首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Straits of the Cretan Arc are the gateways through which water exchanges between the Cretan Sea and the SE Ionian and NW Levantine Seas. Dissolved oxygen and nutrient fluxes have been quantified for the major straits — Antikithira, Kassos and Karpathos — by combining chemical bottle-sample data and current measurements obtained during the PELAGOS Project during 1994–1995. Two water masses, Cretan Deep Water (CDW) and Transitional Mediterranean Water (TMW) dominate the circulation through the straits and lead to a vertical redistribution of nutrients in the Eastern Mediterranean Sea.The transport of chemicals through the major straits of the Cretan Arc appears to be highly variable. In the Antikithira and Kassos Straits, a net export of oxygen and nutrients from the Cretan Sea towards the open waters of the Eastern Mediterranean was observed throughout the entire study period. In contrast, a net inflow of oxygen and nutrients of Levantine origin was taking place through the Karpathos Strait. It is concluded that the export of nutrients through the Antikithira and Kassos Straits are almost completely balanced by the net import through the Karpathos Strait.  相似文献   

2.
Five research cruises were undertaken incorporating ADCP sections along the Cretan Arc Straits and CTD surveys covering the entire area of the Straits and the Cretan Sea. In addition, six moorings (with 15 current meters) were deployed within the Straits, which monitored flows in the surface (50 m), intermediate (250 m), and deep (50 m from the bottom) layers. The ADCP, CM, and CTD datasets enable the derivation of water transports through the Cretan Arc Straits to be assessed. Flow structure through the Cretan Arc Straits is not the typical flow regime with a surface inflow and deep outflow, instead there is a persistent deep outflow of Cretan Deep Water (CDW) (σθ>29.2) with an annual mean of ˜0.6 Sv, through the Antikithira and Kassos Straits at depths below 400 m and 500 m, respectively. CDW outflowing transports are higher (˜0.8 Sv) in April–June, and lower (˜0.3 Sv) in October–December. Within the upper water layer (0–˜400 m), the transport and the water exchanges through the Straits are controlled by local circulation features, which weaken substantially below 200 m. The Asia Minor Current (AMC) influences the Rhodes and the Karpathos Straits, resulting in a net inflow of water. In contrast, the Mirtoan/West Cretan Cyclone influences the Antikithira and Kithira Straits, where there is a net outflow. In the Kassos Strait, there is a complex interaction between the East Cretan Cyclone, the Ierapetra Anticyclone and the westward extension of the Rhodes Gyre, which results in a variable flow regime. There is a net inflow in autumn and early winter, and a switch to a net outflow in early spring and summer. The total inflow and outflow, throughout all of the Straits, ranged from ˜2 to ˜3.5 Sv, with higher values in autumn and early winter and lower in summer. The AMC carries ˜2 Sv of inflow through the Rhodes and Karpathos Straits, and this accounts for 60–80% of the total inflow. About 10–15% of the total outflow is of CDW, and a further 45–70% occurs through the upper 400 m of the Kithira and Antikithira Straits. The Kassos Strait exhibits a net inflow of ˜0.7 Sv in autumn and early winter, with a net outflow of ˜0.5 Sv in early spring and summer.  相似文献   

