首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ROGER MOUSSA 《水文研究》1996,10(9):1209-1227
The diffusive wave equation is generally used in flood routing in rivers. The two parameters of the equation, celerity and diffusivity, are usually taken as functions of the discharge. If these two parameters can be assumed to be constant without lateral inflow, the diffusive wave equation may have an analytical solution: the Hayami model. A general analytical method, based on ‘Hayami’s hypothesis, is developed here which resolves the diffusive wave flood routing equation with lateral inflow or outflow uniformly distributed over a channel reach. Flood routing parameters are then identified using observed inflow and outflow and the Hayami model used to simulate outflow. Two examples are discussed. Firstly, the prediction of the hydrograph at a downstream section on the basis of a knowledge of the hydrograph at an upstream section and the lateral inflow. The second example concerns lateral inflow identification between an upstream and a downstream section on the basis of a knowledge of hydrographs at the upstream and downstream sections. The new general Hayami model was applied to flood routing simulation and for lateral inflow identification of the River Allier in France. The major advantages of the method relate to computer simulation, real-time forecasting and control applications in examples where numerical instabilities, in the solution of the partial differential equations must be avoided.  相似文献   

2.
Nature‐based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in‐channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in‐channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000 m3 is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double‐peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature‐based approach.  相似文献   

3.
This study assessed the effect of the largest flood since dam regulation on geomorphic and large wood (LW) trends using LW distributions at three time periods on the 150 km long Garrison Reach of the Missouri River. In 2011, a flood exceeded 4390 m3/s for a two‐week period (705% above mean flow; 500 year flood). LW was measured using high resolution satellite imagery in summer 2010 and 2012. Ancillary data including forest character, vegetation cover, lateral bank retreat, and channel capacity. Lateral bank erosion removed approximately 7400 standing trees during the flood. Other mechanisms, that could account for the other two‐thirds of the measured in‐channel LW, include overland flow through floodplains and islands. LW transport was commonly near or over 100 km as indicated by longitudinal forest and bank loss and post‐flood LW distribution. LW concentrations shift at several locations along the river, both pre‐ and post‐flood, and correspond to geomorphic river regions created by the interaction of the Garrison Dam upstream and the Oahe Dam downstream. Areas near the upstream dam experienced proportionally higher rates of bank erosion and forest loss but in‐channel LW decreased, likely due to scouring. A large amount of LW moved during this flood, the chief anchoring mechanism was not bridges or narrow channel reaches but the channel complexity of the river delta created by the downstream reservoir. Areas near the downstream dam experienced bank accretion and large amounts of LW deposition. This study confirms the results of similar work in the Reach: despite a historic flood longitudinal LW and channel trends remain the same. Dam regulation has created a geomorphic and LW pattern that is largely uninterrupted by an unprecedented dam regulation era flood. River managers may require other tools than infrequent high intensity floods to restore geomorphic and LW patterns. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

In a typical reservoir routing problem, the givens are the inflow hydrograph and reservoir characteristic functions. Flood attenuation investigations can be easily accomplished using a hydrological or hydraulic routing of the inflow hydrograph to obtain the reservoir outflow hydrograph, unless the inflow hydrograph is unavailable. Although attempts for runoff simulation have been made in ungauged basins, there is only a limited degree of success in special cases. Those approaches are, in general, not suitable for basins with a reservoir. The objective of this study is to propose a procedure for flood attenuation estimation in ungauged reservoir basins. In this study, a kinematic-wave based geomorphic IUH model was adopted. The reservoir inflow hydrograph was generated through convolution integration using the rainfall excess and basin geomorphic information. Consequently, a fourth-order Runge-Kutta method was used to route the inflow hydrograph to obtain the reservoir outflow hydrograph without the aid of recorded flow data. Flood attenuation was estimated through the analysis of the inflow and outflow hydrographs of the reservoir. An ungauged reservoir basin in southern Taiwan is presented as an example to show the applicability of the proposed analytical procedure. The analytical results provide valuable information for downstream flood control work for different return periods.  相似文献   

5.
