of the main mineralogical groups composing the bulk sediment associated with physical parameters such as particle size distribution or aspect ratio allows a precise characterization of the load of the terrigenous particles in rivers or lakes. In the case of the Amazonian rivers investigated, the results show that the identified mineralogies are consistent with previous studies as well as between the different samples collected. The method enabled the evolution of grain size distribution from fine to coarse material to be described in the water column. Implications about hydrodynamic sorting of mineral particles in the water column are also briefly discussed. The proposed method appears well suited for intensive routine monitoring of suspended sediment in river systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号