首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The near-bottom part of the Yoko-Dovyren layered ultramafic-mafic intrusion host the Baikal deposit of Cu–Ni sulfide ores with Pt–Pd mineralization, whereas horizons and pockets of low sulfide ores with Pt–Pd mineralization occur at higher stratigraphic levels, including the boundary between strata of troctolite and gabbronorite, within these rocks, as well as in strata of peridotite at the lower part of the intrusion. This paper represents a new (for the Yoko-Dovyren intrusion) type of “refractory IPGE-mineralization” discovered in the lower peridotite ranging from two-pyroxene-plagioclase-bearing lherzolite. This mineralization occurs in thin intercalations of plagioclase lherzolite containing as much as 7% of alumochromite, up to 50 ppb Ru, 15 ppb Ir, and 60 ppb Pt. Crystals of cumulate alumochromite with 0.2–0.8 wt % TiO2 contain hexagonal plates of Ir-osmium up to 5 m in size. Crystals of cumulate alumochromite with 1.2–2.8 wt % TiO2 host pentagonal dodecahedrons of laurite up to 4 m in size. One of the alumochromite crystals with an inclusion of Os-poor laurite was found inside a crystal of cumulate olivine Fo86. Intergrowth of laurite and Ir-osmium enclosed in alumochromite with 1.1% TiO2 was observed in one case. Laurite from Yoko-Dovyren contains 93–66%, predominantly 92–82%, RuS2 endmember (n = 10); 3–20, predominantly 5–12%, OsS2 endmember; 4–5% IrS2 endmember; and up to 0.7% Pd and 0.5% Au. Ir-osmium is divided into two groups by composition. The first group is enriched in Os (58–73 wt %, on average 64 wt %) and Ru (3–8 wt %, on average 5 wt %), contains 24–34 wt % Ir (n = 4), up to 1.4 wt % Au, and no Pt. Compositions of the second group have 57–58 wt % Os, 27–30 wt % Ir, 1.5–5.5 wt % Ru, approximately 10 wt % Pt (n = 3), and up to 0.2 wt % Pd. The Cr# and Fe2+/(Fe2+ + Mg) values, which range within 58–69 and 61–72, respectively, are identical in alumochromite with both enclosed laurite and Ir-osmium. Alumochromite, relatively enriched in Ti, crystallized slightly later, suggesting later crystallization for hosted laurite. Occurrence of Ir-osmium seems to indicate a picritic magma undersaturated with sulfide sulfur during bulk crystallization of alumochromite Judging from the diagram from (Brennan and Andrews, 2001), intergrowths of laurite and Ir-osmium, evidence that their probable crystallization temperature did not exceed 1250°C. The presence of own minerals of Ru, Os, Ir in the rocks, containing the first ppb of these PGE shows startling degree of magmatic differentiation. In the matrix of plagioclase lherzolites, containing laurite and Ir-osmium, in association with phlogopite, pargasite, pentlandite, troilite and chalcopyrite there were found the smallest crystals of geversite, sperrilite, insizwaite, niggliite, naldrettite, zvyagintsevite, in association with serpentine and chlorite–native platinum, Pd-platinum, osarsite, irarsite, platarsite.  相似文献   

2.
3.
4.
5.
This article presents new geochronological and isotope-geochemical data on ultramafic–mafic rocks of the banded complex of the Dzhida zone of the Caledonides ophiolite association.  相似文献   

6.
《Chemical Geology》1985,49(4):415-428
Chromites have been analysed from Vavdos and Gomati, two mafic—ultramafic complexes in the Chalkidiki peninsula, Greece. The complexes, interpreted as ophiolites generated in small ocean basins or marginal seas, have been tectonically incorporated, forming allochthonous bodies bounded by thrust faults. Chromite analyses reveal that the ores are high-Cr, metallurgical type at Vavdos but high-Al, refractory type at Gomati. The origin of the ores, and of accessory chromite in the ultramafic rocks, is related to extraction of basaltic melt during progressive partial melting of the upper mantle and subsequent fractional crystallisation. Podiform chromites are an early product of the crystallisation of such a basaltic melt; they are intimately associated with a dunite host-rock.  相似文献   