The discharge regimes of the large rivers of northern Australia are characterized by the occurrence of extreme flood events with far‐reaching environmental and societal impacts. In January 1998 the largest flood ever recorded on the Katherine River, northern Australia, resulted in widespread inundation and resultant damage to the town of Katherine. The occurrence of the flood emphasized the unreliability of the then available flood probability estimates and prompted a palaeoflood approach to estimate the recurrence interval of the event. The location of Katherine is ideal for such a study, as the town is located immediately downstream from Katherine Gorge, which provides the necessary bedrock‐confined channel required for such an approach. In addition, previous work in Katherine Gorge had demonstrated that the gorge sections hold suitable deposits for palaeoflood stage reconstruction. The results of the present study show that at least two flow events with discharges similar to the 1998 flood have occurred within the last 600 years, and that high‐magnitude floods are a general feature of the discharge record of the Katherine River over the last c. 2000 years. Furthermore, because the study was undertaken within a few months of the occurrence of the 1998 flood, it provided the opportunity to evaluate the previously obtained flood discharge estimates and draw attention to the general uncertainties associated with palaeoflood studies. Our results emphasize that palaeoflood stage estimates based on slackwater deposits need to be treated as conservative estimates only. More specifically, with respect to the 1998 event, our study demonstrates that the controls of flood peak were more complex than simply flood routing through the gorge sections. It is clear that the areas downstream from Katherine Gorge made an important contribution to the flood peak of the 1998 event. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The effects of large floods on river morphology are variable and poorly understood. In this study, we apply multi‐temporal datasets collected with small unmanned aircraft systems (UASs) to analyze three‐dimensional morphodynamic changes associated with an extreme flood event that occurred from 19 to 23 June 2013 on the Elbow River, Alberta. We documented reach‐scale spatial patterns of erosion and deposition using high‐resolution (4–5 cm/pixel) orthoimagery and digital elevation models (DEMs) produced from photogrammetry. Significant bank erosion and channel widening occurred, with an average elevation change of ?0.24 m. The channel pattern was reorganized and overall elevation variation increased as the channel adjusted to full mobilization of most of the bed surface sediments. To test the extent to which geomorphic changes can be predicted from initial conditions, we compared shear stresses from a two‐dimensional hydrodynamic model of peak discharge to critical shear stresses for bed surface sediment sizes. We found no relation between modeled normalized shear stresses and patterns of scour and fill, confirming the complex nature of sediment mobilization and flux in high‐magnitude events. However, comparing modeled peak flows through the pre‐ and post‐flood topography showed that the flood resulted in an adjustment that contributes to overall stability, with lower percentages of bed area below thresholds for full mobility in the post‐flood geomorphic configuration. Overall, this work highlights the potential of UAS‐based remote sensing for measuring three‐dimensional changes in fluvial settings and provides a detailed analysis of potential relationships between flood forces and geomorphic change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Flash floods represent one of the deadliest and costliest natural disasters worldwide. The hydrological analysis of a flash flood event contributes in the understanding of the runoff creation process. This study presents the analysis of some flash flood events that took place in a complex geomorphological Mediterranean River basin. The objective of the present work is to develop the thresholds for a real‐time flash flood forecasting model in a complex geomorphological watershed, based on high‐frequency data from strategically located hydrological and meteorological telemetric stations. These stations provide hourly real‐time data which were used to determine hydrological and meteorological parameters. The main characteristics of various hydrographs specified in this study were the runoff coefficients, lag time, time to peak, and the maximum potential retention. The estimation of these hydrometeorological parameters provides the necessary information in order to successfully manage flash floods events. Especially, the time to peak is the most significant hydrological parameter that affects the response time of an oncoming flash flood event. A study of the above parameters is essential for the specification of thresholds which are related to the geomorphological characteristics of the river basin, the rainfall accumulation of an event, the rainfall intensity, the threshold runoff through karstic area, the season during which the rainfall takes place and the time intervals between the rainstorms that affect the soil moisture conditions. All these factors are combined into a real‐time‐threshold flash flood prediction model. Historical flash flood events at the downstream are also used for the validation of the model. An application of the proposed model is presented for the Koiliaris River basin in Crete, Greece. