首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a model of a young binary with a low-mass secondary component. Mass accretion from the remnants of the protostellar cloud onto the binary components is assumed to take place in accordance with current models; i.e., it proceeds mainly onto the low-mass component. The accretion is accompanied by mass outflow (disk wind), whose low-velocity component can be partially captured by the primary component. As a result, an asymmetric common envelope is formed. Its densest part is involved in the orbital motion of the secondary and can periodically shield the primary component of the binary from the observer. Assuming a standard dust-to-gas ratio for the disk wind (1: 100), we calculated the possible photometric effects from such eclipses and showed that they could be observed even at moderate accretion rates onto the low-mass binary component, ∼10−8–10−9 M per year. In this case, the parameters of the minima depend on the model of the disk wind, on the ratio of its characteristic velocity to the orbital velocity of the secondary, and on its orbital inclination to the line of sight. These results can form the basis for interpreting a wide range of phenomena observed in young stars, such as the activity cycles in UX Ori stars, the unusually broad minima in some young eclipsing systems, etc., and for searching for substellar objects and massive protoplanets. In addition, the peripheral parts of the gas and dust disk around a young binary can fall within the shadow zone produced by the opaque part of the common envelope. In such cases, a shadow from the common envelope must be observed on the disk; this shadow must move over the disk following the orbital motion of the low-mass component. Detection and investigation of such structures in the images of protoplanetary disks may become a method of searching for protoplanets and studying binaries at early stages of their evolution.  相似文献   

2.
We consider the problem of dust grain survival in the disk winds from T Tauri and Herbig Ae stars. For our analysis, we have chosen a disk wind model in which the gas component of the wind is heated through ambipolar diffusion to a temperature of ~104 K. We show that the heating of dust grains through their collisions with gas atoms is inefficient compared to their heating by stellar radiation and, hence, the grains survive even in the hot wind component. As a result, the disk wind can be opaque to the ultraviolet and optical stellar radiation and is capable of absorbing an appreciable fraction of it. Calculations show that the fraction of the wind-absorbed radiation for T Tauri stars can be from 20 to 40% of the total stellar luminosity at an accretion rate ? a = 10?8-10?6 M yr?1. This means that the disk winds from T Tauri stars can play the same role as the puffed-up inner rim in current accretion disk models. In Herbig Ae stars, the inner layers of the disk wind (r ≤ 0.5 AU) are dust-free, since the dust in this region sublimates under the effect of stellar radiation. Therefore, the fraction of the radiation absorbed by the disk wind in this case is considerably smaller and can be comparable to the effect from the puffed-up inner rim only at an accretion rate of the order of or higher than 10?6 M yr?1. Since the disk wind is structurally inhomogeneous, its optical depth toward the observer can be variable, which should be reflected in the photometric activity of young stars. For the same reason, moving shadows from gas and dust streams with a spiral-like shape can be observed in high-angular-resolution circumstellar disk images.  相似文献   

3.
We present the results of our numerical simulations of the cyclic brightness modulation in young binary systems with eccentric orbits and low-mass secondary components. We suggest that the binary components accrete matter from the remnants of the protostellar cloud, with the main accretor (according to current models) being the low-mass component. The brightness variations of the primary are attributable to the periodic extinction variations on the line of sight caused by the disk wind from the secondary and by the common envelope produced by this wind. The distribution of matter in the envelope was calculated in the ballistic approximation. When calculating the optical effects produced by the dust component of the disk wind, we adopted the dust-to-gas mass ratio of 1:100 characteristic of the interstellar medium and the optical parameters of the circumstellar dust typical of young stars. Our calculations show that the theoretical light curves for binaries with elliptical orbits exhibit a wider variety of shapes than those for binaries with circular orbits. In this case, the parameters of the photometric minima (their depth, duration, and shape of the light curve) depend not only on the disk-wind parameters and the orbital inclination of the binary to the line of sight, but also on the longitude of the periastron. We investigate the modulation of the scattered radiation from the common envelope with orbital phase in the single-scattering approximation. The modulation amplitude is shown to be at a maximum when the system is seen edge-on and to be also nonzero in binaries seen pole-on. We discuss possible applications of the theory to young stellar objects. In particular, several model light curves have been found to be similar to those of candidate FU Orionis stars (FUORs).  相似文献   

