首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

2.
The Dabie Mountain is the collisional orogenic belt between the North China Block and the Yangtze Block. As the eastern segment of the central-China orogenic belt, its tectonic framework is corresponding to the Qinling orogenic belt as a whole[1]. The NHB in northern part of Dabie Orogen is regarded as the joint belt between the Yangtze Block and the North China Block, and roughly corresponds to the north Qinling belt of the Qinling orogenic belt, which separated the Tongbai-Dabie hig…  相似文献   

3.
The SHRIMP U-Pb ages of detrital zircon from the oldest Mesozoic strata, the Fanghushan Fomation, in the Hefei Basin range from 200 Ma to ca. 2500 Ma, which indicates that the Dabie Orogen as the early Jurassic sedimentary provenance was complex. The composition of the Dabie Orogen includes: the Triassic high pressure-ultrahigh pressure metamorphic rocks, of which the detrital zircon ages are from 234 Ma to 200 Ma; the rocks possibly related to the Qinling and Erlangping Groups representing the southern margin of the Sino-Korean craton in the Qinling and Dabie area, of which the detrital zircon has an age of 481-378 Ma; the Neo-proterozoic rocks originated from the Yangtze croton, of which the detrital zircon ages are 799-721 Ma old; and the rocks with the detrital zircon ages of ca. 2000 Ma and ca. 2500 Ma, which could be the old basement of the Yangtze craton.  相似文献   

4.
~~Metamorphic zircon from Xindian eclogite,Dabie Terrain: U-Pb age and oxygen isotope composition@E. Deloule$CRPG-CNRS Nancy,54501,France1. Vavra, G, Gebauer. D., Schmid. R. et al., Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Tri-assic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study, Contrib. Mineral Petrol., 1996, 122:337-358 2. Vavra, G, Schmid, R., Gebauer, D., Internal morphology, ha…  相似文献   

5.
The basic dykes are widely distributed in the Tonghua area, among which the Chibaisong No.1 gabbro has attracted many geologists’ attention to the copper-nickel sulfide deposit within it. However, its formation time has been controversial all the time. Most geologists considered that it could be formed at the late Archean or the Paleoproterozoic[1]1), while some other geologists contended that it might be formed in early Yanshannian of Mesozoic2). The forming time of the basic dyke swarm i…  相似文献   

6.
Laser Raman spectroscopy and cathodoluminescence (CL) image reveal that zircons separated from paragneisses in the southwestern Sulu terrane (eastern China) preserve multi-stage mineral assemblages in different zircon domains. In the same paragneiss zircon sample, some zircon grains retain inherited (detrital) cores with abundant low-pressure mineral inclusions of Qtz + Phe + Ap + impurities and Qtz + Phe + impurities. The ultrahigh-pressure (UHP) metamorphic overgrowths mantles of these zircons preserve Coe, Coe + Phe and other UHP mineral inclusions, indicating that these inherited (detrital) zircons from protoliths experienced metamorphic recrystallization during the Sulu UHP metamorphic event. However, other zircon grains preserve UHP mineral inclusions of Coe, Coe + Ap and Coe + Phe in the cores and mantles, whereas the outmost rims contain quartz (Qtz) and other low-pressure mineral inclusions. These phenomena prove that the second group zircons were crystallized at UHP metamorphic stage and overpr  相似文献   

7.
The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the latest stage of the Ordovician System) is defined at a point 0.39m below the base of the Kuanyinchiao Bed in the Wangjiawan North Section, which is the upper most "golden spike" of the Ordovician. However, this "golden spike" is lack of reliable geochronology data. This article gives a sensitive high resolution ion microprobe (SHRIMPII) zircon U-Pb dating for a K-bentonite sample from the Kuany-inchiao Bed in the Wangjiawan North Section. The age of the K-bentonite sample is 443.2±1.6 Ma, that is to say, the isotopic age of the uppermost of Hirnantian Stage, the point of Ordovician-Silurian boundary, should be near to, but slightly younger than 443.2±1.6 Ma. This age is identical to the Ordovi-cian-Silurian boundary age 443.7±1.5 Ma as declared by International Commission on Stratigraphy (ICS). So, this research provides some good geochronlogical data for the Hirnantian Stage and the Ordovician-Silurian boundary as well as the global correlation.  相似文献   