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The reliability of a procedure for investigation of flooding into an ungauged river reach close to an urban area is investigated. The approach is based on the application of a semi‐distributed rainfall–runoff model for a gauged basin, including the flood‐prone area, and that furnishes the inlet flow conditions for a two‐dimensional hydraulic model, whose computational domain is the urban area. The flood event, which occurred in October 1998 in the Upper Tiber river basin and caused significant damage in the town of Pieve S. Stefano, was used to test the approach. The built‐up area, often inundated, is included in the gauged basin of the Montedoglio dam (275 km2), for which the rainfall–runoff model was adapted and calibrated through three flood events without over‐bank flow. With the selected set of parameters, the hydrological model was found reasonably accurate in simulating the discharge hydrograph of the three events, whereas the flood event of October 1998 was simulated poorly, with an error in peak discharge and time to peak of −58% and 20%, respectively. This discrepancy was ascribed to the combined effect of the rainfall spatial variability and a partial obstruction of the bridge located in Pieve S. Stefano. In fact, taking account of the last hypothesis, the hydraulic model reproduced with a fair accuracy the observed flooded urban area. Moreover, incorporating into the hydrological model the flow resulting from a sudden cleaning of the obstruction, which was simulated by a ‘shock‐capturing’ one‐dimensional hydraulic model, the discharge hydrograph at the basin outlet was well represented if the rainfall was supposed to have occurred in the region near the main channel. This was simulated by reducing considerably the dynamic parameter, the lag time, of the instantaneous unit hydrograph for each homogeneous element into which the basin is divided. The error in peak discharge and time to peak decreased by a few percent. A sensitivity analysis of both the flooding volume involved in the shock wave and the lag time showed that this latter parameter requires a careful evaluation. Moreover, the analysis of the hydrograph peak prediction due to error in rainfall input showed that the error in peak discharge was lower than that of the same input error quantity. Therefore, the obtained results allowed us to support the hypothesis on the causes which triggered the complex event occurring in October 1998, and pointed out that the proposed procedure can be conveniently adopted for flood risk evaluation in ungauged river basins where a built‐up area is located. The need for a more detailed analysis regarding the processes of runoff generation and flood routing is also highlighted. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The discharge hydrograph estimation in rivers based on reverse routing modeling and using only water level data at two gauged sections is here extended to the most general case of significant lateral flow contribution, without needing to deploy rainfall–runoff procedures. The proposed methodology solves the Saint‐Venant equations in diffusive form also involving the lateral contribution using a “head‐driven” modeling approach where lateral inflow is assumed to be function of the water level at the tributary junction. The procedure allows to assess the discharge hydrograph at ends of a selected river reach with significant lateral inflow, starting from the stage recorded there and without needing rainfall data. Specifically, the MAST 1D hydraulic model is applied to solve the diffusive wave equation using the observed stage hydrograph at the upstream section as upstream boundary condition. The other required data are (a) the observed stage hydrograph at the downstream section, as benchmark for the parameter calibration, and (b) the bathymetry of the river reach, from the upstream section to a short distance after the downstream gauged section. The method is validated with different flood events observed in two river reaches with a significant intermediate basin, where reliable rating curves were available, selected along the Tiber River, in central Italy, and the Alzette River, in Luxembourg. Very good performance indices are found for the computed discharge hydrographs at both the channel ends and along the tributaries. The mean Nash‐Sutcliffe value (NSq) at the channel ends of two rivers is found equal to 0.99 and 0.86 for the upstream and downstream sites, respectively. The procedure is also validated on a longer stretch of the Tiber River including three tributaries for which appreciable results are obtained in terms of NSq for the computed discharge hydrographs at both the channel ends for three investigated flood events.  相似文献   

10.
