首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In January 1979 four experimental catchments in forests of southeastern New South Wales were burnt by wildfire. Logging before the fire had no detectable effect on concentrations of Ca, K, Mg, Na, Cl, NO3, nor on pH of stream waters. In all burnt catchments mean K concentrations increased by from 20 per cent to 60 per cent for a 12 month period and nitrate concentrations increased by factors of about ten in severely burnt catchments. In one of the catchments (unlogged) Ca also increased. From one year to four years after the fire, concentrations of all ions were either close to or less than levels predicted from the control but, during the fifth and sixth years, concentrations of Mg and Na were higher by 20 per cent to 60 per cent. In all burnt catchments, cation exports increased considerably during the first three years after the fire but major components of these increases were elevated levels of runoff. Exports of Mg and Na were higher than those of the control during the fifth and sixth years after the fire, although runoff had returned to pre-fire levels in the two unlogged catchments and was 10 per cent to 20 per cent greater than the control in the two logged catchments. During this final period, increased ion concentrations were the main factors which contributed to the elevated exports. Post-fire logging in one catchment had no detectable effects on streamwater parameters measured in the study but was associated with a further increase in runoff.  相似文献   

2.
Seasonal and event variations in stream channel area and the contributions of channel precipitation to stream flow were studied on a 106‐ha forested headwater catchment in central Pennsylvania. Variations in stream velocity, flowing stream surface width and widths of near‐stream saturated areas were periodically monitored at 61 channel transects over a two‐year period. The area of flowing stream surface and near‐stream saturated zones combined, ranged from 0·07% of basin area during summer low flows to 0·60% of total basin area during peak storm flows. Near‐stream saturated zones generally represented about half of the total channel area available to intercept throughfall and generate channel precipitation. Contributions of routed channel precipitation from the flowing stream surface and near‐stream zones, calculated using the Penn State Runoff Model (PSRM, v. 95), represented from 1·1 to 6·4% of total stream flow and 2·5–29% of total storm flow (stream flow–antecedent baseflow) during the six events. Areas of near‐stream saturated zones contributed 35–52% of the computed channel precipitation during the six events. Channel precipitation contributed a higher percentage of stream flow for events with low antecedent baseflow when storm flow generated by subsurface sources was relatively low. Expansion of channel area and consequent increases in volumes of channel precipitation with flow increases during events was non‐linear, with greater rates of change occurring at lower than at higher discharge rates. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
A model for quantitatively expressing the hydrological cycle in a forested mountain catchment is proposed as a HYCYMODEL. HYCYMODEL is able to predict both short- and long-term hydrographs because the model parameters remain independent of time. It shows a good applicability for ten years of continuous data at both hourly and daily intervals for the Kiryu catchment—a forested mountain basin. Since HYCYMODEL does not need hydrograph separation between storm flow and base flow, it is a particularly attractive model.  相似文献   