7.
新田岭矿床是南岭钨锡成矿带中的一个大型矽卡岩型钨矿床,产于骑田岭岩体东北部与石炭系碳酸盐地层的接触带位置。本文运用LA-ICP-MS技术对该矿床矽卡岩中的石榴子石进行了系统的成分分析,获得了其主量、微量和稀土元素含量。结果显示,新田岭矿床中的石榴子石属于钙铁榴石-钙铝榴石固溶体系列(And24Gro66 -And71Gro22),石榴子石的端元成分在富钙铝榴石和富钙铁榴石之间变化。稀土元素的配分模式也同时出现了左倾、Eu负异常和右倾、Eu正异常两种类型,暗示新田岭矿床石榴子石结晶过程中热液流体存在不同的氧化还原环境和水/岩比条件,这也与其晶体中是否出现振荡环带相对应。将不同矽卡岩型矿床中石榴子石的W、Sn含量进行对比显示,含W矿化的矽卡岩型矿床中石榴子石的W、Sn含量整体上显著高于不含W矿化的矿床,指示石榴子石中的W、Sn含量在一定程度上具有预测矽卡岩型矿床成W矿潜力的作用。此外,石榴子石中Fe、Eu、U等元素的含量还可以进一步区分矽卡岩W矿床中的伴生金属元素类型(包括W-Mo、W-Sn、W-Cu-...  相似文献   

8.
The paper presents results of a detailed petrologic study of metasomatites and their host metagabbroids in the northwestern part of Kiy Island, Onega Bay, White Sea. The first evidence is acquired that coronitization and amphibolization of the host rocks took place at the peak of Svecofennian metamorphism at Т = 700–640°C, Р = 9–10 kbar, and \({a_{{H_2}O}}\) = 0.2–0.3. Accompanying metasomatism has formed a number of long (up to several meters long) melanocratic hornblendite and garnet–amphibole veins 0.3–2 m thick. In this area, metasomatites of another type make up single relatively thin amphibole–zoisite lenses that sometimes host ruby-like corundum. The fluid phase that induced metasomatism was poor in salts (Na,K)Cl, and hence, the rocks do not contain sodic plagioclase, and their amphibole is tschermakite but not pargasite. The compositions of the metasomatites of the two types are proved to be complementary, and this indicates that they were most likely produced by high-temperature metasomatism but not via the removal of components by fluid from migmatization zones.  相似文献   

9.
Intrusions of the Kruglogorsky type are an integral part of magmatic formations in the Noril’sk area. The marginal portions of these intrusions are composed of microdolerite, dolerite, and contact gabbrodolerite. The central parts of the intrusions consist of leucogabbro and of olivine-free, olivine-bearing, and olivine gabbro-dolerite. Leucogabbro is a characteristic rock of this type of intrusions and sometimes composes up to half of the thicknesses of the rock units. The rocks with plagioporphyritic textures are widespread. Olivine-free, olivine-bearing, and olivine gabbro-dolerite occur as horizons with indistinct boundaries, which are unevenly distributed over the vertical sections of the lithological units. The olivine is the most magnesian (Fo89-64) and richest in Ni (up to 0.23 wt % NiO) in the olivine gabbro-dolerite. The clinopyroxene is represented by augite (Fs12-29). The rock-forming minerals are typically zoned. The Sr isotopic composition of the rocks (calculated for an age of 250 Ma) varies within a considerable range (87Sr/86Sr = 0.705972–0.708006), due to metasomatic alterations. The variations in the Nd and Sr isotopic composition of the Kruglogorsky intrusion are close to those in rocks of the Noril’sk-type ore-bearing intrusions. The olivine-bearing and taxitic gabbro-dolerite host Pt–Cu–Ni ore mineralization, which are of economic value for disseminated ores of the Talnakh area.  相似文献   

10.
The platinum group elements(PGE)in the mafic-ultramafic suite in the Xinjie layered intrusion and associated basalts and syenites were analyzed using neutron activation techniques after fire-assay preconcentration.On this basis,the geochemistry of the platinum group during the magmatic stage is discussed.With respect to PGE distribution,the Xijie layered intrusion is similar to the Bushveld ferruginous ultramafic series and is distinct from komatiite and Alpine-type peridotite.It is also similar to the Emeishan basalt in PGE characteristics,implying that the original magmas of them may be of the same type.  相似文献   

