共查询到12条相似文献,搜索用时 7 毫秒
1.
The results of a controlled source seismic reflection–refraction experiment carried out in 1992 reveal the following characteristics of the northern Izu–Bonin (Ogasawara) oceanic island arc–trench system. (1) The crust rapidly thickens from the Shikoku back-arc basin to the arc, is thickest beneath the active rifts, and then gradually thins to the forearc. The thickness of the crust beneath the arc rift zone and the back-arc basin are ∼ 20 km and 8 km, respectively. (2) The Moho vanishes beneath the forearc. Velocities rapidly decrease eastwards beneath the inner trench wall. (3) The velocity of the lower crust of the arc and the back-arc basin is 7.1–7.3 km/s. This velocity is higher than the typical oceanic lower crust whose velocity is ∼ 6.7 km/s. (4) The velocity of the middle crust of the arc is ∼ 6 km/s. This layer does not exist beneath the back-arc basin. (5) A slight difference in the velocity gradient of the middle crust exists between the arc rift zone and the forearc. Based on these findings and previous studies, it is inferred that: (i) the middle crust is probably granitic rock and formed in more than two episodes; (ii) the lower crust formed by igneous underplating which may also have affected part of the back-arc basin; and (iii) the root of the serpentinite diapir on the inner trench wall is a low-velocity mantle wedge that was probably caused by large amounts of water released from the subducting Pacific plate at depths shallower than 30 km. 相似文献
2.
Submarine hydrothermal manganese deposits are relatively common along the Izu–Bonin – Mariana (IBM) arc but hydrothermal iron crusts are much less so. The hydrothermal manganese deposits show characteristics typical of submarine hydrothermal manganese deposits found worldwide. Recent hydrothermal manganese deposits associated with active hydrothermal systems occur on seamounts or rifts located ∼ 5–40 km behind the volcanic front on the Shichito-Iwojima Ridge, IBM. Fossil hydrothermal manganese deposits associated with older hydrothermal systems occur on inactive seamounts located on ridges running parallel to the volcanic front in both forearc and back-arc settings. These fossil hydrothermal manganese deposits are generally overlain by younger hydrogenetic manganese crusts. Differences in minor element composition and in the rare earth element pattern of hydrothermal manganese deposits from the forearc and back-arc settings may reflect differences in the nature of substrate rocks or temperature of the hydrothermal fluids at these locations. 相似文献
3.
A magnetic anomaly map of the northern part of the Philippine Sea plate shows two conspicuous north–south rows of long-wavelength anomalies over the Izu–Ogasawara (Bonin) arc, which are slightly oblique to the present volcanic front. These anomalies are enhanced on reduced-to-pole and upward-continued anomaly maps. The east row is associated with frontal arc highs (the Shinkurose Ridge), and the west row is accompanied by the Nishi-Shichito Ridge. Another belt of long-wavelength anomalies very similar to the former two occurs over the Kyushu–Palau Ridge. To explain the similarity of the magnetic anomalies, it is proposed that after the spreading of the Shikoku Basin separated the Izu–Ogasawara arc from the Kyushu–Palau Ridge, another rifting event occurred in the Miocene, which divided the Izu–Ogasawara arc into the Nishi-Shichito and Shinkurose ridges. The occurrence of Miocene rifting has also been suggested from the geology of the collision zone of the Izu–Ogasawara arc against the Southwest Japan arc: the Misaka terrain yields peculiar volcanic rocks suggesting back-arc rifting at ~ 15 Ma. The magnetic anomaly belts over the Izu–Ogasawara arc do not extend south beyond the Sofugan Tectonic Line, suggesting a difference in tectonic history between the northern and southern parts of the Izu–Ogasawara arc. It is estimated that the Miocene extension was directed northeast–southwest, utilizing normal faults originally formed during Oligocene rifting. The direction is close to the final stage of the Shikoku Basin spreading. On a gravity anomaly relief map, northeast–southwest lineaments can be recognized in the Shikoku Basin as well as over the Nishi-Shichito Ridge. We thus consider that lines of structural weakness connected transform faults of the Shikoku Basin spreading system and the transfer faults of the Miocene Izu–Ogasawara arc rifting. Volcanism on the Nishi-Shichito Ridge has continued along the lines of weakness, which could have caused the en echelon arrangement of the volcanoes. 相似文献
4.