A high‐magnitude flash flood, which took place on 25 October 2011 in the Magra River catchment (1717 km2), central‐northern Italy, is used to illustrate some aspects of the geomorphic response to the flood. An overall methodological framework is described for using interlinked observations and analyses of the geomorphic impacts of an extreme event. The following methods and analyses were carried out: (i) hydrological and hydraulic analysis of the event; (ii) sediment delivery by event landslide mapping; (iii) identification and estimation of wood recruitment, deposition, and budgeting; (iv) interpretation of morphological processes by analysing fluvial deposits; (v) remote sensing and geographic information system (GIS) analysis of channel width changes. In response to the high‐magnitude hydrological event, a large number of landslides occurred, consisting of earth flows, soil slips, and translational slides, and a large quantity of wood was recruited, in most part deriving from floodplain erosion caused by bank retreat and channel widening. The most important impact of the flood event within the valley floor was an impressive widening of the overall channel bed and the reactivation of wide portions of the pre‐event floodplain. Along the investigated (unconfined or partly confined) streams (total investigated length of 93.5 km), the channel width after the flood was up to about 20 times the channel width before the event. The study has shown that a synergic use of different methods and types of evidence provides fundamental information for characterizing and understanding the geomorphic effects of intense flood events. The prediction of geomorphic response to a flood event is still challenging and many limitations exist; however a robust geomorphological analysis can contribute to the identification of the most critical reaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Engineered flood bypasses, or simplified conveyance floodplains, are natural laboratories in which to observe floodplain development and therefore present an opportunity to assess delivery to and sedimentation within a specific class of floodplain. The effects of floods in the Sacramento River basin were investigated by analyzing hydrograph characteristics, estimating event‐based sediment discharges and reach erosion/deposition through its bypass system and observing sedimentation patterns with field data. Sediment routing for a large, iconic flood suggests high rates of sedimentation in major bypasses, which is corroborated by data for one bypass area from sedimentation pads, floodplain cores and sediment removal reporting from a government agency. These indicate a consistent spatial pattern of high sediment accumulation both upstream and downstream of lateral flow diversions and negligible sedimentation in a ‘hydraulic shadow’ directly downstream of a diversion weir. The pads located downstream of the shadow recorded several centimeters of deposition during a moderate flood in 2006, increasing downstream to a peak of ~10 cm thick and thinning rapidly thereafter. Flood deposits in the sediment cores agree with this spatial pattern, containing discrete sedimentation layers (from preceding floods) that increase in thickness with distance downstream of the bypass entrance to several decimeters thick at the peak and then thin downstream. These patterns suggest that a quasi‐natural physical process of levee construction by advective overbank transport and deposition of sediment is operating. The results improve understanding of the evolution of bypass flood control structures, the transport and deposition of sediment within these environments and the evolution of one class of natural levee systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed‐scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, intensely agricultural, Raccoon River watershed in Iowa. We first developed a baseline model for flood risk based on current land use and typical weather patterns and then simulated the effects of varying levels of increased perennials on the landscape under the same weather patterns. Results suggest that land use changes in the Raccoon River could reduce the likelihood of flood events, decreasing both the number of flood events and the frequency of severe floods. The duration of flood events were not substantially affected by land use change in our assessment. The greatest flood risk reduction was associated with converting all cropland to perennial vegetation, but we found that converting half of the land to perennial vegetation or extended rotations (and leaving the remaining area in cropland) could also have major effects on reducing downstream flooding potential. We discuss the potential costs of adopting the land use change in the watershed to illustrate the scale of subsidies required to induce large‐scale conversion to perennially based systems needed for flood risk reduction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The peak in sediment transport in alluvial rivers generally lags behind the peak in discharge. It is thus not clear how the hysteresis in the