4.
We consider a model of cyclic brightness variations in a young star with a low-mass (q = M 2/M 1 ≤ 0.1) companion that accretes matter from the remnants of a protostellar cloud (circumbinary disk). We assume that the orbit of the companion is circular and that its plane does not coincide with the disk plane. We have computed grids of hydrodynamic models for such a binary by the SPH method based on which we have investigated the circumstellar extinction variations produced by the streams of matter and density waves excited in the circumbinary disk by the orbital motion of the companion. We show that, depending on the inclination and orientation of the binary’s line of nodes relative to the observer, the brightness of the primary component can undergo various (in shape and depth) oscillations with a period equal to the orbital one. In contrast to the models with coplanar circular orbits, the accretion rate onto the components of a binary with a noncoplanar orbit depends on the orbital phase. The results of our computations can be used to study the cyclic activity of UX Ori stars and young eclipsing binaries with anomalously long eclipses.  相似文献   

5.
The evolution of the family of binaries with a low-mass star and a compact neutron star companion (low-mass X-ray binaries (LMXBs) with neutron stars) ismodeled by the method of population synthesis. Continuous Roche-lobe filling by the optical star in LMXBs is assumed to be maintained by the removal of orbital angular momentum from the binary by a magnetic stellar wind from the optical star and the radiation of gravitational waves by the binary. The developed model of LMXB evolution has the following significant distinctions: (1) allowance for the effect of the rotational evolution of a magnetized compact remnant on themass transfer scenario in the binary, (2) amore accurate allowance for the response of the donor star to mass loss at the Roche-lobe filling stage. The results of theoretical calculations are shown to be in good agreement with the observed orbital period-X-ray luminosity diagrams for persistent Galactic LMXBs and their X-ray luminosity function. This suggests that the main elements of binary evolution, on the whole, are correctly reflected in the developed code. It is shown that most of the Galactic bulge LMXBs at luminosities L x > 1037 erg s?1 should have a post-main-sequence Roche-lobe-filling secondary component (low-mass giants). Almost all of the models considered predict a deficit of LMXBs at X-ray luminosities near ~1036.5 erg s?1 due to the transition of the binary from the regime of angular momentum removal by a magnetic stellar wind to the regime of gravitational waves (analogous to the widely known period gap in cataclysmic variables, accreting white dwarfs). At low luminosities, the shape of the model luminosity function for LMXBs is affected significantly by their transient behavior-the accretion rate onto the compact companion is not always equal to the mass transfer rate due to instabilities in the accretion disk around the compact object. The best agreement with observed binaries is achieved in the models suggesting that heavy neutron stars with masses 1.4–1.9M can be born.  相似文献   

6.
Hydrodynamic models of a young binary accreting matter from the remnants of a protostellar cloud have been calculated by the SPH method. Periodic variations in column density in projection onto the primary component are shown to take place at low inclinations of the binary plane to the line of sight. These can result in periodic extinction variations accompanied by brightness variations in the primary. Generally, there can be three periodic components. The first component has a period equal to the orbital one and is attributable to the streams of matter penetrating into the inner regions of the binary. The second component has a period that is a factor of 5–8 longer than the orbital one and is related to the density waves generated in a circumbinary (CB) disk. Finally, the third, longest period is attributable to the precession of the inner CB disk regions. The relationship between the amplitudes of these cycles depends on the model parameters as well as on the inclination and orientation of the binary in space. We show that at a dust-togas ratio of 1: 100 and amass extinction coefficient of 250 cm2 g?1, the amplitude of the V-band brightness variations in the primary component can reach 1 m at a mass accretion rate onto the binary components of 10.8?8 M yr?1 and a 10° inclination of the binary plane to the line of sight. We discuss possible applications of the model to young, pre-main-sequence stars.  相似文献   

7.
We consider a model for the cyclic activity of young binary stars that accrete matter from the remnants of a protostellar cloud. If the orbit of such a binary system is inclined at a small angle to the line of sight, then the streams of matter and the density waves excited in the circumbinary disk can screen the primary component of the binary from the observer. To study these phenomena by the SPH (smoothed particle hydrodynamics) method, we have computed grids of hydrodynamic models for binary systems based on which we have constructed the light curves as a function of the orbital phase. The main emphasis is on investigating the properties of the brightness oscillations. Therefore, the model parameters were varied within the following ranges: the component mass ratio q = M 2: M 1 = 0.2–0.5 and the eccentricity = 0–0.7. The parameter that defined the binary viscosity was also varied. We adopted optical grain characteristics typical of circumstellar dust. Our computations have shown that bimodal oscillations are excited in binaries with eccentric orbits, provided that the binary components do not differ too much in mass. In this case, the ratios of the periods and amplitudes of the bimodal oscillations and their shape depend strongly on the inclination of the binary plane and its orientation relative to the observer. Our analysis shows that the computed light curves can be used in interpreting the cyclic activity of UX Ori stars.  相似文献   