Abstract The structure, paleomagnetism and biostratigraphy of the Nishizaki and Kagamigaura formations on the southern Boso Peninsula, central Japan, were investigated to determine the chronographic constraints on the accretion, post-Late Miocene rotation and regional tectonics in the Izu–Bonin island arc collision zone. The geological structures on the southern Boso Peninsula are characterized by an east–west trending and south-verging fold and thrust belt that curves toward the northwest–southeast in the northwest extent of the Nishizaki Formation. Two stages of tectonic rotation were revealed by paleomagnetic and structural studies. The first is believed to have occurred after the accretion of the Nishizaki Formation and before the deposition of the Kagamigaura Formation, while the second is confidently correlated with the 1 Ma Izu block collision. The northwest extent of the Nishizaki Formation was rotated clockwise by approximately 65–80°, whereas the rotation was only 25–30° in the east, and 11–13° in the overlying Kagamigaura Formation. Radiolarian biostratigraphy suggests a depositional age of 9.9–6.8 Ma (Upper Miocene period) for the Nishizaki Formation and 4.19-3.75 Ma (Pliocene period) for the lower Kagamigaura Formation. These results indicate that the age of accretion and first-stage rotation of the Nishizaki Formation can be constrained to the interval of 6.80–3.75 Ma. This structure most likely represents the northward bending caused by collisions of the Tanzawa and Izu blocks with the Honshu island arc, and suggests rapid processes of accretion, collision, uplift and the formation of new sedimentary basins within a relatively short period of time (2.61–3.05 my). 相似文献
5.
Kantaro Fujioka Wataru Tokunaga Hisayoshi Yokose Junzo Kasahara Toshinori Sato Ryo Miura Teruaki Ishii 《Island Arc》2005,14(4):616-622
Abstract The Hahajima Seamount, located at the junction between the Izu–Bonin and Mariana forearc slopes, is a notable rectangular shape and consists of various kinds of rocks. An elaborated bathymetric swath mapping with geophysical measurements and dredge hauls showed the Hahajima Seamount is cut by two predominating lineaments, northeast–southwest and northwest–southeast. These lineaments are of faults based on the topographic cross-sections and a 3-D view (whale's eye view). The former lineament is parallel to the transform faults of the Parece Vela Basin, whereas the latter is parallel to the nearby transform fault on the subducting Pacific Plate. The rocks constituting the seamount are ultramafic rocks (mostly harzburgite), boninite, basalt, andesite, gabbro, breccia and sedimentary rocks, which characterize an island arc and an ocean basin. Gravity measurement and seismic reflection survey offer neither a definite gravity anomaly at the seamount nor definite internal structures beneath the seamount. A northwest–southeast-trending fault and small-scale serpentine flows were observed during submersible dives at the Hahajima Seamount. The rectangular shape, size of the seamount, various kinds of rocks and geophysical measurements strongly suggest that the Hahajima Seamount is not a simple serpentine seamount controlled by various tectonic movements, as previously believed, but a tectonic block. 相似文献
6.