11.
《International Geology Review》2012,54(16):2016-2029
The Salmas area, in the northernmost part of the Sanandaj–Sirjan zone of Iran, contains a crystalline mafic–intermediate complex that intrudes into the Precambrian metamorphic basement complex and is composed of gabbroic and gabbrodiorite cumulates and fine-grained non-cumulate gabbronorites and diorites. These rocks have fine- to coarse-grained texture and are mainly composed of plagioclase, pyroxenes, and amphibole. Major element geochemistry indicates that the pluton has a low-K with tholeiitic affinity. Variations of major and trace elements on Harker diagrams, including negative correlations MgO, Fe2O3, CaO, and Co and positive correlations Na2O, K2O, Rb, Ba, and La, with increasing SiO2 and chondrite-normalized REE patterns, suggest that fractional crystallization of gabbroic rocks could have played a significant role in the formation of evolved rocks. The chondrite-normalized REE patterns are not fractionated (LaN /LuN = 1.3–5.4) and display strong Eu anomalies (Eu/Eu* = 1.15–1.76) in cumulate rocks, which we attributed to cumulus plagioclase. Sr and Nd isotopic ratios vary from 0.704698 to 0.705866 and from 0.512548 to 0.512703, respectively. Gabbronorites with high 143Nd/144Nd ratios, low 87Sr/86Sr ratios, and high MgO, Ni, and Cr contents indicate that they were generated from relatively primitive magmas. We used petrogenetic modelling to constrain sources. Trace element ratio modelling indicates that the gabbroic rocks were generated from a spinel-peridotite source via 5–20% degrees of fractional melting at a depth of ~52 km. Major and REE modelling shows that the diorites are the products of fractional crystallization of gabbronorites.  相似文献   

12.
FractalcharacterizationofregionallandslideactivitiesanditssignificanceFractalcharacterizationofregionallandslideactivitiesand...  相似文献   

13.
The chemical compositions of rock-forming minerals have been determined for both altered and least-altered igneous rocks spatially associated with numerous mineralized zones (Nucleus Au–Bi–Cu–As deposit, Revenue Au ± Cu and Stoddart Cu–Mo ± W mineral occurrences, and Laforma Au–Ag deposit) across the Freegold Mountain area, Yukon, Canada. Within the study area, K-feldspar has a narrow compositional range (89.4–91% Or), whereas plagioclase spans a wide range (4.4–70.07% An). In all of the investigated samples, T Ab = T An = T Or, suggesting that magmatic equilibrium between the coexisting plagioclase and K-feldspar was maintained. Igneous amphibole phenocrysts from hypabyssal dikes are typically calcic, whereas the Stoddart Cu–Mo ± W, Laforma Au–Ag, and Goldy Au mineralization are associated with Mg-enriched primary amphibole of edenite composition, and Au–Bi–Cu–As mineralization from Nucleus is related to Al-enriched primary amphibole of ferropargasite composition. Primary biotite phenocrysts across the Freegold Mountain area re-equilibrated with oxidized magma (f(O2) values between 10–13 and 10–11.5 bars, lying between the Ni/NiO and the magnetite/haematite buffers). However, biotite and amphibole phenocrysts from Stoddart, Goldy, Laforma, and the Highway zones crystallized from a more oxidized magma, as indicated by their elevated X Mg up to 0.65, relative to biotite and hornblende from Nucleus and Revenue characterized by a lower X Mg (typically < 0.50). This suggests that various sources and (or) rapid emplacement were involved in magma genesis, as further supported by the considerable variation of pressure (1.8–7.3 kb) of amphibole crystallization and of the total Al content in least-altered biotite (2.6–2.9 afu) within the Freegold Mountain area. Biotite and apatite equilibrated within the T range of 520–780°C, consistent with temperatures of equilibration between ilmenite and magnetite, and their compositions indicate that they formed from an oxidized I-type magma. Magma differentiated by fractional crystallization (indicated by the presence of normally zoned plagioclase with Ca-rich cores and Na-enriched outer rims) and multiple magma mixing (supported by the presence of reversed zoned plagioclase and coexistence of normally and reversely zoned plagioclase). Lower X Mg biotite associated with the mineralized (Cu–Mo ± W) potassic alteration incorporated more F and Cl relative to least-altered biotite with higher X Mg. In both Nucleus and Revenue Au–Cu mineralizations, secondary biotite composition varies with respect to the associated alteration mineral assemblages. Although secondary biotite in the skarn re-equilibrated with F-poor fluids, secondary biotite from the pervasive biotitization is related to F- and Cl-enriched fluids, and secondary biotite from the phyllitic zone is related to F-, Cl-, and Mg-depleted fluids, thus consistent with a change in mineralizing fluid composition during mineralization.  相似文献   