3.
We present a detailed account of the changing hydrography and the large-scale circulation of the deep waters of the Eastern Mediterranean (EMed) that resulted from the unique, high-volume influx of dense waters from the Aegean Sea during the 1990s, and of the changes within the Aegean that initiated the event, the so-called ‘Eastern Mediterranean Transient’ (EMT). The analysis uses repeated hydrographic and transient tracer surveys of the EMed in 1987, 1991, 1995, 1999, and 2001/2002, hydrographic time series in the southern Aegean and southern Adriatic Seas, and further scattered data. Aegean outflow averaged nearly 3 × 106 m3 s−1 between mid-1992 and late 1994, and was largest during 1993, when south and west of Crete Aegean-influenced deep waters extended upwards to 400 m depth. EMT-related Aegean outflow prior to 1992, confined to the region around Crete and to 1800 m depth-wise, amounted to about 3% of the total outflow. Outflow after 1994 up to 2001/2002, derived from the increasing inventory of the tracer CFC-12, contributed 20% to the total, of 2.8 × 1014 m3. Densities in the southern Aegean Sea deep waters rose by 0.2 kg/m3 between 1987 and 1993, and decreased more slowly thereafter. The Aegean waters delivered via the principal exit pathway in Kasos Strait, east of Crete, propagated westward along the Cretan slope, such that in 1995 the highest densities were observed in the Hellenic Trench west of Crete. Aegean-influenced waters also crossed the East Mediterranean Ridge south of Crete and from there expanded eastward into the southeastern Levantine Sea. Transfer into the Ionian mostly followed the Hellenic Trench, largely up to the trench’s northern end at about 37°N. From there the waters spread further west while mixing with the resident waters. Additional transfer occurred through the Herodotus Trough in the south. Levantine waters after 1994 consistently showed temperature–salinity (T–S) inversions in roughly 1000–1700 m depth, with amplitudes decreasing in time. The T–S distributions in the Ionian Sea were more diverse, one cause being added Aegean outflow of relatively lower density through the Antikithira Strait west of Crete. Spreading of the Aegean-influenced waters was quite swift, such that by early 1995 the entire EMed was affected. and strong mixing is indicated by near-linear T–S relationships observed in various places. Referenced to 2000 and 3000 dbar, the highest Aegean-generated densities observed during the event equaled those generated by Adriatic Sea outflow in the northern Ionian Sea prior to the EMT. A precarious balance between the two dense-water source areas is thus indicated. A feedback is proposed which helped triggering the change from a dominating Adriatic source to the Aegean source, but at the same time supported the previous long-year dominance of the Adriatic. The EMed deep waters will remain transient for decades to come.  相似文献   

4.
Nutrient and oxygen data collected in the southern Aegean Sea (Cretan Sea) and the straits of the Cretan Arc, during the four seasonal PELAGOS cruises in 1994–1995, are investigated and compared with data collected from 1987 to 1992 within the same area. During the cruises of the PELAGOS Project, nutrient enrichment of the intermediate layers of the Cretan Sea was observed, as a result of intrusion of ‘nutrient-rich, oxygen-poor’ Transition Mediterranean Water (TMW) compensating the Cretan Deep Water (CDW) outflow. TMW occupied the intermediate layers of the entire Cretan Sea. The concentrations of nutrients within this layer were often two times higher than those observed in the same area during previous studies undertaken before 1992 (increase 2.5 μmol/l of nitrate, 0.05 μmol/l of phosphate and 2.5μmol/l of silicate). The decrease of oxygen in this layer is about 0.8ml/l (35 μmol/l). Outflow of CDW occurs principally through the Antikithira and Kassos Straits (the two deeper straits of the Cretan Arc); it results in an increase of oxygen content but a decrease in the nutrient content of water in the deep and bottom layers outside the Cretan Sea. The major mesoscale features in the area have a major influence of the distributions and exchanges of nutrients and oxygen through the straits of the Cretan Arc. The surface and the intermediate layers were richer in nutrients and poorer in oxygen in spring (March 1994), than in autumn (September 1994).  相似文献   

5.
6.
In order to investigate total organic carbon (TOC) exchange through the Strait of Gibraltar, samples were taken along two sections from the western (Gulf of Cádiz) and eastern (Western Alboran Sea) entrances of the Strait and at the middle of the Strait in April 1998. TOC was measured by using a high-temperature catalytic oxidation method. The results referenced here are based on a three-layer model of water mass exchange through the Strait, which includes the Atlantic inflow, Mediterranean outflow and an interface layer in between. All layers were characterised by a decrease of TOC concentrations from the Gulf of Cádiz to the Western Alboran Sea: from 60–79 to 59–66 μM C in the Atlantic inflow and from 40–60 to 38–52 μM C in the Mediterranean waters, respectively. TOC concentrations in the modified North Atlantic Central Water varied from 43 to 55 μM C. Intermediate TOC values were measured in the interface layer (43–60 μM C). TOC concentrations increased from the middle of the Strait towards continents indicating a contribution of organic carbon of photosynthetic origin along Spain and Morocco coasts or TOC accumulation due to upwelling in the northeastern part of the Strait. Our results indicate that the short-term variability caused by the tide greatly impacts the TOC distribution, particularly in the Gulf of Cádiz. The TOC input from the Atlantic Ocean to the Mediterranean Sea through the Strait of Gibraltar varies from 0.9×104 to 1.0×104 mol C s−1 (or 0.28×1012 to 0.35×1012 mol C year−1, respectively). This estimate suggests that the TOC inflow and outflow through the Strait of Gibraltar are two and three orders of magnitude higher than reported via the Turkish Straits and Mediterranean River inputs.  相似文献   