4.
This study aimed to investigate the seasonal variability of runoff generation processes, the sources of stream water, and the controls on the contribution of event water to streamflow for a small forested catchment in the Italian pre‐Alps. Hydrometric, isotopic, and electrical conductivity data collected between August 2012 and August 2013 revealed a marked seasonal variability in runoff responses. Noticeable differences in runoff coefficients and hydrological dynamics between summer and fall/spring rainfall events were related to antecedent moisture conditions and event size. Two‐component and three‐component hydrograph separation and end‐member mixing analysis showed an increase in event water contributions to streamflow with event size and average rainfall intensity. Event water fractions were larger during dry conditions in the summer, suggesting that stormflow generation in the summer consisted predominantly of direct channel precipitation and some saturated overland flow from the riparian zone. On the contrary, groundwater and hillslope soil water contributions dominated the streamflow response during wet conditions in fall. Seasonal differences were also noted between event water fractions computed based on isotopic and electrical conductivity data, likely because of the dilution effect during the wetter months. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Few investigations link post‐fire changes to sediment sources and erosion processes with sediment yield response at the catchment scale. This linkage is essential if downstream impacts on sediment transport after fire are to be understood in the context of fire effects across different forest environments. In this study, we quantify changing source contributions to fine sediment (<63 µm) exported from a eucalypt forest catchment (136 ha) burnt by wildfire. The study catchment is one of a pair of research catchments located in the East Kiewa River valley in southeastern Australia that have been the subject of a research program investigating wildfire effects on runoff, erosion, and catchment sediment/nutrient exports. This previous research provided the opportunity to couple insights gained from a range of measurement techniques with the application of fallout radionuclides 137Cs and 210Pbex to trace sediment sources. It was found that hillslope surface erosion dominated exports throughout the 3·5‐year post‐fire measurement period. During this time there was a pronounced decline in the proportional surface contribution from close to 100% in the first six months to 58% in the fourth year after fire. Over the study period, hillslope surface sources accounted for 93% of the fine sediment yield from the burnt catchment. The largest decline in the hillslope contribution occurred between the first and second years after fire, which corresponded with the previously reported large decline in sediment yield, breakdown of water repellency in burnt soils, substantial reduction in hillslope erodibility, and rapid surface vegetation recovery. Coupling the information on sediment sources with hillslope process measurements indicated that only a small proportion of slopes contributed sediment to the catchment outlet, with material derived from near‐channel areas dominating the post‐fire catchment sediment yield response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The isotopic composition of precipitation (D and 18O) has been widely used as an input signal in water tracer studies. Whereas much recent effort has been put into developing methodologies to improve our understanding and modelling of hydrological processes (e.g., transit‐time distributions or young water fractions), less attention has been paid to the spatio‐temporal variability of the isotopic composition of precipitation, used as input signal in these studies. Here, we investigated the uncertainty in isotope‐based hydrograph separation due to the spatio‐temporal variability of the isotopic composition of precipitation. The study was carried out in a Mediterranean headwater catchment (0.56 km2). Rainfall and throughfall samples were collected at three locations across this relatively small catchment, and stream water samples were collected at the outlet. Results showed that throughout an event, the spatial variability of the input signal had a higher impact on hydrograph separation results than its temporal variability. However, differences in isotope‐based hydrograph separation determined preevent water due to the spatio‐temporal variability were different between events and ranged between 1 and 14%. Based on catchment‐scale isoscapes, the most representative sampling location could also be identified. This study confirms that even in small headwater catchments, spatio‐temporal variability can be significant. Therefore, it is important to characterize this variability and identify the best sampling strategy to reduce the uncertainty in our understanding of catchment hydrological processes.  相似文献   

7.
A study was undertaken during the winter of 1990–1991 in a small (3.7 ha) Canadian Shield catchment to examine the hydrological and hydrochemical response during rain-on-snow events. The results are presented of two large (37.9 and 34.6 mm) rain-on-snow events occurring in early and late March 1991. Peak and total runoff and the groundwater response from the two events are significantly different. Hydrological data indicate that these differences can be attributed to a combination of meteorological (temperature) and physical conditions (antecedent snowpack ripeness, soil moisture and groundwater levels). An immature snowpack (low temperature and density) combined with low antecedent soil moisture conditions significantly reduced the magnitude of the net hydrological input and runoff from the catchment during the early March event, whereas a more mature snowpack and high antecedent soil moisture conditions led to a large runoff event during late March. During both rain-on-snow events a significant portion of the pre-event snowpack chemical load was lost. Based on the maximum snowpack chemical load measured before the events, the two large rain-on-snow events and a brief mid-March warm period during which there were two much smaller rain-on-snow events removed 78% of the hydrogen ion and 63% of the sulphate and nitrate load from the snowpack, while only reducing snowpack water equivalence by 7%. A two-component (rain and snowmelt) isotopic (δ18O SMOW %0) separation of snowmelt lysimeter water during the two events indicated that snowmelt was an important (50 and 65%, respectively) water source available for infiltration and runoff at the snow-soil interface. Considering the high hydrogen ion loadings to the catchment during these two events (3.3 and 3.0 mequiv.m?2, respectively) streamflow pH was not significantly reduced due to an increase in the discharge of well-buffered groundwater. A two-component isotopic hydrograph separation of peak stream discharge during the 2–3 March event indicated that 75% of the total flow was groundwater. In mid-latitude acid-sensitive catchments, winter rain-on-snow events are an important hydrological occurrence due to their ability to elute much of the chemical load (H+, SO4, NO3) from the snowpack before the onset of spring melt when the maximum annual hydrological input typically occurs.  相似文献   