Pumice samples from Fukutoku-oka-no-ba in the Izu–Bonin – Mariana (IBM) arc were analysed for 40 trace elements and Sr, Nd, and Pb isotopic compositions. These samples are shoshonites (59.4–61.8 wt% SiO2 ), characterized by high contents of K2 O (3.74–4.64 wt%), Ba (1274–1540 p.p.m.), Rb (91–105 p.p.m.), and light rare earth elements. The characteristics of alkali-element enrichment are similar to those of other parts of the Alkalic Volcano Province (AVP) in the northern Mariana and southernmost Volcano arcs. Sr (87 Sr/86 Sr = 0.7036–0.7038) and Pb isotopic compositions (206 Pb/204 Pb = 19.08–19.11, 207 Pb/204 Pb = 15.62–15.63, 208 Pb/204 Pb = 38.85–38.91) of Fukutoku-oka-no-ba pumice are relatively radiogenic, whereas Nd is unradiogenic (143 Nd/144 Nd = 0.51283–0.51286). Fukutoku-oka-no-ba is isotopically distinct from Iwo Jima and is similar to the Hiyoshi Volcanic Complex, suggesting that Fukutoku-oka-no-ba might have a magma source similar to that of the Hiyoshi volcanic complex. Plots of Pb and Nd isotopes for AVP lavas trend toward the fields of ocean island basalt (OIB) source and pelagic sediments, which are possible sources of AVP enrichments. 相似文献
7.
Volcanic rocks of the Kyushu–Palau Ridge (KPR) from Deep Sea Drilling Project (DSDP) site 448 and from Belau comprise a low-to-medium-K arc tholeiitic series. Belau rocks include (probable) Mid-Eocene low-Ca type-3 boninite and pre-Early Oligocene–Early Miocene low-K arc tholeiitic basalt, basaltic andesite, andesite and dacite. Palau Trench samples include sparsely phyric high-Mg, -Cr and -Ni rocks which resemble the Belau boninite and Izu–Bonin – Mariana (IBM) system boninites. The high-Mg Palau Trench samples also resemble other primitive arc lavas (e.g. arc picrites). Their chemistry suggests an origin involving steep thermal gradients in multiply depleted mantle. Subduction of hot, young lithosphere under a young hot upper plate is postulated to explain this occurrence. The KPR is inferred to be the source of Eocene boninite and arc tholeiitic terranes presently in forearc regions of the IBM system. A model is presented here showing how many IBM boninites may have originated in a small area near Belau. These have migrated eastward by episodic back-arc opening accompanying eastward migration of arcs and trenches. Oldest known KPR rocks ( ca 47.5 Ma at DSDP site 296), and presumed KPR-derived exotic terranes of Guam ( ca 43.8 Ma), presage the postulated Eocene ( ca 42–43 Ma) change in Pacific plate motion invoked as the cause of subduction initiation at the KPR. The KPR has been rotated more than 40° clockwise since the Eocene, thus the age mismatch may indicate a different tectonic style, for example transtension or transpression, in earliest KPR history. 相似文献
8.
The Miocene Tanzawa plutonic complex, consisting mainly of tonalite intrusions, is exposed at the northern end of the Izu–Bonin – Mariana (IBM) arc system as a consequence of collision with the Honshu Arc. The Tanzawa plutonic rocks belong to the calc-alkaline series and exhibit a wide range of chemical variation, from 43 to 75 wt% SiO2 . They are characterized by relatively high Ba/Rb and Ce/Nb ratios, and low abundances of K2 O, LIL elements, and rare earth elements (REE). Their petrographic and geochemical features indicate derivation from an intermediate parental magma through crystal fractionation and accumulation processes, involving hornblende, plagioclase, and magnetite. The Tanzawa plutonic complex is interpreted to be the exposed middle crust of the IBM arc, which was uplifted during the collision. The mass balance calculations, combining data from melting experiments of hydrous basaltic compositions at lower-to-middle crustal levels, suggest that parental magma and ultramafic restite were generated by dehydration partial melting (∼ 45% melting) of amphibolite chemically similar to low-K tholeiitic basalt. Partial melting of hydrated mafic lower crust might play an important role in felsic middle-crust formation in the IBM arc. 相似文献
9.
