首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Blanco Fracture Zone, which connects the Juan de Fuca and Gorda ridges, is structurally complex and contains numerous pull-apart basins and accretion centres. It terminates at its western end in two troughs where the Juan de Fuca Ridge progressively dies out. This unusual structure is studied in detail using bathymetric analysis which allows the fault pattern to be determined. The method developed to extract structural information involves numerical treatment of the gridded bathymetry derived from image processing methods. The detailed mapping of the fault pattern shows that the active zone corresponds to a N100° E strike-slip zone which connects the southern end of the Juan de Fuca Ridge with the northeastern edge of the Blanco Trough, via the northwestern wall of the Parks Plateau. The present day direction of the active zone comes after a previous one trending at N115° E, apparently within the same area. The Parks Plateau results from a jump of the plate boundary from the southern to northern limits of the plateau. Deformation over the past 2 Ma results from a northeastward displacement of the junction between the transform zone and the ridge.  相似文献   

2.
We quantified the systematic variations in global transform fault morphology, revealing a first-order dependence on the spreading rate.(1) The average age offset of both the full transform and transform sub-segments decrease with increasing spreading rate.(2) The average depth of both the transform valley and adjacent ridges are smaller in the fast compared to the slow systems, reflecting possibly density anomalies associated with warmer mantle at the fast systems and rifting at the slow ridges. However, the average depth difference between the transform valley and adjacent ridges is relatively constant from the fast to slow systems.(3) The nodal basin at a ridge-transform intersection is deeper and dominant at the ultraslow and slow systems, possibly reflecting a lower magma supply and stronger viscous resistance to mantle upwelling near a colder transform wall. In contrast, the nodal high, is most prominent in the fast, intermediate, and hotspot-influenced systems, where robust axial volcanic ridges extend toward the ridge-transform intersection.(4) Statistically, the average transform valley is wider at a transform system of larger age offset, reflecting thicker deforming plates flanking the transform fault.(5) The maximum magnitude of the transform earthquakes increases with age offset owing to an increase in the seismogenic area. Individual transform faults also exhibit significant anomalies owing to the complex local tectonic and magmatic processes.  相似文献   

3.
The right-lateral Blanco Transform Fault Zone (BTFZ) offsets the Gorda and the Juan de Fuca Ridges along a 350 km long complex zone of ridges and right-stepping depressions. The overall geometry of the BTFZ is similar to several other oceanic transform fault zones located along the East Pacific Rise (e.g., Siquieros) and to divergent wrench faults on continents; i.e., long strike-slip master faults offset by extensional basins. These depressions have formed over the past 5 Ma as the result of continual reorientation of the BTFZ in response to changes in plate motion. The central depression (Cascadia Depression) is flanked by symmetrically distributed, inward-facing back-tilted fault blocks. It is probably a short seafloor spreading center that has been operating since about 5 Ma, when a southward propagating rift failed to kill the last remnant of a ridge segment. The Gorda Depression on the eastern end of the BTFZ may have initially formed as the result of a similar occurrence involving a northward propagating rift on the Gorda ridge system. Several of the smaller basins (East Blanco, Surveyor and Gorda) morphologically appear to be oceanic analogues of continental pull-apart basins. This would imply diffuse extension rather than the discrete neovolcanic zone associated with a typical seafloor spreading center. The basins along the western half of the BTFZ have probably formed within the last few hundred thousands years, possibly as the result of a minor change in the Juan de Fuca/Pacific relative motion.  相似文献   

4.
为了揭示高邮凹陷南断阶许庄—竹墩地区复杂断裂系统的成因、演化与油气成藏的关系,通过对不整合面地层剥蚀量计算、构造演化剖面分析等方法,系统地总结了许庄—竹墩地区断层的发育演化规律。吴堡运动和三垛运动时期是断裂活动最强烈的时期,许庄—竹墩地区的地层受到较强的剥蚀作用。本区主要断层的发育顺序依次为真①断层、纪③断层、真②’断层和真③断层,同一断层在不同的地质时期和平面上的不同位置,发育强度有明显的差异性。断层的活动一方面形成了一系列的断块圈闭,另一方面是油气垂向运移的主要通道,因此在本区形成了一系列的断块圈闭油藏。  相似文献   

