首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approximate analytical method is presented for the dynamic response of a rigid cylindrical foundation embedded in a poroelastic soil layer under the excitation of a time-harmonic rocking moment. The soil underlying the foundation base is represented by a single-layered poroelastic soil based on rigid bedrock while the soil along the side of the foundation is modeled as an independent poroelastic stratum composed of a series of infinitesimally thin layers. The accuracy of the present solution is verified by comparisons with existing solutions obtained from other researchers. Numerical results for the rocking dynamic impedance and dynamic response factor are presented to demonstrate the influence of nondimensional frequency of excitation, poroelastic soil layer thickness, depth ratio of the foundation and internal friction of the poroelastic soil.  相似文献   

2.
Embedded foundation in layered soil under dynamic excitations   总被引:1,自引:0,他引:1  
The critical step in the substructure approach for the soil–structure interaction (SSI) problem is to determine the impedance functions (dynamic-stiffness coefficients) of the foundations. In the present study, a computational tool is developed to determine the impedance functions of foundation in layered soil medium. Cone frustums are used to model the foundation soil system. Cone frustums are developed based on wave propagation principles and force-equilibrium approach. The model is validated for its ability to represent the embedded foundation in layered medium by comparing the results with the rigorous analysis results. Various degrees of freedom, such as, horizontal, vertical and rocking are considered for this study.  相似文献   

3.
A systematic procedure to develop a consistent lumped-parameter model with real frequency-independent coefficients to represent the unbounded soil is developed. Each (modelled) dynamic-stiffness coefficient in the frequency domain is approximated as a ratio of two polynomials, which is then formulated as a partial-fraction expansion. Each of these terms is represented by a discrete model, which is the building block of the lumped-parameter model. A second-order term, for example, leads to a discrete model with springs and dampers with two internal degrees of freedom, corresponding to two first-order differential equations, or, alternatively, results in a discrete model with springs, dampers and a mass with one internal degree of freedom, corresponding to one second-order differential equation. The lumped-parameter model can easily be incorporated in a general-purpose structural dynamics program working in the time domain, whereby the structure can even be non-linear. A thorough evaluation shows that highly accurate results are achieved, even for dynamic systems with a cutoff frequency.  相似文献   

4.
表面矩形基础阻抗函数的集中参数模型   总被引:8,自引:3,他引:5  
本文在系统地研究了Wolf二阶集中参数模型的基础上,完整地给出了表面刚性矩形基础阻抗函数的集中参数模型,同以往的工作相比,本文给出的集中参数模型能在更宽的频段上反映精确解的变化。  相似文献   

5.
An approximate method for computation of the compliance functions of rigid plates resting on an elastic or visco-elastic halfspace excited by forces and moments in all degrees of freedon is presented. The method is based on a Green's function approach. These functions are given for all degrees of freedom in form of well-behaved integrals. The numerical procedure is described and is used to evaluate the vertical, horizontal, rocking and torsion compliance functions of rectangular plates with side ratios 1 ≤ b/a ≤ 10 and non-dimensional frequency 0≤a0≤10. It is shown how this method can be extended to problems concerning a linear visco-elastic halfspace and a halfspace with variable stiffness.  相似文献   

6.
This paper is concerned with the dynamic response of rigid strip foundations of arbitrary geometry embedded in a homogeneous elastic half-space. The embedded rigid foundation is modelled by an equivalent domain in a uniform half-space which is subjected to an appropriate body force field. The components of the impedance matrix are determined through the solution of a linear simultaneous equation system which is established by invoking rigid body displacements of discrete locations within the equivalent domain and appropriate equilibrium consideration. It is found that high numerical efficiency and flexibility can be achieved using the body force model when compared to boundary integral formulations through the selection of appropriate displacement influence functions and a ‘parent domain’ in the analysis. Numerical results are presented to illustrate the influence of the embedment ratio, frequency of excitation, foundation geometry and Poisson's ratio on the vertical, horizontal, rocking and coupled impedances of a single embedded foundation. The effect on the impedance due to the presence of an adjacent embedment is investigated for various distances between foundations and embedment ratios.  相似文献   

7.
While limiting-equilibrium Mononobe–Okabe type solutions are still widely used in designing rigid gravity and flexible cantilever retaining walls against earthquakes, elasticity-based solutions have been given a new impetus following the analytical work of Veletsos and Younan [23]. The present paper develops a more general finite-element method of solution, the results of which are shown to be in agreement with the available analytical results for the distribution of dynamic earth pressures on rigid and flexible walls. The method is then employed to further investigate parametrically the effects of flexural wall rigidity and the rocking base compliance. Both homogeneous and inhomogeneous retained soil is considered, while a second soil layer is introduced as the foundation of the retaining system. The results confirm the approximate convergence between Mononobe–Okabe and elasticity-based solutions for structurally or rotationally flexible walls. At the same time they show the beneficial effect of soil inhomogeneity and that wave propagation in the underlying foundation layer may have an effect that cannot be simply accounted for with an appropriate rocking spring at the base.  相似文献   