14.
Based on new data on the age, mineralogy, and geochemistry of ultramafic–mafic complexes in the Precambrian structures of the southern periphery of the Siberian Platform, the East Siberian metallogenic (PGE–Cu–Ni) province is recognized. It includes the Yenisei Ridge, Precambrian Kan uplift, Alkhadyr terrane with the adjacent structures of the Biryusa block, and northern Baikal region (Yoko-Dovyren and other massifs of the Baikal–Patom basin). We have established that the U–Pb and Ar–Ar ages of ore-bearing complexes of dunite–peridotite– pyroxenite–gabbro association correspond to the Late Riphean (728–710 Ma). The mineralogical and geochemical similarity of ore-bearing complexes in different areas testifies to their genetic entity. All parental melts were similar in composition to picrites. The calculation results and the PGE enrichment of rocks and ores show high degrees of melting of the mantle source, which agrees with the plume model of formation of the ore-magmatic system. The recognized province is similar in the type of magmatism and time of its occurrence to the Franklin LIP in northern Canada. It is one of the highly promising ore districts of East Siberia.  相似文献   

15.
The paper presents data on plutonic and metamorphic rocks dredged during Cruise 249 of the German R/V Sonne to the Stalemate Ridge, Northwest Pacific Ocean and the Shirshov Rise, western Bering Sea. Dredges in the northwestern sector of the Stalemate Ridge and central portion of the Shirshov Rise show that the plutonic and metamorphic rocks obtained here are amazingly similar. Our petrologic and geochemical data led us to view the rocks as members of a mafic–ultramafic assemblage typical of cumulate portions of ophiolite complexes and backarc spreading centers. The plutonic complexes of the Shirshov Rise and Stalemate Ridge show similarities not only in the petrography and mineralogy of their protoliths but also in the character of their metamorphic transformations. Plutonic rocks from both areas display mineralogical evidence of metamorphism within a broad temperature range: from the high-temperature amphibolite facies to the greenschist facies. Relations between the index mineral assemblages indicate that the metamorphic history of plutonic complexes in the Stalemate Ridge and Shirshov Rise proceeded along a retrograde path. Hornblende schists accompanying the plutonic rocks of the Stalemate Ridge and Shirshov Rise are petrographically close to foliated amphibolites in subophiolitic metamorphic aureoles. Within the framework of geodynamic interpretations of our results, it is realistic to suggest that the examined plutonic complexes were exhumed from subduction zones of various age.  相似文献   

16.
This study focuses on the morphological features, color cathodoluminescence, chemical composition, age, and source of zircons from the Ichet’yu occurrence. The isotopic U–Pb age of Paleo–Mezoproterozoic zircon grains varies within an interval of ~700 Ma from 2247 to 1478 Ma. The average roundness and well-preserved integrity of zircon grains allow us to suggest their proximal source. The available data show that the basement of the Middle Timan, composed of continental Paleo–Mezoproterozoic igneous rocks, is the most probable source of zircon in the Ichet’yu occurrence. These rocks are apparently a continuation of the Archean–Proterozoic Arkhangel’sk Mobile Belt.  相似文献   

17.
正Tectonic evolution and paleogeography of the two major continental blocks Fennoscandia and VolgoSarmatia during their docking to form the East European Craton(Baltica)at 1.8–1.7 Ga represent important‘puzzle  相似文献   

18.
New data on the chemical and rare-element composition and age of the rocks referred earlier to the Iruney suite of the Kamchatka Isthmus are received. In the recent structure these rocks compose the structural–strata complexes of the nappe-folded Lesnovsky Rise. Radiolarian analysis data substantiate that the deposits belonging to the Ening series and the middle and upper parts of the Iruney suite were formed in a single sedimentation basin in the Campanian time. The discovery of a new occurrence of Prunobrachidae representatives on the Kamchatka Peninsula allows us to draw wide interregional correlations and reconstruct the sedimentation conditions. The studied volcanites relate to different igneous series and were formed in geodynamic conditions of the marginal sea and the volcanic arc. The igneous rocks of the Ening stratum are similar to the N-MOR and OI basalts that were formed within the marginal sea (Iruney Marginal Sea) basin. The Upper Cretaceous formations of the eastern slope of the Sredinny Range were formed within the volcanic rise with the island-arc type of volcanism. The younger Eocene igneous rocks of the neo-autochthon (granites and granodiorites) and the volcanic rocks of the Kinkil suite mark a new orogenic stage of development of the Kamchatka margin.  相似文献   