The Izu–Ogasawara arc contains, from east to west, a volcanic front, a back-arc extensional zone (back-arc knolls zone), and a series of across-arc seamount chains that cross the extensional zone in an east-northeast and west-southwest direction and extend into the Shikoku Basin. K–Ar ages of dredged volcanic rocks from these across-arc seamount chains and extension-related edifices in the back-arc region of the Izu–Ogasawara arc were measured to constrain the volcanic and tectonic history of the arc since the termination of spreading in the Shikoku Basin. K–Ar ages range between 12.5 and 1 Ma. Andesitic to dacitic rocks of 12.5–2.9 Ma occur mainly on the western part of the chains. The western part of the chains are the locus of volcanism behind the front which erupted mainly calc-alkaline andesitic lavas. The youngest rocks (< 2.8 Ma), characterized by cpx-ol basalt, occur along the western margin of the back-arc knolls zone. Basaltic rocks of 12.5–2.9 Ma have relatively high concentrations of Na2 O (> 2.0 wt%), Zr (> 50 p.p.m.) and Y (> 20 p.p.m.) and low CaO (< 12 wt%). On the other hand, basalts of 2.8–1 Ma have lower Na2 O (< 1.8 wt%), Zr (< 50 p.p.m.) and Y (< 20 p.p.m.), but significantly higher CaO (> 12 wt%). The age inferred for the initiation of back-arc rifting (∼ 2.35–2.9 Ma: Taylor 1992 ) behind the current volcanic arc coincides with the time that basalt chemistry changed drastically (eruption of the low-Na2 O and high-CaO basalt). This implies that post-2.8 Ma volcanism in the back-arc knolls zone is associated with rifting. Similarly, the change in chemical composition might be explained by a different type of source mantle following rift initiation. Volcanism in the western seamounts ceased after the onset of rifting at ∼ 2.8 Ma. 相似文献
10.
ASAHIKO TAIRA SANEATSU SAITO KAN AOIKE SUMITO MORITA HIDEKAZU TOKUYAMA KIYOSHI SUYEHIRO NARUMI TAKAHASHI MASANAO SHINOHARA SCHOICHI KIYOKAWA JIRO NAKA & ADAM KLAUS 《Island Arc》1998,7(3):395-407
The bulk composition of the continental crust throughout geological history is thought by most previous workers to be andesitic. This assumption of an andesitic bulk composition led to an early hypothesis by 72 ) that the continental crust was created by arc magmatism. This hypothesis for the origin of continental crust was challenged by several authors because: (i) the mean rate of arc crust addition obtained by 50 ) is too small to account for some certain phases of rapid crustal growth; and (ii) the bulk composition of ocean island arcs, the main contributor to the Archean and early Proterozoic crust, is basaltic rather than andesitic ( 4 ; 49 ). New data from the Northern Izu–Bonin arc are presented here which support the 72 ) hypothesis for the origin of the continental crust by andesitic arc magma. A geological interpretation of P wave crustal structure obtained from the Northern Izu–Bonin arc by 66 ) indicates that the arc crust has four distinctive lithologic layers: from top to bottom: (i) a 0.5–2-km-thick layer of basic to intermediate volcaniclastic, lava and hemipelagite (layer A); (ii) a 2–5-km-thick basic to intermediate volcaniclastics, lavas and intrusive layer (layer B); (iii) a 2–7-km-thick layer of felsic (tonalitic) rocks (layer C); and (iv) a 4–7-km-thick layer of mafic igneous rocks (layer D). The chemical composition of the upper and middle part of the northern Izu–Bonin arc is estimated to be similar to the average continental crust by 73 ). The rate of igneous addition of the Northern Izu–Bonin arc since its initial 45-Ma magmatism was calculated as 80 km3/km per million years. This rate of addition is considered to be a reasonable estimate for all arcs in the western Pacific. Using this rate, the global rate of crustal growth is estimated to be 2.96 km3/year which exceeds the average rate of crustal growth since the formation of the Earth (1.76 km3/year). Based on this estimate of continental growth and the previously documented sediment subduction and tectonic erosion rate (1.8 km3/year, 24 ), several examples of growth curves of the continental crust are presented here. These growth curves suggest that at least 50% of the present volume of the continental crust can be explained by arc magmatism. This conclusion indicates that arc magmatism is the most important contributor to the formation of continental crust, especially at the upper crustal level. 相似文献
11.