8.
ABSTRACT

Lateral subsurface flow within a 10% forested slope in a part of the humid tropics of southwestern Nigeria during 1982 is described with particular regard to the cumulative amount, timing and frequency of seepage, the relative contributions of the various soil horizons to the total seepage, and factors affecting these seepage parameters. Seepage was collected at 30, 500, 900, 1200 and 1800 mm depths by means of troughs connected to plastic collectors, and measurements were made between March and November 1982. The total amount of seepage during the study year was 67.7 mm and this was obtained from a total of 29 seepage days. This is considered low given the number of rainy days (106), the total rainfall for this period (924 mm) and results from other environments. The impeding layer in the soil is within the 900–1200 mm horizon, but the largest relative contribution to total seepage was not from the horizon immediately above this layer (i.e. 500–900 mm), but from the surface 0–30 mm horizon. Soil moisture status and hydraulic conductivity as influenced by the rainfall pattern were found to be very important in controlling the seepage patterns.  相似文献   

9.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
《水文科学杂志》2013,58(4):739-753
Abstract

The hydrodynamic behaviour of a sloped phreatic aquifer in the Tigray Highlands in northern Ethiopia is described. The aquifer is situated in the soils of a plateau on top of a basalt sequence and lies on steep slopes; the latter lead to hydraulic gradients that can cause high discharge fluxes. Distinct wet and dry seasons characterize the climate of the Tigray Highlands and recharge is absent during the dry season. Because of the fertile vertisols that have developed, the plateau is heavily cultivated and thus has great local economic, and hence social, importance. Water for land irrigation is almost exclusively delivered by rainfall, which is largely restricted to the period June—September. During the dry season, the water table drops dramatically and the aquifer drains nearly completely, under the strong gravity-driven, sustained discharges. This study strives to give insights into recharge and discharge mechanisms of the aquifer, in order to improve the effectiveness of the implemented water conservation measures.  相似文献   

11.
Jens Flster 《水文研究》2001,15(2):201-217
The near‐stream zone has received increasing attention owing to its influence on stream water chemistry in general and acidity in particular. Possible processes in this zone include cation exchange, leaching of organic matter and redox reactions of sulphur compounds. In this study the influences of processes in the near‐stream zone on the acidity in runoff from a small, acidified catchment in central southern Sweden were investigated. The study included sampling of groundwater, soil water and stream water along with hydrological measurements. An input–output budget for the catchment was established based on data from the International Co‐operative Programme on Integrated Monitoring at this site. The catchment was heavily acidified by deposition of anthropogenic sulphur, with pH in stream water between 4·4 and 4·6. There was also no relationship between stream flow and pH, which is indicative of chronic acidification. Indications of microbial reduction of sulphate were found in some places near the stream, but the near‐stream zone did not have a general impact on the sulphate concentration in discharging groundwater. The near‐stream zone was a source of dissolved organic carbon (DOC) in the stream, which had a median DOC of 6·8 mg L1. The influence on stream acidity from organic anions was overshadowed by the effect of sulphate, however, except during a spring flow episode, when additional organic matter was flushed out and the sulphate‐rich ground water was mixed with more diluted event water. Ion exchange was not an important process in the near‐stream zone of the Kindla catchment. Different functions of the near‐stream zone relating to discharge acidity are reported in the literature. In this study there was even a variation within the site. There is therefore a need for more case studies to provide a more detailed understanding of the net effects that the near‐stream zone can have on stream chemistry under different circumstances. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Distributed erosion models, which simulate the physical processes of water flow and soil erosion, are effective for predicting soil erosion in forested catchments. Although subsurface flow through multiple pathways is dominant for runoff generation in forested headwater catchments, the process-based erosion model, Geo-spatial interface for Water Erosion Prediction Project(Geo WEPP), does not have an adequate subsurface component for the simulation of hillslope water flow. In the current study, t...  相似文献   