8.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

9.
The detailed evolution of low-mass main-sequence stars (M < 1M ) with a compact companion is studied. For angular momentum loss associated with magnetic braking it is found that about 10–11–10–12 M yr–1 in stellar wind loss would be required. This wind is 102–103 times stronger than the solar wind, so we believe here magnetic stellar wind is insufficient. It is well known that there is mass outflow in low-mass close binary systems. We believe here that these outflows are centrifugal driven winds from the outer parts of the accretion disks. The winds extract angular momentum from these systems and therefore drive secular evolution. Disk winds are preferred to winds from the secondary, because of the lower disk surface gravity.  相似文献   

10.
Most main sequence stars are binaries or higher multiplicity Systems and it appears that at birth most stars have circumstellar disks. It is commonly accepted that planetary systems arise from the material of these disks; consequently, binary and multiple systems may have a main role in planet formation. In this paper, we study the stage of planetary formation during which the particulate material is still dispersed as centimetre-to-metre sized primordial aggregates. We investigate the response of the particles, in a protoplanetary disk with radius RD = 100 AU around a solar-like star, to the gravitational field of bound perturbing companions in a moderately wide (300–1600 AU) orbit. For this purpose, we have carried out a series of simulations of coplanar hierarchical configurations using a direct integration code that models gravitational and viscous forces. The massive protoplanetary disk is around one of the components of the binary. The evolution in time of the dust sub-disk depends mainly on the nature (prograde or retrograde) of the relative revolution of the stellar companion, and on the temperature and mass of the circumstellar disk. Our results show that for binary companions near the limit of tidal truncation of the disk, the perturbation leads to an enhanced accretion rate onto the primary, decreasing the lifetime of the particles in the protoplanetary disk with respect to the case of a single star. As a consequence of an enhanced accretion rate the mass of the disk decreases faster, which leads to a longer resultant lifetime for particles in the disk. On the other hand, binary companions may induce tidal arms in the dust phase of protoplanetary disks. Spiral perturbations with m = 1 may increase in a factor 10 or more the dust surface density in the neighbourhood of the arm, facilitating the growth of the particles. Moreover, in a massive disk (0.01M⊙) the survival time of particles is significantly shorter than in a less massive nebula (0.001M⊙) and the temperature of the disk severely influences the spiral-in time of particles. The rapid evolution of the dust component found in post T Tauri stars can be explained as a result of their binary nature. Binarity may also influence the evolution of circumpulsar disks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We consider a model for the cyclic brightness variations of a young star with a low-mass companion that accretes matter from the remnants of a protostellar cloud. At small inclinations of the binary orbit to the line of sight, the streams of matter and the density waves excited in the circumbinary disk can screen the primary component of the binary from the observer. To study these phenomena, we have computed grids of hydrodynamic models for binary systems by the SPH method based on which we have calculated the phase light curves for the different orientations of the orbit. The model parameters were varied within the following ranges: the component mass ratio q = 0.01–0.1 and the eccentricity e = 0–0.5. We adopted optical grain characteristics typical of circumstellar dust. Our computations have shown that the brightness oscillations with orbital phase can have a complex structure. The amplitudes and shapes of the light curves depend strongly on the inclination of the binary orbit and its orientation relative to the observer and on the accretion rate. The results of our computations are used to analyze the cyclic activity of UX Ori stars.  相似文献   

12.
Early-Type Stars     
Away from the young disk, several classes of early type stars are found. They include (i) the old, metal-poor blue horizontal branch stars of the halo and the metal-poor tail of the thick disk; (ii) metal-rich young A stars in a rapidly rotating subsystem but with a much higher velocity dispersion than the A stars of the young disk, and (iii) a newly discovered class of metal-poor young main sequence A stars in a subsystem of intermediate galactic rotation (Vrot ≈ 120 km s−1). The existence and kinematics of these various classes of early type stars provide insight into the formation of the metal-poor stellar halo of the Galaxy and into the continuing accretion events suffered by our Galaxy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
In the present paper we combine an N-body code that simulates the dynamics of young dense stellar systems with a massive star evolution handler that accounts in a realistic way for the effects of stellar wind mass loss. We discuss two topics.
  1. The formation and the evolution of very massive stars (with masses >120 M) is followed in detail. These very massive stars are formed in the cluster core as a consequence of the successive (physical) collisions of the 10–20 most massive stars in the cluster (this process is known as ‘runaway merging’). The further evolution is governed by stellar wind mass loss during core hydrogen and core helium burning (the WR phase of very massive stars). Our simulations reveal that, as a consequence of runaway merging in clusters with solar and supersolar values, massive black holes can be formed, but with a maximum mass ≈70 M. In low-metallicity clusters, however, it cannot be excluded that the runaway-merging process is responsible for pair-instability supernovae or for the formation of intermediate-mass black holes with a mass of several 100 M.
  2. Massive runaways can be formed via the supernova explosion of one of the components in a binary system (the Blaauw scenario), or via dynamical interaction of a single star and a binary or between two binaries in a star cluster. We explore the possibility that the most massive runaways (e.g. ζ Pup, λ Cep, BD+43°3654) are the product of the collision and merger of two or three massive stars.
  相似文献   