K–Ar and 40Ar/39Ar dates are presented for locations in the Izu–Bonin – Mariana (IBM) forearc (Ocean Drilling Program (ODP) sites 786 & 782, Chichijima, Deep Sea Drilling Program (DSDP) sites 458 & 459, Saipan), and Palau on the remnant arc of the Kyushu–Palau Ridge. For a number of these locations, the 40Ar/39Ar plateau and 36Ar/40Ar versus 39Ar/40Ar isochrons give older ages than the K–Ar results. The most important results are: (i) at site 786, initial construction of the proto-IBM (now forearc) basement occurred at least by ca 47–45 Ma, consistent with the age of the immediately overlying sediments (middle Eocene nannofossil Zone CP13c); the younger pulse of construction dated at ca 35 Ma by K–Ar could not be confirmed by 40Ar/39Ar analysis; (ii) 40Ar/39Ar ages for the initial construction of the Mariana portion of the IBM system are as old as those of the Izu–Bonin portion, for example at site 458, initial construction commenced at least by ca 49 Ma and at ca 47 Ma at Saipan (Sankakayuma Formation); and (iii) a combination of K–Ar and 40Ar/39Ar ages indicate continued boninite magmatism in the Izu–Bonin forearc (and remnant arc at Palau) until ca 35 Ma. Subduction inception including boninite series rocks along most of the exposed length of the IBM system, clearly preceded by some 5 million years the Middle Eocene (ca 43.5 Ma) change in Pacific plate motion. Boninitic series magmatism persisted at locations now exposed in the forearc for ~ 15 million years after arc inception concurrently with low-K tholeiitic series eruptions from a subaerial arc system, established at ≥ 40 Ma, on the Kyushu–Palau Ridge. For the Mariana portion of the IBM system, reconstruction of the proto-arc places this activity adjacent to the concurrent but orthogonally spreading Central Basin Ridge of the West Philippine Basin. It is possible that a combination of subduction of a young North New Guinea Plate beneath newly created back-arc basin crust may account for some of the features of the Mariana system. It is clear, however, that the understanding of the processes of subduction initiation and early IBM arc development is incomplete. 相似文献
12.
基于新型残余星间速度法(RIRM)反演了120阶GRACE Follow-On地球重力场. 第一,由于GPS定轨精度相对较低,通过将激光干涉测距仪的高精度残余星间速度(测量精度10-7 m·s-1)引入残余轨道速度差分矢量的视线分量构建了新型RIRM观测方程. 第二,基于2点、4点、6点和8点RIRM公式对比论证了最优的插值点数. 如果相关系数和采样间隔一定,随着插值点数的增加,卫星观测值的信号量被有效加强,而卫星观测值的误差量也同时增加. 因此,6点RIRM公式是提高下一代地球重力场精度的较优选择. 第三,相关系数对地球重力场精度的影响在不同频段表现为不同特性. 随着相关系数的逐渐增大,地球长波重力场精度逐渐降低,而地球中长波重力场精度逐渐升高. 第四,基于6点RIRM公式,通过30天观测数据和采样间隔5 s,分别利用星间速度和残余星间速度观测值,在120阶次处反演下一代GRACE Follow-On累计大地水准面精度为1.638×10-3 m和1.396×10-3 m. 研究结果表明:(1)残余星间速度观测量较星间速度对地球重力场反演精度更敏感;(2)GRACE Follow-On地球重力场精度较GRACE至少高10倍. 相似文献