8.
小墨山岩体侵位于中元古代冷家溪群中,由两期侵人体组成,早期为粗中粒-中粒斑状黑云母二长花岗岩;末期为细粒黑(二)云母二长花岗岩。通过锆石SHRIMPU—Pb法测得岩体侵位年龄为122.5±2.1Ma(20),MSWD=1.9,成岩时代为早白垩世。主元素中,SiO2变化于67.20%~75.16%,K20含量高,且K2O〉Na2O,K2O/Na2O为1.16~1.72;ASI值变化于0.96~1.10之间,平均1.02,属准铝质-微过铝质、高钾钙碱性系列。岩石明显富集大离子亲石元素,亏损高场强元素,Rb/Sr=0.27~15.13;Nb/Ta=15.9~17.1,为锶和铌亏损型。EREE总体较高,重稀土含量相对较高,轻重稀土分馏稍弱,∑Ce/∑Y为0.49~6.18,(La/Yb)。为0.66~15.54。有较高的εNd(t),为-6.8~-8.7;T2DM相对较小(1.47~1.62Ga)。综合研究表明,小墨山花岗岩石为壳源型富黑云母过铝花岗岩类(CPG),其成因应为下地壳物质和上地壳物质混合而成,与花岗岩底侵作用或注入地壳中的幔源岩浆有关,形成的构造背景为陆内挤压造山向非造山转换的后造山拉张环境,是在紧随侏罗纪挤压造山运动之后的构造松驰和拉张减薄条件下所形成。  相似文献   

9.
Northern Xinjiang has been an idea and focus re-gion for post-collisional tectonic-metallogenic re-search. The time span of post-collisional stage, as well as the time span of extrusion and extension gyration of a post-collisional stage, and the process and dynamicssetting of Paleozoic continental growth are the key problems[1-7]. According to the definition by Liegeois[8], Wang et al. (in press)1) proposed that the taphrogeosyncline sedimentary formation that unconformably overliesthe main c…  相似文献   

10.
This paper selected five typical Mesozoic intrusives from the Tongling metallogenic cluster (Xiaotongguanshan, Fenghuangshan, Xinqiao, Dongguashan, and Shatanjiao plutons), and made a systemic SHRIMP zircon U-Pb dating for the five plutons, which produced an age range of 151.8±2.6- 142.8±1.8 Ma. This work put an accurate constraint on the formation age of the intrusives in the Tongling metallogenic cluster. These age data indicate that magmatic activity reached a peak during Late Jurassic. The intrusive sequence of magma is generally from quartz monzonite (porphyry) through monzonite to granodiorite to quartz monzodiorite to pyroxene monzodiorite to gabbro-diabase. The intrusives of different lithology differed in crystallization age, probably implying the intrusives in the Tongling area underwent an evolutional process of magma, which was closely related to geodynamical setting in the depths of the area. A dynamic model was presented for the origin of the igneous rocks in the study area as follows. The assembly between the Yangtze craton and the North China craton fini- shed at the end of T3, and then the stage of another compressional orogeny began in the Tongling area, i.e., Pacific dynamic system. Along with the subduction of the Izanagi plate underneath the Eurasian plate at J2-J3, NW-trending compression toward the East China continent was produced, and compres- sional deformation also took place, forming NE-trending fold and resulting in thickening of the crust in the Tongling area. High-density eclogite-facies rocks were produced in the low part of the crust, re- sulting in the delamination of mantle lithosphere and lower crust, and upwelling of materials in as- thenosphere. Decompression melting produced basaltic magma, and the materials in lower crust were heated by the underplating of the basaltic magma. Thus, melting of lower crust yielded granitic magma, which intruded along deep and large faults through various geological processes (J3-K1). The SHRIMP U-Pb zircon age of 151.8±2.6-142.8±1.8 Ma for intrusives in the Tongling area suggests that the de- lamination of lithosphere mantle and lower crust at least began at middle-late stage of Late Jurassic, resulting in sharp thinning of lithosphere and intense extension of middle-upper crust. Thus, a lot of decollements were produced between cover and cover, basement and cover, and middle and lower crust. This was structural layering or detachment of lithosphere in the Tongling area. Three concordant ages for old inherited cores of magmatic origin (747-823 Ma) indicated that there were obvious mag- matism in the Tongling area during Neoproterozoic, and a little more of the Neoproterozoic igneous source rocks participated in the formation of Mesozoic intrusives.  相似文献   