sediment/discharge relationship may be impacted by damming, which can fundamentally alter the water and sediment regimes in the downstream reaches of the river. In this study, a total of 500 flood events in the Yichang–Chenglingji Reach (YCR) of the Middle Yangtze River immediately downstream of the Three Gorges Dam (TGD) are analysed to study the impacts of dam operations on the hysteresis of suspended sediment transport. Sediment rating curves, hysteresis patterns, as well as lag times, are investigated to determine the relationship between suspended sediment concentration (SSC) and flow discharge (Q) at different temporal scales, from inter-annual to individual flood events, for the pre- and post-TGD period from 1992 to 2002 and from 2003 to 2017, respectively. The results showed that the TGD operation decreased the frequency and magnitude of floods. The decrease in peak flow and increase in base flow weakened the flood contribution to the annual discharge by nearly 20%. However, the relative suspended sediment load contribution during flood events was much higher than the discharge contribution, and was little impacted by the dam. At seasonal and monthly scales, more than 80% of the suspended sediment was transported by ~65% of the water discharge in the summer and early autumn. The monthly SSCQ relationship changed from a figure-eight to an anti-clockwise pattern after the construction of the TGD. For single flood events, the TGD operations significantly modified the downstream SSCQ hysteresis patterns, increasing the frequency of anti-clockwise loops and the lag time between peak Q and peak SSC. These adjustments were mainly caused by differences in the propagation velocities of flood and sediment waves and the sediment ‘storage–mobilization–depletion’ process, whereas the influence of lateral diversions was small. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
The models of physiographic inundation and flood routing for channel network were used in this study to analyse the influence of the Tainan Scientific Base Industrial Park (TSBIP) and Feng-Hua detention ponds on the inundated potential, inundated volume, flood damage, and flood stage of peak flow along the Yen-Shui creek in 2-day flood for the 2-, 10- and 50-year return periods, respectively. The computed results show that the TSBIP detention ponds are able to reduce the inundated area and flood damage. However, the decrease in inundated area is not obvious for the 50-year return-period flood. Construction of the Feng-Hua detention pond resulted in a significant decrease in the flood stage along the Yen-Shui creek in the downstream reach. Moreover, the decrease in peak flow and lag of time-to-peak become increasingly evident in the downstream direction for the 2- and 10-year return-period events. For the 50-year return period, the lag of time-to-peak is not apparent, but the decrease in peak flow is still noticeable. In respect to the performance of detention ponds, the slopes of hydrographs in the rising and recession segments are smoother than those without detention ponds. Meanwhile, the shapes of peak become flatter if the detention ponds are installed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Shang Gao  Zheng N. Fang 《水文研究》2019,33(21):2729-2744
A synthetic storm generator—Dynamic Moving Storm (DMS)—is developed in this study to represent spatio‐temporal variabilities of rainfall and storm movement in synthetic storms. Using an urban watershed as the testbed, the authors investigate the hydrologic responses to the DMS parameters and their interactions. In order to reveal the complex nature of rainfall–run‐off processes, previously simplified assumptions are relaxed in this study regarding (a) temporal variability of rainfall intensity and (b) time‐invariant flow velocity in channel routing. The results of this study demonstrate the significant contribution of storm moving velocity to the variation of peak discharge based on a global sensitivity analysis. Furthermore, a pairwise sensitivity analysis is conducted to elucidate not only the patterns in individual contributions from parameters to hydrologic responses but also their interactions with storm moving velocity. The intricacies of peak discharges resulting from sensitivity analyses are then dissected into independent hydrologic metrics, that is, run‐off volume and standard deviation of run‐off timings, for deeper insights. It is confirmed that peak discharge is increased when storms travel downstream along the main channel at the speed that corresponds to a temporal superposition of run‐off. Spatial concentration of catchment rainfall is found to be a critical linkage through which characteristics of moving storms affect peak discharges. In addition, altering peak timing of rainfall intensity in conjunction with storm movement results in varied storm core locations in the channel network, which further changes the flow attenuation effects from channel routing. For future directions, the DMS generator will be embedded in a stochastic modelling framework and applied in rainfall/flow frequency analysis.  相似文献   

16.
