首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two distinct types of alluvial fans occur in the Bow River Valley, Alberta, Canada: fluvially dominated and debris flow dominated. Large, gently sloping fans dominated by fluvial processes are associated with large and less rugged drainage basins, and small rugged basins have produced small, steep fans dominated by debris flow processes. Quantitative analysis demonstrates that strong fan-basin morphometric relationships occur despite a short fan history. Statistical analysis of fan area-basin area relationships indicate that debris flow fan areas do not increase in size as quickly as contributing basins. The relationship of fluvial fan area to basin area is not statistically significant. However, this relationship is probably affected by fan erosion. Examination of fan slope to basin ruggedness relationships indicates that fan slope increases more rapidly than basin ruggedness for both fan types. This is likely related to non-linear discharge and sediment size effects on fluvial fans, and reworking of larger fan surfaces by fluvial processes on debris flow fans.  相似文献   

2.
In bolsons in the desert regions of southern California and adjacent parts of Nevada, the area underlain by alluvial fan gravels and playa sediments is generally ?1·2 times the area being eroded to produce those sediments. In certain larger basins in the vicinity of Death Valley, however, the depositional area is only about half the size of the erosional area. This reflects the more active tectonic environment in these bolsons. Of the areas underlain by recent sediments in these bolsons, playas make up 2–6 per cent. Smaller playas are found in the Mojave region, and seem to be associated with sedimentary terranes. Conversely, igneous terranes support larger playas. Larger deviations of playa area from these averages are attributable to incorrect identification of bolson boundaries. Fine sediment is either able to pass through the bolson to the next down stream, or is being collected from areas upstream that were not considered to be part of the system. For example, the playa in Death Valley is unusually large. This is in part because the Death Valley playa has been deformed tectonically so parts of it are now eroding, and in part because the outlet of Lake Tecopa was downcut in the geologically recent past, so sediment once trapped there now reaches Death Valley. The size of the playa in Death Valley is still adjusting to these changes.  相似文献   

3.
The response of 12 fluvial fans near Sydney, Australia to a large storm between 2 and 4 February 1990 was determined by repeating previously surveyed longitudinal profiles and by undertaking detailed field observations of erosion and deposition. Peak rainfall intensities occurred on 3 and 4 February when between 173 and 193·8 mm were recorded. Return periods for 24 h duration peak rainfall ranged between 5·7 and 11·0 years on the annual maximum series at six stations within the study area and return periods for 48 h peak rainfall ranged between 13·5 and 29·4 years. Of the 12 fans, seven were trenched and five untrenched. The most significant geomorphic effects of the storm were recorded on the proximal region of the fans. However, fan response was highly variable, with one fan exhibiting no detectable change, three fans localized deposition, two fans spatially disjunct erosion and deposition, two fans channel avulsions, and seven fans fanhead trench reworking. Some fans exhibited more than one type of response. A four-stage, tentative cyclical model of fanhead development was constructed from the field data. Stage 1 refers to the episodic aggradation of the fanhead by localized deposition, spatially disjunct erosion and deposition and/or channel avulsions. Stage 2 represents the initiation of a fanhead trench when progressive aggradation locally exceeds a threshold slope leading to localized erosion. This erosion initially creates one or more discontinuous flow-aligned scour pools. Over time, the scour pools widen, deepen and extend both up- and downfan. Stage 3 refers to the coalescence of discontinuous scour pools into a continuous trench by the removal of intervening log and boulder steps. Stage 4 represents the backfilling phase of the trench once it has been overwidened and/or slope reduced. Aggradation then continues as for stage one.  相似文献   