13.
Based on measured stream nitrogen concentrations at outlets of 12 small sub‐areas (1·3–54·7 km2) in a largely forested catchment during the base flow period, we investigated the influences of discharges and different catchment characteristics on stream nitrogen concentration. Our field surveys were carried out during the 11‐month's period from April 2001 to February 2002 and the correlations between nitrogen concentrations and catchment characteristics were studied. The results showed that the vegetation cover was strongly correlated to total nitrogen (TN) and nitrate + nitrite ? nitrogen (NOx‐N) concentrations. That is, the TN and NOx‐N concentrations had positive correlations with mean normalized difference vegetation cover index (NDVI) of each sub‐area during dormant seasons (mean NDVI < 0 · 70) and had negative correlations during the growing season (mean NDVI ≥ 0 . 70). The significance of catchment characteristics to TN and NOx‐N concentrations was ranked as vegetation cover > soil > topography > land use, and the best models can account for 55–64% of the variance of TN and NOx‐N concentrations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
A non-linear perturbation model for river flow forecasting is developed, based on consideration of catchment wetness using an antecedent precipitation index (API). Catchment seasonality, of the form accounted for in the linear perturbation model (the LPM), and non-linear behaviour both in the runoff generation mechanism and in the flow routing processes are represented by a constrained non-linear model, the NLPM-API. A total of ten catchments, across a range of climatic conditions and catchment area magnitudes, located in China and in other countries, were selected for testing daily rainfall-runoff forecasting with this model. It was found that the NLPM-API model was significantly more efficient than the original linear perturbation model (the LPM). However, restriction of explicit non-linearity to the runoff generation process, in the simpler LMP-API form of the model, did not produce a significantly lower value of the efficiency in flood forecasting, in terms of the model efficiency index R2.  相似文献   

15.
In this study, summer rainfall contributions to streamflow were quantified in the sub‐arctic, 30% glacierized Tarfala (21.7 km2) catchment in northern Sweden for two non‐consecutive summer sampling seasons (2004 and 2011). We used two‐component hydrograph separation along with isotope ratios (δ18O and δD) of rainwater and daily streamwater samplings to estimate relative fraction and uncertainties (because of laboratory instrumentation, temporal variability and spatial gradients) of source water contributions. We hypothesized that the glacier influence on how rainfall becomes runoff is temporally variable and largely dependent on a combination of the timing of decreasing snow cover on glaciers and the relative moisture storage condition within the catchment. The results indicate that the majority of storm runoff was dominated by pre‐event water. However, the average event water contribution during storm events differed slightly between both years with 11% reached in 2004 and 22% in 2011. Event water contributions to runoff generally increased over 2011 the sampling season in both the main stream of Tarfala catchment and in the two pro‐glacial streams that drain Storglaciären (the largest glacier in Tarfala catchment covering 2.9 km2). We credit both the inter‐annual and intra‐annual differences in event water contributions to large rainfall events late in the summer melt season, low glacier snow cover and elevated soil moisture due to large antecedent precipitation. Together amplification of these two mechanisms under a warming climate might influence the timing and magnitude of floods, the sediment budget and nutrient cycling in glacierized catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A progressive perceptual understanding approach was used to identify a model structure able to represent the non‐linear behaviour of the hydrological cycle in a small intermittent Mediterranean stream. The initial lumped model structure consisting of a series of four connected water tanks (LU3) progressed to a model with five tanks (LU4), and finally to a semidistributed model structure (SD4) in which spatial variability of the evapotranspiration according to the vegetation cover and to the local aspect was considered. In the final model structure, which gave the best fit (Nash–Sutcliffe efficiency index = 0·78), an additional tank representing the riparian zone was included (SD4‐R). Results showed that the abrupt changes of the riparian water table during summer and the formation of a perched water table during the transition from dry to wet conditions were the main mechanisms leading to the non‐linear hydrological behaviour. The transpiration process from the saturated zone and the spatial variability of evapotranspiration resulted in key factors successfully representing the annual water balance. The spatial and temporal validations carried out for each of the four model structures considered in this study supported the hypothesis adopted during the calibration process. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The quickflow responses of six subcatchment areas in a small hill country catchment in the Craigieburn Range, South Island, New Zealand, were compared for a range of storm sizes, rainfall intensities and antecedent wetness conditions. Topography and soil characteristics suggested that all subcatchments would receive subsurface stormflow input, but that some would receive larger saturation overland flow inputs than others. Quickflow yields and response ratios were positively correlated with storm size and antecedent wetness conditions in the subcatchment most suited to producing saturation overland flow. In subcatchments more likely to be dominated by subsurface flow, quickflow yields and response ratios were positively correlated with storm size, but were either not correlated, or negatively correlated, with antecedent wetness. Quickflow responses were either not significantly or negatively correlated with rainfall intensity variables. Quickflow from the subcatchment most suited to produce saturation overland flow providing an increasing proportion of total catchment quickflow in larger storms and as antecedent conditions became wetter. Subcatchment responses varied greatly in space and time and there was less pattern to the variation than had been expected. Where topographic and pedologic conditions permit substantial responses to storm rainfall by both saturation overland flow and subsurface stormflow, simple topographic and soil indicators may not be useful guides to the relative importance of runoff mechanisms, or to the identification of runoff-source areas.  相似文献   