We exploit a natural experiment caused by an extreme flood (~500 year recurrence interval) and sediment pulse derived from more than 2500 concurrent landslides to explore the influence of valley‐scale geomorphic controls on sediment slug evolution and the impact of sediment pulse passage and slug deposition and dispersion on channel stability and channel form. Sediment slug movement is a crucial process that shapes gravel‐bed rivers and alluvial valleys and is an important mechanism of downstream bed material transport. Further, increased bed material transport rates during slug deposition can trigger channel responses including increases in lateral mobility, channel width, and alluvial bar dominance. Pre‐ and post‐flood LiDAR and aerial photographs bracketing the 2007 flood on the Chehalis River in south‐western Washington State, USA, document the channel response with high spatial and temporal definition. The sediment slug behaved as a Gilbert Wave, with both channel aggradation and sequestration of large volumes of material in floodplains of headwaters' reaches and reaches where confined valleys enter into broad alluvial valleys. Differences between the valley form of two separate sub‐basins impacted by the pulse highlight the important role channel and channel‐floodplain connectivity play in governing downstream movement of sediment slug material. Finally, channel response to the extreme flood and sediment pulse illustrate the connection between bed material transport and channel form. Specifically, the channel widened, lateral channel mobility increased, and the proportion of the active channel covered by bars increased in all reaches in the study area. The response scaled tightly with the relative amount of bed material sediment transport through individual reaches, indicating that the amount of morphological change caused by the flood was conditioned by the simultaneous introduction of a sediment pulse to the channel network. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
《国际泥沙研究》2023,38(5):662-672
The evaluation of the trend of flood stage changes in alluvial rivers downstream of dams is important for flood management. However, the flood stage associated with a given discharge generally is nonstationary in river reaches with multiple tributaries. This is not only because of the dam-induced shifting in the cross-sectional area and/or channel roughness but also because of the backwater induced by high flows from the tributaries. To determine the total trend of the flood stage and quantify the separate contributions of hydrological and geomorphic effects, the current study proposed a framework approach consisting of hydrological analysis and multiscenario numerical modeling. By this means, the trend in the flood stage could be distinguished from the stage oscillation driven by varying factors, including extreme hydrologic events. The effects of chronic changes, including channel incision and flow resistance increase, also were quantitatively separated. This framework was applied to the Chenglingji–Datong (CD) reach downstream of the Three Gorges Dam (TGD) in the Yangtze River, China. The results indicated that the effect of the roughness increase counterbalanced the effect of channel incision when the flow discharge was beyond the bankfull level. The backwater effect induced by tributary inflow was the major cause of the flood stage rise in recent years. The method presented in the current study provides a useful tool for managers and engineers to obtain better insight into the driving mechanisms of flood stage changes in river reaches that are downstream of dams. These findings indicate that the flood stage may not decline or may even occasionally increase, although the cross-sectional area was enlarged by channel incision. Special attention should be given to the flood risk situation in the study reach after the TGD began operation.  相似文献   

18.