4.
The slope of an alluvial fan increases with increasing debris size and sediment concentration in the flow, and decreases with increasing discharge. Laboratory studies suggest that the discharge which controls this slope, or dominant discharge, is that which is equalled or exceeded one quarter to one third of the time that flow occurs on the fan. In contrast, the dominant discharge in perennial alluvial rivers is equalled or exceeded only about 5 per cent of the time that flow occurs in the river. The dominant discharge on fans increases with increasing debris size, reflecting the importance of threshold stress. The slope of some natural and most laboratory alluvial fans is steepest on the flanks and gentlest along the axis. Consideration of the momentum of water debouching onto a fan at its apex suggests that the difference in slope between axis and flank should be greatest on steep fans composed of relatively non-cohesive materials because on such fans higher discharges tend to flow down the axis, whereas lower discharges can be turned to course down the flanks. On fans with gentle slopes or composed of more cohesive material the higher discharges can also be turned toward the flanks, so on such fans the difference in slope between the axis and flank is less pronounced. Field and laboratory observations support this interpretation. Because deposition at any one time on an alluvial fan is localized, some areas aggrade while others remain at a fixed elevation. This process is treated as a Markov process with the probability of diversion from an area of active deposition into an adjacent lower area increasing as the height of the active area above the mean or ‘ideal’ surface increases. Analysis of data from laboratory and natural fans suggests that the amplitude of such surface irregularities is greater on fans composed of coarser material. The data on natural fans also suggest an increase in amplitude of the irregularities with increasing fan area.  相似文献   

5.
The degree of glacial modification in small catchments along the eastern Sierra Nevada, California, controls the timing and pattern of sediment flux to the adjacent fans. There is a close relationship between the depth of fan‐head incision and the pattern and degree of Late Pleistocene catchment erosion by valley glaciers; catchments with significant glacial activity are associated with deeply incised fan heads, whereas fans emerging from glacially unmodified catchments are unincised. We suggest that the depth of fan‐head incision is controlled by the potential for sediment storage during relatively dry ice‐free periods, which in turn is related to the downstream length of the glacially modified valley and creation of accommodation through valley floor slope lowering and glacial valley overdeepening and widening. Significant storage in glacially modified basins during ice‐free periods leads to sediment supply‐limited conditions at the fan head and causes deep incision. In contrast, a lack of sediment trapping allows quasi‐continuous sediment supply to the fan and prevents incision of the fan head. Sediment evacuation rates should thus show large variations in glacially modified basins, with major peaks during glacial and lows during interglacial or ice‐free periods, respectively. In contrast, sediment removal from glacially unmodified catchments in this type of setting should be free of this effect, and will be dominated instead by short‐term variations, modulated for example by changes in vegetation cover or storm frequency. This distinction may help improve our understanding of long‐term sediment yields as a measure of erosional efficiency. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Rapids in river canyons are frequently found at sites where debris fans constrict flow along the channel. Whereas some fans may have persisted in the same location with unchanging geometry for centuries to millennia, others have changed in response to flow conditions imposed by successive floods. Such a change in boundary conditions may alter local flow hydraulics. This paper utilizes two-dimensional flow modelling to compare flood hydraulics along two alternative versions of an idealized reach of a river canyon: one with uniform width, gradient and cross-section, and a second perturbed by a prominent debris fan along the valley wall. The flow pattern along the reach with the fan is far more complex than the pattern along the uniform reach. Maximum velocity along the debris-fan reach is up to 50 per cent higher than along the uniform reach, maximum bed shear stress is up to three or four times higher, and an area of supercritical flow is predicted extending from the nose of the fan into the zone of flow expansion immediately downstream. Comparison of model output along longitudinal profiles of the two reaches indicates that the backwater effect of the fan extends several valley widths upstream. Predicted flows based on the same stage are as much as 190 to 230 per cent greater along the uniform reach than along the debris-fan reach. Reconstruction of palaeoflood discharge based on remnant flood marks in the vicinity of the fan would be sensitive to assumptions about boundary conditions that existed in the past; this effect relaxes over a longitudinal distance of several hundred metres. Furthermore there are significant cross-stream gradients that change slope and direction several times in the vicinity of the fan, calling into question the utility of one-dimensional step-backwater hydraulic models for predicting high-water marks in areas of complex valley morphology.  相似文献   

7.
In this paper, we present optically and infrared stimulated luminescence (OSL and IRSL) ages for four samples from alluvial fan surfaces in the Astaneh Valley. This valley is located in the north-east part of the Alborz range in Iran. Our morphologic interpretations recognize at least three generations of fans in the study area, all of which have been displaced along the left-lateral strike-slip Astaneh fault. Because of the dry, loose, and sometimes complex juxtaposition of the target sediments, we collected the samples in total darkness beneath dark plastic layers placed atop the pit openings. Luminescence ages of the fans are ~55 ka, ~32 ka and ~16 ka. These ages are concurrent with periods of loess deposition and wet climatic conditions previously recorded in the Arabia-Iranian region. They allow estimation of a horizontal slip rate of ~2 mm/yr along the Astaneh fault, which is consistent with additional slip rates determined for the Holocene period along faults further west of the Astaneh fault.  相似文献   