11.
A great deal of practical data in recent years have proved that the East Kunlun orogenic belt and even the China central orogenic belt are complex orogenic belts that underwent polycycle orogenic evolvement[1―7]. Each orogenic cycle has left a compositional print, the multi-period ophiolites[4―6] and various types of tec-tono-magmatic production in the same orogenic belt. There is a suite of shallow metamorphic volcanic rocks in the Nuomuhong area in the east part of the East Kunlun orogen…  相似文献   

12.
Regional architecture of geochronology and differential cooling pattern show that the Dabie orogen underwent a thermal doming extension during 140-85 Ma. This extension resulted in widespread re-melting of the Dabie basement, intense volcanic activities in North Huaiyang and the formation of fault-controlled depressions in the Hefei basin. This thermal doming extension can be further divided into two consecutive evolving stages, i.e. the intensifying stage (140-105 Ma) and the declining stage (105-85 Ma). In the first stage (140-105 Ma), the thermal doming mainly was concentrated in the Dabie block, and to a less degree, in the Hongan block. The thermal doming structure of the Dabie block is configured with Macheng-Yuexi thermal axis, Yuexi/Luotian thermal cores and their downslide flanks. The orientation of thermal axis is dominantly parallel to the strike of orogen, and UHP/HP units together with metamorphic rocks of North Huaiyang constitute the downslide flanks. The Yuexi core differs from the Luotian core in both the intensity and the shaping time. To some extent, the Hongan block can be regarded as part of downslide systems of the Dabie doming structure. The doming process is characterized by thermal-center's migration along the Macheng-Yuexi thermal axis; consequently, it is speculated to be attributed to the convective removal of thickened orogenic root, which is a process characterized by intermittance, migration, large-scale and differentiation. During the declining stage (105-85 Ma), the dome- shaped figure still structurally existed in the Dabie orogen, but orogenic units cooled remarkably slow and magmatic activities stagnated gradually. Study on the thermal doming of Dabieshan Mountains can thus provide detailed constraints on the major tectonic problems such as the UHP/HP exhumation model, the boundary between North Dabie and South Dabie, and the orogenesis mechanism.  相似文献   