5.
Previous GPS-based geodetic studies and onland paleoseismologic studies in Trinidad have shown that the 50-km-long, linear, onland segment of the Central Range fault zone (CRFZ) accommodates at least 60% of the total rate of right-lateral displacement (∼20 mm/yr) between the Caribbean and South American plates. 2D and 3D seismic reflection data from a 60-km-long and 30-km-wide swath of the eastern shelf of Trinidad (block 2AB) were used to map the eastern offshore extension of this potentially seismogenic and hazardous fault system and to document its deeper structure and tectonic controls on middle Miocene to recent clastic stratigraphy. Two unconformity surfaces and seafloor were mapped using 3D seismic data to generate isochron maps and to illustrate the close control of the CRFZ and associated secondary faults on small, clastic basins formed along its anastomosing strands and the east-west-striking North Darien Ridge fault zone (NDRFZ) that exhibits a down-to-the-north normal throw. Mapped surfaces include: 1) the middle Miocene angular unconformity, a prominent, regional unconformity surface separating underlying thrust-deformed rocks from a much less deformed overlying section; this regional unconformity is well studied from onland outcrops in Trinidad and in other offshore areas around Trinidad; 2) a Late Neogene angular unconformity developed locally within block 2AB that is not recognized in Trinidad; and 3) the seafloor of the eastern Trinidad shelf which exhibits linear scarps for both the CRFZ and the east-west-striking North Darien Ridge fault zone. Clastic sedimentary fill patterns identified on these isochron maps indicate a combined effect of strike-slip and reverse faulting (i.e., tectonic transpression) produced by active right-lateral shear on the CRFZ, which is consistent with the obliquity of the strike of the fault to the interplate slip vector known from GPS studies in onland Trinidad. The NDRFZ and a sub-parallel and linear family of east-west-striking faults with normal and possibly transtensional motions also contributed to the creation of accommodation space within localized, post-middle Miocene clastic depocenters south of the CRFZ.  相似文献   

6.
主要讨论了南沙海槽断裂带的活动性和构造演化过程,并对海槽及附近海域的地质稳定性因素进行了分析。发现南沙海槽有活动断裂、火山岩侵入、海底滑塌和地震等不稳定因素。南沙海槽形成演化过程较为复杂,经历过多期逆冲推覆变形和褶皱隆升等构造活动,其中逆冲和隆升等活动现今可能仍在进行,属于次不稳定区域。另外,海槽西南端有滑塌现象和海底阶梯存在,工程地质条件较差。所以,海槽及邻近海区的工程建设需要特别注意这些不稳定因素,应尽量避开不稳定地区或采取工程加固措施等。  相似文献   

7.
Morphologic studies of an oceanic transform, the Blanco Transform Fault Zone (BTFZ), have shown it to consist of a series of extensional basins that offset the major strike-slip faults. The largest of the extensional basins, the Cascadia Depression, effectively divides the transform into a northwest segment, composed of several relatively short strike-slip faults, and a southeast segment dominated by fewer, longer faults. The regional seismicity distribution (m b 4.0) and frequency-magnitude relationships (b-values) of the BTFZ show that the largest magnitude events are located on the southeast segment. Furthermore, estimates of the cumulative seismic moment release and seismic moment release rate along the southeast segment are significantly greater than that of the northwest segment. These observations suggest that slip along the southeast segment is accommodated by a greater number of large magnitude earthquakes. Comparison of the seismic moment rate, derived from empirical estimates, with the seismic moment rate determined from plate motion constraints suggests a difference in the seismic coupling strength between the segments. This difference in coupling may partially explain the disparity in earthquake size distribution. However, the results appear to confirm the relation between earthquake size and fault length, observed along continental strike-slip faults, for this oceanic transform.  相似文献   