7.
In March and September 1995, bacterial production was measured by the 3H-leucine method in the oligotrophic Cretan Sea (Aegean Sea, Eastern Mediterranean) in the framework of the CINCS/MTP program. Samples were obtained from four stations (a coastal, a continental shelf and 2 open-sea stations) for the construction of vertical profiles of bacterial abundance and production. Bacterial production ranged from 0.1 μg C m−3 h−1 at 1500 m depth, to 82 μg C m−3 h−1 in March at 50 m at the coastal station. Higher bacterial integrated production was observed in March at the coastal station (131 mg C m−2 d−1 for the 0–100 m layer). Bacterial production, integrated through the water-column, was similar in March and September for the open-sea stations (60–70 mg C m−2 d−1). Relative to production, bacterial concentrations varied little between stations and seasons ranging from 9×105 ml−1 to 3×105 ml−1. Relationships between bacterial biomass and bacterial production indicated seasonal differences, likely reflecting resource limitation of bacterial biomass in March (bloom situation), and predator limitation of bacterial biomass in September (post-bloom situation).  相似文献   

8.
The biogeochemistry of the following elements Al, Fe, Sibio, POC, PNtot, Cabio, Sorg, P and Mn has been studied within waters of the Cretan Sea in March and September 1994, as part of the PELAGOS project. Particulate aluminosilicate concentrations, exemplified by Al, are very low (<1 μgl−1) especially in the upper waters. Higher concentrations occur below 200 m, especially at depths of 200 m and 500–700 m in the central and eastern areas, and are thought to result from sediment injections from the shelf edge and slope. The results for Sibio, Cabio, P and Sorg show much higher concentrations within the photic waters. Temporal and spatial high concentrations in these waters closely relate to the existence of cyclonic eddies on the east and west sides of the sea, while low concentrations are associated with an intervening anticyclonic eddy. However in September, discharge of Black Sea Water in the west sufficiently suppresses the thermocline to prevent upwelled water from reaching the surface and hence these substances are prevented from forming.Particulate Fe (expressed as Feexcess) concentrations show much higher concentrations relative to Al in September, and are thought to result from additional atmospheric inputs. The low particulate Mn concentrations in the upper water compared with deeper waters are considered to be a product of photoinhibition of MnOx precipitation from Mn(II).An attempt has been made to assess input/output budgets of Al, Ca, Fe and Mn through the Antikithira and Kassos Straits. Much of the outflows leave through the Kassos Strait and, except for Ca, net outflows through the Antikithira Straits are negligible.  相似文献   

9.
The Great Belt, the Øresund and the Little Belt connect the central Baltic Sea and the Kattegat. A fixed station was moored in the contraction area in the Little Belt during the period 18–28 July 1995, measuring temperature, salinity and current in two levels, while discharge was measured by the RVDana. The composite Froude number calculated at the fixed station shows that the two layer flow through this area was most often supercritical. The discharges were satisfactorily related to the currents measured at the fixed station, and time-series of transports through the Little Belt were established. When compared to the transports through the Øresund the water transport ratio (Øresund:Little Belt) was found to be 4·4, while the salt transport ratio was found to be 3·0. The resistance of the Little Belt, when considering the differences in sea level from Gedser to Hornbæk, was 1839×10−12 s2 m−5. On the basis of water level and surface salinity measurements made during the period 1931–76, a net discharge of 2300 m3 s−1and a net salt transport of 36 tonnes s−1through the Little Belt from the central Baltic Sea were found.  相似文献   

10.
Shear and Richardson number in a mode-water eddy   总被引:1,自引:0,他引:1  
Measurements of stratification and shear were carried out as part of the EDDIES tracer release experiment in mode-water eddy A4 during the summer of 2005. These measurements were accomplished using both shipboard instrumentation and a drifting mooring. A strong relationship between shear intensity and distance from the center of the eddy A4 was observed with the shipboard ADCP. Diapycnal diffusivity at the SF6 tracer isopycnal prior to and during the release was estimated from the drifting mooring to be 2.9×10−6 m2 s−1. Diffusivity increased by an order of magnitude to 3.2×10−5 m2 s−1 during the period of the final tracer survey in early September, which was similar to the value estimated from the tracer analysis for the whole experiment (3.5×10−5 m2 s−1, [Ledwell, J.R., McGillicuddy Jr., D.J., Anderson, L.A., 2008. Nutrient flux into an intense deep chlorophyll layer in a mode-water eddy. Deep-Sea Research II, this issue [doi:10.1016/j.dsr2.2008.02.005]].  相似文献   