18.
Runoff from a small glacierized catchment in the Canadian high Arctic was monitored throughout one melt season. The stream discharge record is one aspect of a larger project involving glacier mass balance, superimposed ice formation and local climate on a glacier in the Sawtooth Range, Ellesmere Island, Northwest Territories, Canada. To better understand the main factors influencing the production of runoff on the glacier during the period of main summer melt, regression analyses were performed relating daily air temperature, shortwave incoming and net radiation, absorptivity and wind speed to daily glacier discharge. Air temperature at the glacier meteorological station on rain-free days is the element with the greatest correlation with runoff (r2 = 0.57; n = 34). A multiple regression of discharge with air temperature, shortwave incoming radiation, net radiation hours and wind speed achieved the best fit (r2 = 0.84; n = 34). Rain events (> 10mmd?1) can dominate daily discharge when they occur during the period of ice melt, creating more runoff per unit area than can be produced by melt alone, and significantly reduce the accuracy of runoff predictions.  相似文献   

19.
This study documented the spatial and temporal variability of outflow from a forested hillslope segment during snowmelt at a small mountain catchment in south coastal British Columbia, Canada. A pit 5 m wide was established just upslope from the stream channel. Outflow from the organic horizon was intercepted and measured by a single trough, and outflow from the mineral horizons was measured separately for three adjacent sections. Throughflow exhibited non‐steady‐state behaviour involving shifting allocations of flow amongst different sections of the outflow pit, as well as threshold effects and hysteresis in the relationship between pit outflow and water table elevation. Most of the pit outflow originated from the mineral horizons, indicating that throughflow was the dominant pathway by which water was delivered to the stream channel. Direct precipitation and snowmelt onto near‐stream saturated areas can account for less than 20% of the total outflow from the hillslope segment. Throughflow from the mineral sections consistently peaked either at the same time as or earlier than stream flow from the 150‐ha catchment during diurnal snowmelt cycles, indicating that throughflow appears to respond rapidly enough to contribute to snowmelt‐induced peak stream flow. Pit outflow cannot be extrapolated reliably to the catchment scale on the basis of simple length‐ or area‐based ratios. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
There has been a great deal of research interest regarding changes in flow path/runoff source with increases in catchment area. However, there have been very few quantitative studies taking subscale variability and convergence of flow path/runoff source into account, especially in relation to headwater catchments. This study was performed to elucidate how the contributions and discharge rates of subsurface water (water in the soil layer) and groundwater (water in fractured bedrock) aggregate and change with catchment area increase, and to elucidate whether the spatial variability of the discharge rate of groundwater determines the spatial variability of stream discharge or groundwater contribution. The study area was a 5‐km2 forested headwater catchment in Japan. We measured stream discharge at 113 points and water chemistry at 159 points under base flow conditions. End‐member mixing analysis was used to separate stream water into subsurface water and groundwater. The contributions of both subsurface water and groundwater had large variability below 1 km2. The contribution of subsurface water decreased markedly, while that of groundwater increased markedly, with increases in catchment area. The specific discharge of subsurface water showed a large degree of variability and decreased with catchment area below 0.1 km2, becoming almost constant above 0.1 km2. The specific discharge of groundwater showed large variability below 1 km2 and increased with catchment area. These results indicated that the variabilities of stream discharge and groundwater contribution corresponded well with the variability of the discharge rate of groundwater. However, below 0.1 km2, it was necessary to consider variations in the discharge rates of both subsurface water and groundwater. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号