Recent advances have been made to modernize estimates of probable precipitation scenarios; however, researchers and engineers often continue to assume that rainfall events can be described by a small set of event statistics, typically average intensity and event duration. Given the easy availability of precipitation data and advances in desk‐top computational tools, we suggest that it is time to rethink the ‘design storm’ concept. Design storms should include more holistic characteristics of flood‐inducing rain events, which, in addition to describing specific hydrologic responses, may also be watershed or regionally specific. We present a sensitivity analysis of nine precipitation event statistics from observed precipitation events within a 60‐year record for Tompkins County, NY, USA. We perform a two‐sample Kolmogorov–Smirnov (KS) test to objectively identify precipitation event statistics of importance for two related hydrologic responses: (1) peak outflow from the Six Mile Creek watershed and (2) peak depth within the reservoir behind the Six Mile Creek Dam. We identify the total precipitation depth, peak hourly intensity, average intensity, event duration, interevent duration, and several statistics defining the temporal distribution of precipitation events to be important rainfall statistics to consider for predicting the watershed flood responses. We found that the two hydrologic responses had different sets of statistically significant parameters. We demonstrate through a stochastic precipitation generation analysis the effects of starting from a constrained parameter set (intensity and duration) when predicting hydrologic responses as opposed to utilizing an expanded suite of rainfall statistics. In particular, we note that the reduced precipitation parameter set may underestimate the probability of high stream flows and therefore underestimate flood hazard. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The frequency of floods has been projected to increase across Europe in the coming decades due to extreme weather events. However, our understanding of how flood frequency is affected by geomorphic changes in river channel capacity remains limited. This paper seeks to quantify the influence of trends in channel capacity on flood hazards. Measuring and predicting the effect of geomorphic changes on freshwater flooding is essential to mitigate the potential effects of major floods through informed planning and response. Hydrometric records from 41 stream gauging stations were used to measure trends in the flood stage (i.e. water surface elevation) frequency above the 1% annual exceedance threshold. The hydrologic and geomorphic components of flood hazard were quantified separately to determine their contribution to the total trend in flood stage frequency. Trends in cross‐sectional flow area and mean flow velocity were also investigated at the same flood stage threshold. Results showed that a 10% decrease (or increase) in the channel capacity would result in an increase (or decrease) in the flood frequency of approximately 1.5 days per year on average across these 41 sites. Widespread increases in the flood hazard frequency were amplified through both hydrologic and geomorphic effects. These findings suggest that overlooking the potential influence of changing channel capacity on flooding may be hazardous. Better understanding and quantifying the influence of geomorphic trends on flood hazard will provide key insight for managers and engineers into the driving mechanisms of fluvial flooding over relatively short timescales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Distributed, continuous hydrologic models promote better understanding of hydrology and enable integrated hydrologic analyses by providing a more detailed picture of water transport processes across the varying landscape. However, such models are not widely used in routine modelling practices, due in part to the extensive data input requirements, computational demands, and complexity of routing algorithms. We developed a two‐dimensional continuous hydrologic model, HYSTAR, using a time‐area method within a grid‐based spatial data model with the goal of providing an alternative way to simulate spatiotemporally varied watershed‐scale hydrologic processes. The model calculates the direct runoff hydrograph by coupling a time‐area routing scheme with a dynamic rainfall excess sub‐model implemented here using a modified curve number method with an hourly time step, explicitly considering downstream ‘reinfiltration’ of routed surface runoff. Soil moisture content is determined at each time interval based on a water balance equation, and overland and channel runoff is routed on time‐area maps, representing spatial variation in hydraulic characteristics for each time interval in a storm event. Simulating runoff hydrographs does not depend on unit hydrograph theory or on solution of the Saint Venant equation, yet retains the simplicity of a unit hydrograph approach and the capability of explicitly simulating two‐dimensional flow routing. The model provided acceptable performance in predicting daily and monthly runoff for a 6‐year period for a watershed in Virginia (USA) using readily available geographic information about the watershed landscape. Spatial and temporal variability in simulated effective runoff depth and time area maps dynamically show the areas of the watershed contributing to the direct runoff hydrograph at the outlet over time, consistent with the variable source area overland flow generation mechanism. The model offers a way to simulate watershed processes and runoff hydrographs using the time‐area method, providing a simple, efficient, and sound framework that explicitly represents mechanisms of spatially and temporally varied hydrologic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号