8.
Alluvial fans are dynamic landforms, the evolution of which is controlled by both external environmental forcing (climate, tectonics and base level change) and internal process‐form feedbacks. The latter include changes in flow configuration (between sheetflow and channelized flow states), driven by aggradation and degradation, which may in turn promote changes in sediment transport capacity. Recent numerical modelling indicates that such feedbacks may lead to dramatic and persistent fan entrenchment in the absence of external forcing. However, the parameterization of flow width within such models is untested to date and is subject to considerable uncertainty. This paper presents results from an experimental study of flow width dynamics on an aggrading fan in which spatial and temporal patterns of fan inundation are monitored continuously using analysis of digital vertical photography. Observed flow widths are compared with results from a simple theoretical model developed for non‐equilibrium (aggradational) conditions. Results demonstrate that the theoretical model is capable of capturing the first‐order characteristics of width adjustment over the course of the experiment, and indicate that flow width is a function of fan aggradation rate. This illustrates that models of alluvial flow width derived for equilibrium conditions may have limited utility in non‐equilibrium situations, despite their widespread use to date. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
LingYun  Chiao 《Island Arc》1993,2(2):94-103
Abstract Focal mechanisms of intermediate-depth earthquakes within the subducted Ryukyu slab indicate a systematic pattern of down-dip extension in the northern part under Kyushu. These mechanisms switch rapidly around the Tokara channel to down-dip compression in the southern part toward Taiwan. This intriguing pattern of strain segmentation, together with the differences between the slab geometry of the northern and southern parts, has raised the question of whether stress segmentation, as defined possibly by a tear fault, might exist in the slab. However the Ryukyu trench has a concave oceanward shape in the northern segment while it is convex in the southern oceanward part toward Taiwan. The inflection zone is located around the Tokara channel. The concept of Gaussian curvature of a curved surface suggests that the along-arc variation of the geometric configuration of a subducted slab is related to the shape of the trench. This is in order to accommodate the lateral membrane deformation of the slab as the oceanic lithosphere subducts from a spherical shell to the geometry delineated by the Wadati-Benioff zone. The membrane deformation regime of the subducted Ryukyu slab and its relation with the trench geometry was examined by assuming that the subduction be modelled by the flow field of a thin viscous sheet. A projection operator was utilized to compute the membrane strain-rate tensor of an arbitrary non-Euclidean surface. Numerical experiments indicated that the northern segment of the slab was dominated by lateral compression and down-dip extension and the southern part by lateral extension and down-dip compression. This transition is sharply located near the Tokara channel. These patterns were compatible with what had been observed from studies of focal mechanisms, suggesting that the strain segmentation might be controlled, at least in part, by the lateral membrane deformation within the slab due to the trench shape in this subduction zone. The slab geometry was predicted by minimizing the integrated total dissipation power; this revealed distinct features that were consistent with observations. This implies that the slab geometry may also be affected by the membrane deformation in a systematic fashion.  相似文献   