19.
青海共和盆地干热岩经历的热历史过程、热源是了解干热岩地热藏形成亟待解决的难题,不同时期、不同类型的脉体可为其经历的热过程、热源提供证据。经调查发现,盆地东北当家寺岩体及井下干热岩中电气石脉体与该区后期断裂产状相近,是否代表后期热事件需要确定。本研究选择对GR1井、DR3井中酸性侵入岩岩芯和当家寺露头岩体中发现的电气石脉体开展了岩相学、锆石年代学、电子探针、LA-MC-ICPMS原位微量元素及B同位素分析,以约束电气石脉体的成因和源区。结果表明,GR1、DR3井岩芯及当家寺岩体含有电气石脉体的岩性分别是碱长花岗岩、高镁闪长岩及二长花岗岩;其中露头区花岗岩体中电气石脉的宽度约20cm,产状直立,其围岩的形成时代为239~241Ma。背散射及显微图像特征揭示,GR1井和DR3井下中酸性侵入岩及当家寺岩体中电气石为碱族的黑电气石和镁电气石,具有远近不同的多个流体来源。δ^(11)B分布在-11.50‰~-11.93‰,与大陆地壳平均的同位素组成δ^(11)B值(-10‰±3‰)相近。结合区域地质资料,认为在晚三叠世时期,该区域整体处于碰撞期或后碰撞期,陆壳加厚发生部分熔融形成S型花岗岩(~220Ma),其中含硼的热液流体侵位于早期具有俯冲背景的I型花岗岩(~240Ma)中形成电气石脉。  相似文献   

20.
The Central Asian metallogenic domain (CAMD) is a multi-core metallogenic system controlled by boundary strike-slip fault systems. The Balkhash metallogenic belt in Kazakhstan, in which occur many large and super-large porphyritic Cu–Mo deposits and some quartz vein- and greisen-type W–Mo deposits, is a well-known porphyritic Cu–Mo metallogenic belt in the CAMD. In this paper 11 molybdenite samples from the western segment of the Balkhash metallogenic belt are selected for Re–Os compositional analyses and Re–Os isotopic dating. Molybdenites from the Borly porphyry Cu deposit and the three quartz vein-greisen W–Mo deposits—East Kounrad, Akshatau and Zhanet—all have relatively high Re contents (2712–2772 μg/g for Borly and 2.267–31.50 μg/g for the other three W–Mo deposits), and lower common Os contents (0.670–2.696 ng/g for Borly and 0.0051–0.056 ng/g for the other three). The molybdenites from the Borly porphyry Cu–Mo deposit and the East Kounrad, Zhanet, and Akshatau quartz vein- and greisen-type W–Mo deposits give average model Re–Os ages of 315.9 Ma, 298.0 Ma, 295.0 Ma, and 289.3 Ma respectively. Meanwhile, molybdenites from the East Kounrad, Zhanet, and Akshatau W–Mo deposits give a Re–Os isochron age of 297.9 Ma, with an MSWD value of 0.97. Re–Os dating of the molybdenites indicates that Cu–W–Mo metallogenesis in the western Balkhash metallogenic belt occurred during Late Carboniferous to Early Permian (315.9–289.3 Ma), while the porphyry Cu–Mo deposits formed at 316 Ma, and the quartz vein-greisen W–Mo deposits formed at 298 Ma. The Re–Os model and isochron ages thus suggest that Late Carboniferous porphyry granitoid and pegmatite magmatism took place during the late Hercynian movement. Compared to the Junggar-East Tianshan porphyry Cu metallogenic belt in northwestern China, the formation of the Cu–Mo metallogenesis in the Balkhash metallogenic belt occurred between that of the Tuwu-Yandong in East Tianshan and the Baogutu porphyry Cu deposits in West Junggar. Collectively, the large-scale Late Carboniferous porphyry Cu–Mo metallogenesis in the Central Asian metallogenic domain is related to Hercynian tectono-magmatic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号