13.
Regional architecture of geochronology and differential cooling pattern show that the Dabie orogen underwent a thermal doming extension during 140–85 Ma. This extension resulted in widespread re-melting of the Dabie basement, intense volcanic activities in North Huaiyang and the formation of fault-controlled depressions in the Hefei basin. This thermal doming extension can be further divided into two consecutive evolving stages, i.e. the intensifying stage (140–105 Ma) and the declining stage (105–85 Ma). In the first stage (140–105 Ma), the thermal doming mainly was concentrated in the Dabie block, and to a less degree, in the Hongan block. The thermal doming structure of the Dabie block is configured with Macheng-Yuexi thermal axis, Yuexi/Luotian thermal cores and their downslide flanks. The orientation of thermal axis is dominantly parallel to the strike of orogen, and UHP/HP units together with metamorphic rocks of North Huaiyang constitute the downslide flanks. The Yuexi core differs from the Luotian core in both the intensity and the shaping time. To some extent, the Hongan block can be regarded as part of downslide systems of the Dabie doming structure. The doming process is characterized by thermal-center’s migration along the Macheng-Yuexi thermal axis; consequently, it is speculated to be attributed to the convective removal of thickened orogenic root, which is a process characterized by intermittance, mi gration, large-scale and differentiation. During the declining stage (105–85 Ma), the dome-shaped figure still structurally existed in the Dabie orogen, but orogenic units cooled remarkably slow and magmatic activities stagnated gradually. Study on the thermal doming of Dabieshan Mountains can thus provide detailed constraints on the major tectonic problems such as the UHP/HP exhumation model, the boundary between North Dabie and South Dabie, and the orogenesis mechanism.  相似文献   

14.
The Bashikaogong-Shimierbulake granitoid complex is about 30 km long and 2―6 km wide, with an area of 140 km2, located at the north margin of the Bashikaogong Basin in the north Altun terrain. It intruded into schist, metapelite and metatuff of Precambrian ages. This granitoid complex consists of darkish quartz diorite, grey granite, pink granite and pegmatite. Geochemically, the quartz diorite has I-type granite affinity and belongs to Calc-alkaline sereies, and the other gran- ites have S-type affinity and to high-K calc-alkaline series. Zircon SHRIMP U-Pb dating shows that the quartz diorite has a bigger age than those of other granites, which is 481.6±5.6 Ma for quartz diorite, 437.0±3.0 Ma―433.1±3.4 Ma for grey granite and 443±11 Ma―434.6±1.6 Ma for pink granite, re- spectively. Combined with regional geology, we think that the quartz diorite formed in tectonic envi- ronment related to oceanic crust subduction and the granites in post-collision.  相似文献   

15.
The SHRIMP zircon U-Pb geochronology of three typical samples, including two monzo nitic granites from the Lincang batholith and a rhyolite from the Manghuai Formation are presented in the southern Lancangjiang, western Yunnan Province. The analyses of zircons for the biotite monzonitic granites from the northern (02DX-137) and southern (20JH-10) Lincang batholith show the single and tight clusters on the concordia, and yield the weighted mean 206Pb/238U ages of 229.4 ± 3.0 Ma and 230.4 ± 3.6 Ma, respectively, representing the crystallized ages of these granites. The zircons for the rhyolitic sample (02DX-95) from the Manghuai Formation give a weighted mean 206Pb/238U age of 231.0 ± 5.0 Ma. These data suggest that the igneous rocks from the Lincang granitic batholith and Manghuai Formation have a similar crystallized age. In combination with other data, it is inferred that both were generated at a narrow age span (~230 Ma) and were originated from the postcollisional tectonic regime. An early Proterozoic 206Pb/238U apparent age of 1977±44 Ma is additionally obtained from one zircon from the biotite monzonitic granite (southern Lincang batholith), indicative of devel- opment of the early Proterozoic Yangtze basement in the region. These precisely geochronological data provide important constraints on better understanding the Paleozoic tectonic evolution of the Tethys, western Yunnan Province.  相似文献   

16.
湘西南兰蓉岩体为一加里东期小侵入体,由黑云母二长花岗岩和二云母二长花岗岩组成.(443.5±8.1)Ma的锆石SHRIMP U Pb年龄表明花岗岩形成于早志留世早期.主量元素组成表明岩体总体属钙碱性高钾钙碱性系列强过铝质花岗岩类.该侵入体Ba、(Ta+Nb)、Sr、P、Ti强烈亏损,Rb、(Th+U+K)、(La+Ce)、Nd、(Zr+Hf+Sm)、(Y+Yb+Lu)等相对富集;稀土元素含量较高、轻稀土富集明显、Eu显著亏损;Isr值为0.71299,εSr(t)值为120,εNd (t)值为 8.11和-8.89,t2DM为1.82和1.84Ga.C/MF-A/MF图解显示其源岩为泥质岩和砂屑岩.上述地球化学特征表明兰蓉岩体为陆壳碎屑岩石部分熔融形成的S型花岗岩.基于岩石成因、构造环境判别以及区域构造演化过程,推断兰蓉岩体的具体形成机制为:奥陶纪末志留纪初的北流运动(板内造山运动)导致地壳增厚、升温,尔后在挤压减弱、应力松弛的后碰撞减压构造环境下,中、上地壳酸性岩石发生部分熔融并向上侵位而形成兰蓉岩体.  相似文献   