10.
The Chaman left‐lateral strike‐slip fault bounds the rigid Indian plate boundary at the western end of the Himalayan‐Tibetan orogen and is marked by contrasting topographic relief. Deformed landforms along the fault provide an excellent record for understanding this actively evolving intra‐continental strike‐slip fault. The geomorphic response of an active transpessional stretch of the Chaman fault was studied using digital elevation model (DEM) data integrated with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared/Short Wave Infrared (VNIR/SWIR) and images from GeoEye‐1. Geologic and geomorphic mapping helped in reconstructing the Late Quaternary landscape history of this transpessional strand of the Chaman strike‐slip fault and the associated Spinatizha thrust fault in western Pakistan. Topographic analysis of a part of the transpression (the thrust bounded Roghani ridge) revealed northward growth of the Spinatizha fault with the presence of three water gaps and two corresponding wind gaps. Geomorphic indices including stream length‐gradient index, mountain front sinuosity, valley floor width to valley height ratios, and entrenchment of recent alluvial fan deposits were used to define the lateral growth and direction of propagation of the Spinatizha fault. Left‐lateral displacement along Chaman fault and uplift along the Spinatizha fault was defined using topographic analysis of the Roghani ridge and geomorphic mapping of an impressive alluvial fan, the Bostankaul fan. The landforms and structures record slip partitioning along the Indian plate boundary, and account for the convergence resulting from the difference in the Chaman fault azimuth and orientation of the velocity vector of the Indian plate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The paraglacial reworking of glacial sediments by rivers and mass wasting is an important conditioning factor for modern sediment yields in mountainous catchments in formerly glaciated regions. Catchment scale and patterns of sediment storage are important influences in the rate of postglacial adjustment. We develop a quantitative framework to estimate the volume, sediment type, and fractional size distribution of legacy glacial materials in a large (1230 km2) watershed in the North Cascade Mountains in south‐western British Columbia, Canada. Chilliwack Valley is exceptional because of the well‐dated bounds of deglaciation. Interpolation of paleo‐surfaces from partially eroded deposits in the valley allows us to estimate the total evacuated sediment volume. We present a chronology of sediment evacuation from the valley and deposition in the outlet fan, based on infrared stimulated luminescence (IRSL) and 14 C dating of river terraces and fan strata, respectively. The effects of paraglacial sedimentation in Chilliwack Valley were intensified through a major fall in valley base‐level following ice retreat. The steepened mainstem valley gradient led to deep incision of valley fills and fan deposits in the lower valley network. The results of this integrated study provide a postglacial chronology and detailed sediment budget, accounting for long‐term sorting of the original sediments, lag deposit formation in the mainstem, deposition in the outlet fan, and approximate downstream losses of suspended sediment and wash load. The mass balance indicates that a bulk volume of approximately 3.2 km3 of glacial material has been evacuated from the valley. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Laboratory experiments investigating the effects of a lowering base level do not simulate natural eustatic lowering along concave river profiles. The field data on this issue are also quite limited. In evaluating the control exercised by lowering base level on a drainage network, distinction must be made between its influence and those of other hydromorphological processes operating within the basin. Field data on morphological relations, based on photogrammetric mapping and longitudinal profiling, have been gathered in the Dead Sea area, Israel, where a rapid fall in base level has occurred during the Holocene. The study area is an entrenched fan delta with a sequence of 14 unpaired fan terraces which die out at intersection points within an alluvial fan system. The results suggest that the intersection points did not function as base levels. The receding base level played only a passive role, allowing entrenchment without transmitting a head-cutting feedback basinwards. The arid environment caused a delay in transmission of information through the system. The results support the model of short, episodic, and discontinuous erosional events, inherent in the evolution of drainage basins. It is suggested that base level effects in temperate and humid regions are not transferrable to arid zones.  相似文献   