11.
This study discusses branching of the Kuroshio Current including North Pacific Intermediate Water (NPIW) into the South China Sea (SCS). The spreading path of the subtropical salinity minimum of NPIW is southwestward pointing to the Luzon Strait between Taiwan and Luzon islands. Using a large collection of updated hydrography, results show that the SCS is a cul-de-sac for the subtropical NPIW because even the NPIW’s upper boundary neutral density surface σ N = 26.5 is completely blocked by the Palawan sill and partly blocked by the southern Mindoro Strait. In autumn, NPIW is driven out of the Luzon Strait by the preceding anticyclonic summer monsoon due to an intraseasonal variation and seasonal phase lag response to the weaker summer monsoon. Stronger inflow under winter monsoon than outflow under summer monsoon results in a net annual transport of NPIW of about 1.1 ± 0.2 Sv (1 Sv = 106 m3s−1) into the SCS. This net transport accounts for the anomaly in NPIW transport across the World Ocean Circulation Experiment section P8 (130° E). An earlier study estimated a large westward NPIW transport of about 3.9 ± 0.2 Sv, resulting in a difference of 1.2 ± 0.2 Sv from the basin-wide mean of 2.7 ± 0.2 Sv. Observations are generally in agreement with numerical results although the intraseasonal signal seems to cause a slight bias and remains to be simulated by future model experiments.  相似文献   

12.
A Continuous Mapping of Tidal Current Structures in the Kanmon Strait   总被引:1,自引:0,他引:1  
Tidal current structures at the Hayatomono-Seto of the Kanmon Strait are mapped continuously during March 17 to 20, 2003, including a spring tide, by the eight coastal acoustic tomography (CAT) systems distributed on both the sides of the strait. Detailed structures of strong tidal currents and their associated vortices are well reconstructed by the inverse analysis of travel-time difference data obtained from the reciprocal sound transmission between the paired CAT systems located at both sides of the strait mainly. The results are well compared to the shipboard acoustic Doppler current profiler (ADCP) data at the correlation rate of 0.84/0.82 and the RMS difference of 0.47/0.48 ms−1 for the east-west/north-south current after the selection of good data. During the observation period, the maximum hourly mean volume transport for the upper 7 m layer across the strait reached 13,314 m3 s−1 for the eastward and 5,547 m3 s−1 for the westward. The daily mean transport is directed to the eastward and estimated 1,470 m3 s−1 and 2,140 m3 s−1 for March 18 and 19, respectively, when a spring tide occurs.  相似文献   

13.
In the spring of 1988, time series of microstructure and ADCP current profiles were collected at four locations in the North Main Basin of Puget Sound, Washington. Depth and time averages of diapycnal diffusivity at the four stations (1.8−67.0×10−4 m2 s−1) were one to three decades above typical open-ocean thermocline levels. The buoyancy frequency-squared N2 was near open-ocean levels, but unlike the open-ocean where N2S2, finescale shear-squared S2 was three to six times N2 over significant portions of the water column at two of the stations. The time and space mean of all measurements ( ) is close to inferred vertical eddy diffusivity from a primitive equation model for Puget Sound (Kz=3×10−3 m2 s−1) (J. Geophys. Res. 96 (1991) 16779). Large time and space variability of Kρ was found, with differences of inter-station, depth–time means over one decade. A simple scaling argument using the observed Kρ suggests significant exchange of mass between the layers of the subtidal flow over the basin's residence time. Additionally, measurements show that local mixing may be comparable to volume-weighted sill mixing in modifying the Main Basin's stratification. Both are contrary to the “advective reach” simplification of fjord dynamics. The mixing levels were dominated by the passage of a mid-depth, southward-flowing density intrusion and what we interpret as a strongly advected, non-linear internal tide. These mechanisms elevated profile-averaged Kρ by more than 10 times background levels, with sustained patches of Kρ≥1×10−2 m2 s−1. Critical 8-m gradient Richardson numbers (Ri8<0.25) matching regions of overturns (>20 m) and strong turbulence suggest that shear instabilities dominated the turbulence production, though there was support for double-diffusive convection in the warm core of the density intrusion.  相似文献   