8.
The objective of this work was to assess the significance of the values of damping obtained applying the half‐power bandwidth method to the frequency response records of the steady‐state response of a system that does not possess real modes either because the damping matrix does not satisfy the orthogonality condition or because its parameters are functions of frequency. A multi‐degree of freedom system with real modes and different types of damping is considered first. A two degree of freedom system with an arbitrary damping matrix, a rigid mass on an elastic foundation subjected to vertical and coupled horizontal/rocking vibrations, and a single degree of freedom model of a building accounting for inertial soil structure interaction effects are considered next in more detail. The results show that the predictions of the method, when applicable compare very well with those provided by approximate formulae and procedures used in practice. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
An approximate numerical procedure for calculation of the harmonic force-displacement relationships for a rigid foundation of arbitrary shape placed on an elastic half-space is presented. This procedure is used to evaluate the vertical, rocking and horizontal compliance functions for rigid rectangular foundations and the vertical compliance for a rigid square foundation with an internal hole. Several comparisons between the results obtained by the proposed approach and other methods are also presented.  相似文献   

10.
The dynamic response of offshore wind turbines is affected by the properties of the foundation and the subsoil. The aim of this paper is to evaluate the dynamic soil–structure interaction of suction caissons for offshore wind turbines. The investigations include evaluation of the vertical and coupled sliding–rocking vibrations, influence of the foundation geometry and examination on the properties of the surrounding soil. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency‐dependent coefficients corresponding to different degrees of freedom. The dynamic stiffness coefficients for the skirted foundation are evaluated using a three‐dimensional coupled boundary element/finite element model. Comparisons with known analytical and numerical solutions indicate that the static and dynamic behaviours of the foundation are predicted accurately using the applied model. The analysis has been carried out for different combinations of the skirt length, Poisson's ratio of the subsoil and the ratio of the soil stiffness to the skirt stiffness. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Dynamic analysis of stacked rigid blocks   总被引:1,自引:0,他引:1  
The dynamic behavior of a structural model of two stacked rigid blocks subjected to ground excitation is examined. Assuming no sliding, the rocking response of the system standing free on a rigid foundation is investigated. The derivation of the equations of motion accounts for the consecutive transition from one pattern of motion to another, each being governed by a set of highly nonlinear differential equations. The system behavior is described in terms of four possible patterns of response and impact between either the two blocks or the base block and the ground. The equations governing the rocking response of the system to horizontal and vertical ground accelerations are derived for each pattern, and an impact model is developed by conservation of angular momentum considerations. Numerical results are obtained by developing an ad hoc computational scheme that is capable of determining the response of the system under an arbitrary base excitation. This feature is demonstrated by using accelerograms from the Northridge, CA, 1994, earthquake. It is hoped that the two-blocks model used herein can facilitate the development of more sophisticated multi-block structural models.  相似文献   

12.
A study is carefully conducted for the rocking response of a rigid circular foundation resting on a poroelastic half-space when subjected to seismic waves under the framework of Biot’s theory. The free-field waves, rigid-body scattering field waves and radiation scattering field waves are introduced to consider the complex behavior of the soil owing to the scattering phenomena caused by the existence of the foundation. The contact surface between the soil and the foundation is supposed to be perfectly bonded and fully permeable. Combining with the divided wave fields, two sets of dual integral equations elaborating the mixed boundary-value conditions are established, and then reduced to Fredholm integral equations. Therefore, with a semi-analytical method, the expressions of the rocking displacements are obtained. The numerical results of the rocking vibration of the foundation for incident P, SV and Rayleigh waves are presented. The influences of certain parameters, such as the permeability of the soil, the incident angle, Poisson’s ratio and the mass of the foundation, on the rocking vibration of the foundation are explored and studied. Different reactions are found when the foundation is excited by different waves.  相似文献   

13.
A systematic procedure to develop consistent (symmetric) stiffness, damping and mass matrices with real coefficients to represent any unbounded soil is developed. These property matrices are based on the lumped-parameter models of Reference 1. Either stiffness and damping matrices corresponding to first-order differential equations involving the internal degrees of freedom and those on the structure-soil interface result or, alternatively, in addition mass matrices are introduced, corresponding to second-order differential equations, which reduce the number of internal degrees of freedom by a factor 2. The stiffness, damping and mass matrices can easily be incorporated in a general-purpose structural dynamics program working in the time domain, whereby the structure can even be non-linear.  相似文献   

14.
The vertical and rocking response of rigid rectangular foundations resting on a linear-elastic, compressible, non-homogeneous half-space soil model is studied. The non-homogeneity is described by a continuous yet bounded increase of shear modulus with depth. The mixed boundary value problem is solved by means of the semi-analytical method of the subdivision of the foundation/soil contact area whereby the influence functions for the sub-regions are determined by integration of the corresponding surface-to-surface Green's functions for the particular soil model. Impedance functions are given for representative values of the non-homogeneity parameters, the Poisson's ratio and the foundation geometry over a wide range of frequencies. Significant features associated with the soil non-homogeneity are pointed out. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