13.
Deltas on planet Mars record past climate, but so far a wide range of hypotheses for their formation have been proposed. The objective of this paper is to understand martian fan deltas, their formative conditions, evolution and formative duration, and implications for the past climate. As an introduction to Mars, physiographic provinces are described and unambiguous proof is listed for the presence of flowing water in the past, such as certain minerals, groundwater, catastrophic outflow channels, alluvial fans and fan deltas, distributary networks and glaciers. The climate history of Mars differs from that of Earth by having had much drier conditions than on Earth, extreme intermittency and extreme events, most of them billions of years ago. Tens of fan deltas, unchannelized fan deltas and stepped fans have been found in impact crater and other lakes. The stepped fans were likely formed by backstepping under fast rising lake levels and have no known terrestrial equivalent. The fan deltas were formed once the lake overflowed. Alluvial fans are much more numerous and formed with less water. The delta studies illustrate how major challenges of martian morphology and reconstruction of past conditions can be taken up most effectively by combinations of the available high‐resolution images and digital elevation models, terrestrial analogues, laboratory experiments and physics‐based models gleaned from geomorphology. To resolve formative mechanisms and time scale of martian fans and deltas, morphological distinctions between dense debris flows and dilute fluvial flows must be identified for both source and sink areas. Furthermore, the properties of the martian surface material are very poorly constrained but can be explored by modelling various mass wasting, fluvial and glacial phenomena and hydrology, and by experimentation with slightly cohesive sediment. Finally, the highly debated role of groundwater sapping in valley and delta formation on Mars should be explored experimentally. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Alluvial fans at tributary junctions modulate sediment flux through river networks, by buffering the mainstem channel from disturbance in the tributaries. Buffering occurs through the storage (and release) of sediment in fans. Here, we use an extensive historic dataset to characterise the ways in which fan buffering can change as sediment supply varies. In New Zealand's East Coast region, sediment supply and fluvial transport are prolific by global standards. We reconstruct how tributary-junction fans in this region have responded to sediment generated by deforestation and extreme storms. The dynamics of five fans along the Tapuaeroa River are examined for the period 1939–2015. In response to major sediment loading, fans aggraded by up to 12 m and prograded by up to 170 m. Net sediment accumulation ranged from near zero to 1.5×106 m3. Fan size, gradient, sediment storage and buffering were influenced by both upstream and downstream controls. Key upstream (tributary) influences were sediment supply and stream power; downstream (mainstem) influences included distal confinement and, importantly, the nature of fan interaction with the mainstem, which aggraded by up to 6 m. The fans' ability to buffer the Tapuaeroa River from change in the tributaries was largely governed by this downstream interaction: as the mainstem aggraded, it increasingly curtailed fan progradation, thus limiting buffering. Previous studies of tributary-junction fans have related fan morphometry to basin characteristics. However, we find that fan slope and area can vary considerably at decadal, annual or even monthly timescales. Consequently, we suggest that such studies could benefit by examining regional histories of disturbance. © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
The Lower Tagus Valley has experienced significant (M 6–7) historical seismicity, evidencing the presence of seismogenic faults. These are still deficiently known due to the low strain rates and the recent alluvial sedimentation of the Tagus River that buries most of the structures, though Paleoseismic evidence was allegedly found by a research team in the Tagus valley, at a site 60 km N of Lisbon, near Vila Chã de Ourique (VCO). According to this team, trenching at the VCO site exposed an active thrust fault, evidencing the surface rupture of a large earthquake that occurred in 1531. Our studies performed at this site, comprising field observations with a reappraisal of the trench outcrops previously excavated, borehole drilling, soil mechanics laboratory testing, and seismic reflection acquisition, pointed to the alternative interpretation that the outcropping structures are gravitational and not of tectonic origin. The interpretation of new outcrops crosscutting the structures exposed at the trenches, as well as newly acquired high-resolution seismic reflection data, definitely exclude the active thrust fault explanation and support a gravitational slip model for all the observed structures. Gravitational slip in the river bank slope was promoted by low shear strength clays and high pore water pressure coupled with slope toe river erosion. Gravitational slides must have occurred prior to development of the present sedimentation level of the Tagus alluvial plain, which was attained in the last few thousand years as indicated by borehole data and estimations of sedimentation rates.  相似文献   

16.
We present laboratory and field evidence that in mountainous catchment‐fan systems persistent alluvial fanhead aggradation and trenching may result from infrequent, large sediment inputs. We suggest that the river‐fan systems along the fault‐bounded range front of the western Southern Alps, New Zealand, are likely to be in a dynamic equilibrium on ≥103‐yr timescales, superimposed on which their fanheads undergo long‐term cumulative episodic aggradation. These fanheads are active only in rare events, do not take part in the usual behaviour of the catchment‐fan system and require much longer to exhibit dynamic equilibrium than the rest of the fan. These findings (1) increase our knowledge of the effects of extreme events on alluvial fan morphodynamics in humid climates, (2) question the general applicability of inferring past climatic or tectonic regimes from alluvial‐fan morphology and stratigraphy and (3) provide a conceptual basis for hazard zonation on alluvial fans. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Regional behaviour of the groundwater flow system in the Cochabamba Valley, Bolivia, is evaluated through the interpretation of tritium (3H) distributions in groundwater samples from wells and springs. In order to interpret groundwater 3H concentrations in Cochabamba Valley, where no historical record of 3H concentrations in rainfall exists, a reconstructed 3H precipitation record is developed. The record of 3H concentrations in precipitation is fairly extensive in the Amazon Basin and this record was extrapolated to the neighbouring Cochabamba Valley. Tritium concentrations in rainfall have been observed to increase under natural conditions with increasing latitude and with increasing distance from the ocean. By considering these trends, a linear relationship for increasing 3H concentration in precipitation is developed, based on data from the Amazon Basin, that realistically predicts regional 3H distributions from the northeast Brazilian coast to Cuzco, Peru. This 3H precipitation record is then extrapolated to the Cochabamba Valley and, after correction for radiogenic decay, is used to interpret trends in groundwater 3H concentrations within the valley.