14.
The spreading of water of Mediterranean origin west of the Iberian Peninsula was studied with hydrographic data from several recent cruises and current measurements from the BORD-EST programme. The vertical breakdown of the “Mediterranean salt” content reveals the dominant contribution of the so-called lower core of the outflow (60%), and the significant fraction (22%) brought downward to levels below 1500 m by diffusion. Intense salinity maxima in the upper core (18%) are only encountered south of 38°N in the vein flowing northward along the continental slope, and at a few stations in the deep ocean. Apart from the coastally trapped vein, other preferred paths of the water mass are revealed by the horizontal distributions of salinity maximum and Mediterranean Water percentage. One is southward, west of the Gorringe Bank, and two northwestward ones lie around 40°N and west of the Galicia Bank. Year-long velocity measurements in the Tagus Basin show westward mean values of 7 × 10−2 m s−1 at 1000 m associated with a very intense mesoscale variability. This variability is related to the pronounced dynamical signature of the outflow which favours instability in any branch having detached from the slope current. From a mixing point of view, the strong interleaving activity occurring near Cape St-Vincent is illustrated, but its contribution to the downstream salinity decrease in the coastally trapped vein is weak. Current and meddy detachment play the dominant role, with a scaling estimate of their associated lateral diffusivity of order 500 m2 s−1. The statistical distribution of the density ratio parameter, which governs double-diffusion at the base of the Mediterranean Water, was found to be very tight around Rπ = 1.3 in the temperature range of 5°C< φ < 8°C. North of 40°N, the presence of a fraction of Labrador Sea Water in the underlying water is shown to decrease that parameter and should favour the formation of salt fingers.  相似文献   

15.
Budgets for conservative tracers are used to determine the flow through the Irish Sea and combined with available data on nutrient distributions and inputs to estimate non-conservative nutrient fluxes. Steady state salinity and caesium-137 balances yield consistent estimates of the flow through the Irish Sea of Φ≈6×104 m3s−1. Using both tracers together with a mass balance allows the inclusion of separate diffusive flux terms and results in a diffusivity estimate ofK≈450 m2s−1and a reduced flow of Φ≈4×104 m3s−1. These values are, however, sensitive to the gradients of salinity and caesium-137 concentration, which are not well defined by the observations.Following the LOICZ procedures, salinity and mass balances were combined with analogous statements for dissolved inorganic phosphorus (DIP) and dissolved inorganic nitrogen (DIN), in order to assess the non-conservative process rates. With regard to phosphorus it was found that the Irish Sea is close to balance with a slight net uptake of dissolved inorganic phosphorus, but the implied excess of uptake over release is not significant on account of uncertainties in the observations of boundary values and inputs. The DIN budget is subject to comparable uncertainties in the input data but does, however, indicate a significant imbalance with an average rate of denitrification of the order 0·3 mol N m−2y−1.The implications of these budget results and their limitations are considered in relation to the application of the budgeting approach to areas with sparse data coverage. While the application of box model disciplines to conservative tracers can lead to satisfactory estimates of advective transport, the extension to non-conservative components requires extensive data to adequately specify the boundary values and input parameters averaged over the seasonal cycle.  相似文献   

16.
This paper presents a parameterized model for the particulate and dissolved manganese profiles in two stratified fjords. Rates of oxidation and reduction of manganese are of the order of 1.0 × 10−15 mol cm−3 s−1. Oxidation of manganese is probably not promoted by an inorganic surface-catalyzed reaction. Cycling of manganese in the redoxcline is extensive (10–100 cycles) and is related to the input of manganese to the fjords. Calibration of the model against sediment-trap-data allow instantaneous eddy diffusion coefficients to be estimated. These are of the order of 0.01 and 1.0 × 10−4 cm2 s−1.  相似文献   