8.
The Atlantis Fracture Zone (30° N) is one of the smallest transform faults along the Mid-Atlantic Ridge with a spatial offset of 70 km and an age offset of ~ 6 Ma. The morphology of the Atlantis Fracture Zone is typical of that of slow-slipping transforms. The transform valley is 15–20 km wide and 2–4 km deep. The locus of strike-slip deformation is confined to a narrow band a few kilometers wide. Terrain created at the outside corners of the transform is characterized by ridges which curve toward the ridge-transform intersections and depressions which resemble nodal basins. Hooked ridges are not observed on the transform side of the ridge-transform intersections. Results of the three-dimensional inversion of the surface magnetic field over our survey area suggest that accretionary processes are sufficiently organized within 3–4 km of the transform fault to produce lineated magnetic anomalies. The magnetization solution further documents a 15-km, westward relocation of the axis of accretion immediately south of the transform about 0.25 Ma ago. The Atlantis Transform is associated with a band of high mantle Bouguer anomalies, suggesting the presence of high densities in the crust and/or mantle along the transform, or anomalously thin crust beneath the transform. Assuming that all the mantle Bouguer anomalies are due to crustal thickness variations, we calculate that the crust may be 2–3 km thinner than a reference 6-km thickness beneath the transform valley, and 2–3 km thicker beneath the mid-points of the spreading segments which bound the transform. Our results indicate that crustal thinning is not uniform along the strike of the fracture zone. Based on studies of the state of compensation of the transform, we conclude that the depth anomaly associated with the fracture zone valley is not compensated everywhere by thin crust. Instead, the regional relationship between bathymetry and gravity is best explained by compensation with an elastic plate with an effective thickness of ~ 4 km or greater. However, the remaining isostatic anomalies indicate that there are large variations away from this simple model which are likely due to variations in crustal thickness and density near the transform.  相似文献   

9.
Recent multibeam bathymetric and geophysical data recorded in the West Philippine Basin, east of Taiwan, reveal new information on the structure and the tectonic origin of the oceanic Gagua Ridge. This linear, 300 km-long, 4 km-high, north-south-trending ridge, is being subducted beneath the Ryukyu Trench along 123° E. This basement high separates two basins of different ages. Its summit is marked by two crests and an axial valley. A map of the basement top shows the region of the ridge to be composed of a set of linear and parallel ridges and troughs. All these elements suggest that the development of the ridge, and its surroundings, has been influenced by strike-slip deformation. Nevertheless, the height of the ridge indicates also an important compressive component in the deformation. Gravity models across the ridge show local compensation with a crustal root, indicating that an overthickening of the crust occurred when it was young and thus more easily deformable. This idea is strengthened with flexural modeling of the lithosphere that bends under the load of the ridge, indeed it indicates that the high probably formed when the underlying lithosphere was young. We interpret the Gagua Ridge as a fracture zone transverse ridge uplifted during a transpressive episode along a north-south -trending fracture zone in the middle Eocene time, if we accept Hilde and Lee's (1984) model of magnetic lineations. This tectonic event could be contemporaneous with a change of the pole of rotation of the West Philippine Basin which occurred about 43/45 Ma ago.  相似文献   

10.
新构造运动在渤海海域表现强烈,形成了渤中凹陷特有的走滑构造体系和浅层油气藏。前人研究集中在走滑运动论证和走滑转换带类型探讨上,缺乏对走滑构造带控藏作用的精细研究。利用地震资料,结合油田实例,探讨了渤中8-4油田走滑转换带特征和对油气侧封的控制作用。研究认为,渤中8-4油田主断裂为“S”型走滑转换带,发育释压带和增压带两类转换带。释压带地层陡,圈闭不发育,是油气由深向浅的充注段;增压带地层缓,背形特征清晰,低幅断鼻、断块圈闭集中发育,为油气汇聚区。建立了走滑断裂封闭指数以定量表征走滑转换带的侧封能力,通过近20个油田的统计分析,认为可以把走滑断裂封闭指数4作为走滑断层侧封的临界值。该成果为富砂背景下的浅层油气勘探工作提供了一种新的方法和思路。  相似文献   

11.
南海西缘断裂带的地球物理特征及其构造地质意义   总被引:1,自引:0,他引:1  
南海西缘断裂带以8°N为界分为南北两段。主断裂是一条形成于中生代的基底断裂,在新生代为持续活动的断裂带,并控制了沿断裂带及其邻近分布的新生代盆地的发育。断裂带内无磁性的高密度岩体属于印支期或燕山第1,4,5期之中的某一期花岗岩侵入体,它很可能是燕山晚期的产物。该断裂带的基底断裂在万安盆地的延伸段位于盆地中部;万安盆地东缘断裂带是新生代以来受盆地中部基底断裂右行走滑的扭张应力作用,在盆地东部边缘引发断陷而形成的。  相似文献   