The groundwater flow system in one of the principal alluvial fans, which serves as an important groundwater resource for the city, is studied in detail. Tritium concentrations drop from approximately 8–10 tritium units (TU) in the recharge area to concentrations below the detection limit of 0.8 TU further out in the valley. Groundwater velocities of approximately 0.3 to 0.9 m d−1 are estimated from distributions of groundwater 3H concentrations along the alluvial fan with the use of the reconstructed precipitation 3H record. Regional characteristics of the groundwater flow system are discussed with respect to future development and protection of the groundwater resources.  相似文献   


18.
The dynamics and the surface evolution of a post‐LGM debris‐flow‐dominated alluvial fan (Tartano alluvial fan), which lies on the floor of an alpine valley (Valtellina, Northern Italy), have been investigated by means of an integrated study comprising geomorphological field work, a sedimentological study, photointerpretation, quantitative geomorphology, analysis of ancient to modern cartography and consultation of historical documents and records. The fan catchment meteoclimatic, geological and geomorphological characteristics result in fast rates of geomorphic reorganization of the fan surface (2 km2). The dynamics of the fan are determined by the alternation of low‐return period catastrophic alluvial events dominated by non‐cohesive debris flows triggered by extreme rainstorms which caused aggradation and steepening of the fan and avulsion of its main channel, with periods of low to moderate streamflow discharge punctuated by low‐ to intermediate‐magnitude flood events, causing slower but steady topographic reworking. The most ancient parts of the fan surface date back at least to the first half of the 19th century, but most of the fan surface has been restructured after 1911, mainly during the debris‐flow‐dominated events of 1911 and 1987. Phases of rapid fan toe incision and fan degradation have been recognized; since the 1930s or 1940s, the Tartano fan has been subjected to a state of deep entrenchment and narrowing of the main trunk channel and distributary area. Post‐Little Ice Age climate change and present‐day surface uplift rates have been considered as possible explanations for the observed geomorphic evolution, but tectonic or climatic controls cannot account for the order of magnitude of the erosional pace. Anthropogenic controls plausibly override the natural ones: in particular, the building of a dam in the late 1920s, about 2 km upstream of the fan, seems to have triggered fan dissection, having altered the sediment discharge through sediment retention. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Differences in lithologic erodibility and sediment storage within a drainage basin affect the relationship between alluvial fan area and drainage basin area along the western White Mountains. Large fans are produced by basins underlain by resistant rocks, which have steep and narrow trunk stream canyons with little sediment in storage. Small fans are produced by basins composed of erodible lithologic units, which have wider valley floors, lower valley-side slopes, and considerably more sediment stored along trunk stream canyons than is the case in basins underlain by resistant rocks.  相似文献   

20.
Groundwater samples were collected from 11 springs in Ash Meadows National Wildlife Refuge in southern Nevada and seven springs from Death Valley National Park in eastern California. Concentrations of the major cations (Ca, Mg, Na and K) and 45 trace elements were determined in these groundwater samples. The resultant data were subjected to evaluation via the multivariate statistical technique principal components analysis (PCA), to investigate the chemical relationships between the Ash Meadows and Death Valley spring waters, to evaluate whether the results of the PCA support those of previous hydrogeological and isotopic studies and to determine if PCA can be used to help delineate potential groundwater flow patterns based on the chemical compositions of groundwaters. The results of the PCA indicated that groundwaters from the regional Paleozoic carbonate aquifers (all of the Ash Meadows springs and four springs from the Furnace Creek region of Death Valley) exhibited strong statistical associations, whereas other Death Valley groundwaters were chemically different. The results of the PCA support earlier studies, where potentiometric head levels, δ18O and δD, geological relationships and rare earth element data were used to evaluate groundwater flow, which suggest groundwater flows from Ash Meadows to the Furnace Creek springs in Death Valley. The PCA suggests that Furnace Creek groundwaters are moderately concentrated Ash Meadows groundwater, reflecting longer aquifer residence times for the Furnace Creek groundwaters. Moreover, PCA indicates that groundwater may flow from springs in the region surrounding Scotty's Castle in Death Valley National Park, to a spring discharging on the valley floor. The study indicates that PCA may provide rapid and relatively cost‐effective methods to assess possible groundwater flow regimes in systems that have not been previously investigated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号