17.
The Tiefosi granitic pluton is located 5 km northwest of Xinyang City,northern Dabie Orogen,and was emplaced in the Proterozoic Qinling Group. SHRIMP zircon U-Pb dating suggests its crystallization at 436 ± 11 Ma. It is composed of monzogranite and syenogranite containing some amounts of muscovite and few mafic minerals. The rocks are characterized by high and restricted SiO2 content,low FeO,Fe2O3 and MgO contents,high K2O/Na2O ratio,and display high-K calc-alkaline and peraluminous (ACNK>1.1) characteristics. They are generally enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). They can be divided into three groups in light of rare earth elements (REE) and trace elements. Group I is moderate in ΣREE and characterized by the absence of Eu anom-aly,high (La/Yb)N ratio,and moderate Rb/Sr and Rb/Ba ratios. Group Ⅱ has moderately negative Eu anomaly,low (La/Yb)N ratio and high ΣREE contents,Rb/Sr and Rb/Ba ratios. Group Ⅲ displays positive Eu anomaly,moderate (La/Yb)N ratio,and low ΣREE,Rb/Sr and Rb/Ba ratios. The calculated εNd(440Ma) values of the rocks vary from 8.8 to 9.9 and Nd depleted mantle model ages are about 2.0 Ga,which resemble those of the paragneisses from the Qinling Group. The results indicate that the Tiefosi granite is crust-derived,syn-collisional S-type granite. Generation of Group I was related to low degree melting of the Qinling Group,while Group Ⅱ was formed by fractionational crystallization of plagioclase from Group I magmas,and Group Ⅲ resulted possibly from magma mingling with plagioclase cumulates. The Tiefosi granite was formed within crustal level related to the collision between the North China and South China blocks in the Early Paleozoic time.  相似文献   

18.
SHRIMP U-Pb zircon age, geochemical and Nd isotopic data are reported for the Neoproterozoic Guandaoshan pluton in the Yanbian region, SW Sichuan. This pluton is of typical I-type granite and emplaced at (857±13) Ma. Geochemical and Nd isotopic characters suggest that the pluton was generated by partial melting of pre-existing, young (late Mesoproterozoic to early Neoproterozoic) low-K tholeiitic protolith within an intraplate anorogenic setting. The Guandaoshan pluton probably records the earliest magmatism induced by the proposed ca. 860-750 Ma mantle superplume beneath the supercontinent Rodinia.  相似文献   

19.
High-pressure mafic granulites occurring as lenticular bodies within garnet-amphibolites in Kangxiwar Fault have been first reported in this paper. The P-T conditions of two metamorphic stages were ob-tained using calibrated geothermal barometers and ThermoCalc Program. The peak metamorphic con-dition of these high-pressure granulites is about 760―820℃,1.0―1.2 GPa and the retrograde meta-morphic condition is about 620―720℃,0.7―0.8 GPa. The petrological studies show that they have a near-isobaric cooling P-T...  相似文献   

20.
Geochronological studies of mafic-ultramafic intrusions occurrence in the northern Dabie zone (NDZ) suggest that these pyroxenite-gabbro intrusions formed 120—130 Ma ago should be post-collisional magmatic rocks[1—4]. These mafic-ultramafic rocks provid…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号