12.
林长松  唐勇  谭勇华 《海洋学报》2009,31(2):97-103
南海西缘断裂带以8°N为界分为南北两段。主断裂是一条形成于中生代的基底断裂,在新生代为持续活动的断裂带,并控制了沿断裂带及其邻近分布的新生代盆地的发育。断裂带内无磁性的高密度岩体属于印支期或燕山第1,4,5期之中的某一期花岗岩侵入体,它很可能是燕山晚期的产物。该断裂带的基底断裂在万安盆地的延伸段位于盆地中部;万安盆地东缘断裂带是新生代以来受盆地中部基底断裂右行走滑的扭张应力作用,在盆地东部边缘引发断陷而形成的。  相似文献   

13.
1IntroductionThe South China Sea(SCS)is one of the lar-gest marginal seas of the West Pacific.A complexstrike-slip faultsystemdeveloped in the westof SCS,which is trending NW to nearly SN.This fault sys-tem is the strike-slip boundary of Indo-China blockm…  相似文献   

14.
南海西部断裂系研究及其物理模拟实验证据   总被引:3,自引:1,他引:3  
南海西部断裂系是由四条典型的走滑断裂所组成的断裂系统,是南海扩张的西部边界.此断裂系主要是在白垩纪以来的印-藏碰撞、新生代印支挤出和南海扩张的共同作用下形成的.通过模拟实验,探讨此断裂系的成因、演化过程,认识到此断裂系经历了五期构造运动.  相似文献   

15.
在复杂断块地区,地震成像受断层的影响,断层下盘同相轴出现“上拉”、“下拉”或者同相轴错断的现象,极大地影响了断层圈闭构造高点的确定以及圈闭幅度的准确判断。开展针对复杂断层的高精度速度建模和高精度成像技术被认为是解决断层阴影区成像的主要处理技术解决方案。立足于地震采集信号自身的属性信息,充分挖掘地震信号的潜力,提出广角反射的折射线性去噪技术、中低频有效信号提取技术和优势信号精细速度建模技术,在西湖TT区目标评价中取得了良好的效果,明显减低了断层阴影对目标构造形态的影响,提高了构造圈闭定位的准确性。应用结果表明:通过准确的PSDM速度模型结合断层阴影区优势信号的提取,获得更聚焦的反射能量,断层阴影区弱振幅区得到消除,有效改善了断裂阴影区的成像效果。  相似文献   

16.
The seafloor of the Alboran Sea in the western Mediterranean is disrupted by deformations resulting from convergence between the African and Eurasian plates. Based on a compilation of existing and new multibeam bathymetry data and high-resolution seismic profiles, our main objective was to characterize the most recent structures in the central sector, which depicts an abrupt morphology and was chosen to investigate how active tectonic processes are shaping the seafloor. The Alboran Ridge is the most prominent feature in the Alboran Sea (>130 km in length), and a key element in the Gibraltar Arc System. Recent uplift and deformation in this ridge have been caused by sub-vertical, strike-slip and reverse faults with associated folding in the most recent sediments, their trend shifting progressively from SW–NE to WNW–ESE towards the Yusuf Lineament. Present-day transtensive deformation induces faulting and subsidence in the Yusuf pull-apart basin. The Alboran Ridge and Yusuf fault zones are connected, and both constitute a wide zone of deformation reaching tens of kilometres in width and showing a complex geometry, including different active fault segments and in-relay folds. These findings demonstrate that Recent deformation is more heterogeneously distributed than commonly considered. A narrow SSW–NNE zone with folding and reverse faulting cuts across the western end of the Alboran Ridge and concentrates most of the upper crustal seismicity in the region. This zone of deformation defines a seismogenic, left-lateral fault zone connected to the south with the Al Hoceima seismic swarm, and representing a potential seismic hazard. Newly detected buried and active submarine slides along the Alboran Ridge and the Yusuf Lineament are clear signs of submarine slope instability in this seismically active region.  相似文献   