15.
To calculate the hydrodynamic interaction forces of the reservoir directly in the time-domain, the dynamic stiffness of each mode of the semi-infinite uniform fluid channel is either represented by a lumped-parameter model with frequency-independent real coefficients of the springs, dashpots and masses and with only a few additional internal degrees of freedom, or the interaction forces are calculated recursively. For each mode characterized by its eigenvalue, the coefficients of the lumped-parameter model and the recursive coefficients are specified, which can be used directly in a practical application. The procedures exhibit many advantages: the only approximation (replacing the rigorous dynamic stiffness by a ratio of two polynomials) can be evaluated visibly. No unfamiliar discrete-time manipulations such as the z-transformation are used. The stiffness, damping and mass matrices corresponding to the lumped-parameter model are automatically symmetrical. Stability of the procedures is also guaranteed. Combining the lumped-parameter model of the semi-infinite uniform channel with the finite-element discretization of the irregular fluid region or calculating the interaction forces recursively allows a reservoir of arbitrary shape to be analysed directly in the time domain. Non-linearities in the dam can, thus, be taken into consideration in a seismic analysis.  相似文献   

16.
An approximate method for the analysis of the dynamic interaction between a flexible rectangular foundation and the soil with consideration of the out-of-plane deformation of the foundation is presented. The procedure is based on an extension of the subdivision method developed by Wong and Luco for rigid foundations. Numerical results describing the influence of the flexibility of the foundation on the vertical and rocking impedance functions and on the contact stresses between the foundation and the soil are presented. The possibility of representing a flexible foundation by an equivalent rigid foundation having the same force-displacement relationships is also discussed. The results obtained indicate that at low frequencies, the dynamic stiffness coefficients for flexible foundations are lower than those for a rigid foundation of the same area. At higher frequencies the opposite behaviour is observed. The radiation damping coefficients for flexible foundations are significantly lower than those for a rigid foundation of the same area.  相似文献   

17.
The effect of the rigid sidewall, which is usually combined with embedded footings, on the dynamic stiffness of the footings is considered. An efficient numerical technique is used to calculate the static and dynamic stiffness of circular footings embedded in a stratum. The results show that the increase in static stiffness with increasing height of the sidewall is most significant in the case of rocking. The dynamic stiffness coefficients change considerably, if the sidewall extends higher than about half the depth of embedment. The damping coefficients corresponding to vertical vibrations and rocking are likewise affected by the height of the sidewall. The damping coefficients corresponding to torsional and horizontal vibrations increase considerably with increasing height of the sidewall.  相似文献   

18.
The dynamic response of an elastic continuously nonhomogeneous soil layer over bedrock retained by a pair of rigid cantilever walls to a horizontal seismic motion and the associated seismic pressure acting on these walls are determined analytically–numerically. The soil non-homogeneity is described by a shear modulus increasing nonlinearly with depth. The problem is solved in the frequency domain under conditions of plane strain and its exact solution is obtained analytically. This is accomplished with the aid of Fourier series along the horizontal direction and solution of the resulting system of two ordinary differential equations with variable coefficients by the method of Frobenius in power series. Due to the complexity of the various analytical expressions, the final results are determined numerically. These results include seismic pressures, resultant horizontal forces and bending moments acting on the walls. The solution of the problem involving a single retaining wall can be obtained as a special case by assuming the distance between the two walls to be very large. Results are presented in terms of numerical values and graphs using suitable dimensionless quantities. The effect of soil non-homogeneity on the system response is assessed through comparisons for typical sets of the parameters involved.  相似文献   

19.
A methodology using modal analysis is developed to evaluate dynamic vertical displacements of a circular flexible foundation resting on soil media subjected to horizontal and rocking motions. The influence of the soil reaction forces on the foundation is considered by introducing modal impedance functions, which can be determined by an efficient procedure with ring elements. The displacements of the foundation can then be easily solved by modal superposition. Parametric studies for modal responses of the flexible foundation indicate that the coupled response of the foundation is significantly influenced by relative stiffness among the foundation and the soil medium, vibration frequency range, foundation mass, and boundary contact conditions. The welded boundary condition should be considered to predict the coupling response while the relaxed boundary condition may be used to predict approximately the vertical displacements. As a foundation with a relative stiffness ratio more than three, it is found that the foundation can be considered as rigid to calculate coupling displacements. For a slightly flexible foundation, considerations of three modes are sufficient enough to obtain accurate foundation responses. Moreover, at low frequencies, the coupling effect due to higher mode can be neglected.  相似文献   

20.
This study is concerned with the dynamic response of an arbitrary shaped rigid strip foundation embedded in an orthotropic elastic soil. The foundation is subjected to time-harmonic vertical, horizontal and moment loadings. The boundary-value problem related to an embedded foundation is analysed by using the indirect boundary integral equation method. The kernel functions of the integral equations are displacement and traction Green's functions of an anisotropic elastic half plane. Exact analytical solutions are used for the Green's functions. The boundary integral equation is solved by using numerical techniques. Selected numerical results are presented for the impedances of rectangular and semi-circular rigid strip foundations embedded in four types of anisotropic soils. A discussion on the influence of soil anisotropy and frequency of excitation on the impedances is presented. The versatility of the analysis is demonstrated by considering the through soil interaction between two semi-circular strip foundations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号