17.
The complicated flow pattern in the intermediate layer of the Luzon Strait could directly affect the efficiency of the water and energy exchange between the South China Sea (SCS) and the North Pacific. Here we present a subsurface anticyclonic eddy in the Luzon Strait deduced using observations conducted in October 2005. On the basis of the hydrographic and current measurements, an anticyclonic eddy was found in the intermediate layer, i.e., about 26.8–27.3σθ, 500–900 m. It captures part of the SCS Intermediate Water outflow in the northern Luzon Strait, and carries it to flow southward and then westward back into the SCS in the southern Luzon Strait, with volume transport of about 1.9 × 106 m3 s−1. The simulated results from Hybrid Coordinate Ocean Model also suggest the existence of this anticyclonic eddy that develops and lingers for a month long.  相似文献   

18.
19.
During the CINCS project (Pelagic–benthic Coupling IN the oligotrophic Cretan Sea—NE Mediterranean), a single mooring with two sediment traps (at 200 and 1515m water depth) and two current meters was deployed in the southern Cretan Sea margin at a depth of 1550 m. A second mooring deployed at the 500 m station was lost, as a result of fishing activities. The duration of the study was 12 months (November 1994 to November 1995) with sampling intervals of 15 or 16 days. The traps were retrieved, serviced and the sedimented material was collected every 6 months. In total, 48 samples were collected (24 from each trap) throughout the study period and fluxes of total particulate mass, opal, organic matter, carbonates, and lithogenic component were measured. Natural radionuclides (210Po and 210Pb) were determined for all trap samples. Total mass flux and the fluxes of four major constituents increased with depth, the total mass flux reaching values of nearly 550 mg m−2 d−1 at 1515 m and 187 mg m−2 d−1 at 200 m depth, following the same patterns observed in other experiments (ECOMARGE, SEEP-I, SEEP-II). The mean annual mass fluxes were 209 and 49.8 mg m−2 d−1 at the near bottom and near surface trap respectively. This suggests that lateral transport of particulate matter is of importance in the area. Total mass fluxes at the two depths were characterized by different seasonal fluctuations, although a general decreasing trend was observed from the I (winter) to the II (summer) deployment at both depths. This was mainly a result of reductions in aluminosilicate inputs during the summer dry period. At 200 m depth carbonates were more important during winter, because of a large carbonate input consisting mainly of coccoliths of Emiliania huxleyi, while during the summer decreased fluxes of carbonates and aluminosilicates resulted in a reduction of the mass flux. In contrast, at 1515 m depth the lithogenic component was the dominant component during the winter deployment, indicating a terrigenous input. During the summer period the decrease in mass flux was strongly effected by the decrease in aluminosilicates. There was a diminution in the organic carbon content with a concomitant increase in total mass flux, which, together with the almost negligible increase in the annual 210Pb activity with depth and the increase of 210Po activity with depth could be interpreted as indicating a contribution of resuspended material to the input at 1515 m. The complex mesoscale circulation of the Cretan Sea, consisting of a cyclone (east)–anticyclone (west) system, controls particle transfer in the area. This hydrodynamic system seems to move water masses towards the southern Cretan Sea margin, and consequently carry materials from the open sea to the upper slope and shelf.  相似文献   

20.
The uptake of atmospheric carbon dioxide in the water transported over the Bering–Chukchi shelves has been assessed from the change in carbon-related chemical constituents. The calculated uptake of atmospheric CO2 from the time that the water enters the Bering Sea shelf until it reaches the northern Chukchi Sea shelf slope (1 year) was estimated to be 86±22 g C m−2 in the upper 100 m. Combining the average uptake per m3 with a volume flow of 0.83×106 m3 s−1 through the Bering Strait yields a flux of 22×1012 g C year−1. We have also estimated the relative contribution from cooling, biology, freshening, CaCO3 dissolution, and denitrification for the modification of the seawater pCO2 over the shelf. The latter three had negligible impact on pCO2 compared to biology and cooling. Biology was found to be almost twice as important as cooling for lowering the pCO2 in the water on the Bering–Chukchi shelves. Those results were compared with earlier surveys made in the Barents Sea, where the uptake of atmospheric CO2 was about half that estimated in the Bering–Chukchi Seas. Cooling and biology were of nearly equal significance in the Barents Sea in driving the flux of CO2 into the ocean. The differences between the two regions are discussed. The loss of inorganic carbon due to primary production was estimated from the change in phosphate concentration in the water column. A larger loss of nitrate relative to phosphate compared to the classical ΔN/ΔP ratio of 16 was found. This excess loss was about 30% of the initial nitrate concentration and could possibly be explained by denitrification in the sediment of the Bering and Chukchi Seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号