17.
18.
Faults and their associated damage zones in sedimentary basins can be sealing, impeding fluid flow and creating permeability barriers, or open, creating fluid pathways. This impacts the reservoir potential of rocks in fault damage zones. Stylolitization and fracturing severely impacted permeability through compartmentalization and cementation of Apium-1, an exploration hole drilled in the northern Perth Basin, Western Australia. Apium-1 is located 1 km into the hanging wall block damage zone of a major NNW-trending normal fault. The drill core consists of fine- to medium-grained quartz arenite overlain by a coarse-grained lag and capped by impermeable shale. It was quantitatively characterized by sedimentary and structural logging, and microstructural and porosity-permeability analysis. Fractures and stylolites in the damage zone of the major fault are shown to have been sealed. Extensional cracks have been sealed by quartz precipitation; shear fractures that locally preserve brecciation are always quartz and siderite cemented; stylolites are common and contain halos of quartz cementation. In each case, porosity was reduced to approximately 1%, with concomitant reduction of permeability to <<0.01 mD. These structures are observed to be interconnected in the core and are likely to form a larger-scale 3D network of steeply-dipping fractures and shallowly-dipping stylolites. The bulk permeability of the damage zone would reflect the permeability of the fractures and stylolites, compartmentalizing the Mesozoic rocks in the northern Perth Basin into elongate NW-SE trending blocks if the magnitude of stress does not exceed the cemented rock strength.  相似文献   

19.
Bowers Swell is a newly discovered bathymetric feature which is up to 90 m high, between 12 and 20 km wide, and which extends arcuately about 400 km along the northern and eastern sides of Bowers Ridge. The swell was first revealed on GLORIA sonographs and subsequently mapped on seismic reflection and 3.5 kHz bathymetric profiles. These geophysical data show that the swell caps an arcuate anticlinal ridge, which is composed of deformed strata in an ancient trench on the northern and eastern sides of Bowers Ridge. The trench fill beneath the swell is actively deforming, as shown by faulting of the sea floor and by thinning of the strata across the crest of the swell. Thinning and faulting of the trench strata preclude an origin for the swell by simple sediment draping over an older basement high. We considered several models for the origin of Bowers Swell, including folding and uplift of the underlying trench sediment during the interaction between the Pacific plate beneath the Aleutian Ridge and a remnant oceanic slab beneath Bowers Ridge. However, such plate motions should generate extensive seismicity beneath Bowers Ridge, which is aseismic, and refraction data do not show any remnant slab beneath Bowers Ridge. Another origin considered for Bowers Swell invokes sediment deformation resulting from differential loading and diapirism in the trench fill. However, diapirism is not evident on seismic reflection profiles across the swell. We favour a model in which sediment deformation and swell formation resulted from a few tens of kilometers of low seismicity motion by intraplate crustal blocks beneath the Aleutian Basin. This motion may result from the translation of blocks in western Alaska to the south-west, forcing the movement of the Bering Sea margin west of Alaska into the abyssal Aleutian Basin.  相似文献   

20.
无震脊或海山链俯冲对超俯冲带处的地质效应   总被引:2,自引:1,他引:2  
鄢全树  石学法 《海洋学报》2014,36(5):107-123
全球海底分布着众多的无震脊或海山链,且在太平洋、印度洋及大西洋均存在靠近俯冲带的海岭。除小安德列斯弧外的巴拉克达脊和蒂勃朗脊起源自转换断层外,一般认为它们由与板块构造动力学迥异的地幔柱动力学所形成的。在板块汇聚边缘处,与扩张脊处所形成的正常洋壳一起,无震脊或海山链俯冲于陆缘弧或洋内弧之下,其对弧及弧后地区的地质效应(构造、地貌、地震以及岩浆作用等)有别于正常洋壳俯冲。无震脊或海山链的俯冲通常造成俯冲带地区的上驮板块的局部异常抬升、俯冲剥蚀作用效应的加强、海沟的向陆迁移以及地震强度的增加。同时,无震脊或海山链俯冲时,其携带的具富集地球化学特征的物质不仅影响着地幔地球化学,也对弧及弧后火山熔岩化学产生明显影响,并对超俯冲地区的热液矿床的形成产生重要影响。最后,本文指出了我国有关无震脊或海山链俯冲的可能的研究方向包括黄岩海山链俯冲对吕宋岛弧的可能影响、印度洋无震脊俯冲对青藏高原局部地区的影响,有我国学者参与的IODP344航次的研究对象——科科斯脊俯冲对哥斯达黎加地震成因的效应以及位于西太平洋地区靠近俯冲带的一些无震脊等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号