14.
Using visual, photographic, and photoelectric measurements, we have constructed a historical light curve for the young binary system UY Aur on an interval longer than 100 yr. About a quarter of all magnitude estimates have been obtained for the first time from photographic plates of the Sternberg Astronomical Institute and Harvard College Observatory Astronomical Plate Stacks. Analysis of the light curve and the magnitude dependences of the polarization and color has led us to the following conclusions. Cyclic variations in the seasonally mean brightness of the binary’s primary component UY Aur A with a period of ≃16.3 yr occurred from the mid-1920s to the mid-1940s and after 1986. The variations are caused by the change in the rate of disk accretion onto the star attributable to the motion of the hypothetical companion UY Aur C around the primary star in an orbit with a semimajor axis of ≃ 6 AU. From the early 1950s to the mid-1980s, the periodicity of the seasonally mean variations was not noticeable due to nonperiodic eclipses of UY Aur A by gas-dust clouds. Between 1945 and 1974, another gas-dust cloud obscured and still obscures the component UY Aur B, causing its mean optical brightness to drop by several magnitudes. The role of the clouds that caused an almost simultaneous eclipse of the stars, whose separation in projection onto the celestial sphere exceeds 100 AU, is played by the denser and puffed-up regions of their accretion disks. These regions are the result of a dynamical interaction between the binary’s stars and the outer circumbinary accretion disk. The extinction variations with time are attributable to orbital motion of the binary’s stars and azimuthal inhomogeneity of the clump regions in the disks. A number of observational tests are suggested to verify our conclusions.  相似文献   

15.
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around ‘close’ binary star systems with stellar separations 0.05 AU?aB?0.4 AU and binary eccentricities 0?eB?0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances QB≡aB(1+eB)?0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.  相似文献   

16.
Recent ultraviolet observations point out that there is hot, dense plasma associated with the optical jet in some T Tauri stars. In this contribution, cool MHD disk wind physics is reviewed by means of a self-similar analytical model to analyze whether hot (Te ? 80,000 K) and dense (ne ? 109 cm-3) plasma can be produced in disk winds. It is shown that these high densities can only be achieved at the base of the wind where the stellar X-rays radiation field is strong. The propagation of the X-rays radiation through the disk wind is analyzed: a cocoon of photoionized gas is generated around the star. However, it is difficult to foresee how temperatures as high as ~ 5 × 104 can be reached unless a significant fraction of the X-rays radiation is produced by magnetic reconnection at the boundary between the stellar magnetosphere and the accretion disk.  相似文献   

17.
The accretion activity of young binaries with low-mass (q = M 2/M 1 ≤ 0.1) secondary components is studied. The source of accreted matter is a common disk surrounding the binary system and coplanar with its orbit. Gas dynamic models of these systems are used to calculate the rates of accretion to the components and their dependence on the phase of the orbital period is studied. It is shown that, despite its low mass, the secondary accretes matter at a relatively higher rate than the primary. This result can be regarded as an extension of the work of Artymowicz and Lubow for young binaries with components that have unequal masses. Possible astrophysical applications of the theory are discussed.  相似文献   

18.
In the UV spectra of BP Tau, GW Ori, T Tau, and RY Tau obtained with the Hubble Space Telescope, we detected an inflection near 2000 Å in the F λ c (λ) curve that describes the continuum energy distribution. The inflection probably stems from the fact that the UV continuum in these stars consists of two components: the emission from an optically thick gas with T<8000 K and the emission from a gas with a much higher temperature. The total luminosity of the hot component is much lower than that of the cool component, but the hot-gas radiation dominates at λ<1800 Å. Previously, other authors have drawn a similar conclusion for several young stars from low-resolution IUE spectra. However, we show that the short-wavelength continuum is determined from these spectra with large errors. We also show that, for three of the stars studied (BP Tau, GW Ori, and T Tau), the accretion-shock radiation cannot account for the observed dependence F λ c (λ) in the ultraviolet. We argue that more than 90% of the emission continuum in BP Tau at λ>2000 Å originates not in the accretion shock but in the inner accretion disk. Previously, a similar conclusion was reached for six more classical T Tau stars. Therefore, we believe that the high-temperature continuum can be associated with the radiation from the disk chromosphere. However, it may well be that the stellar chromosphere is its source.  相似文献   

19.
We present synthetic images of accretion disks around young stars computed from a model where the disk's vertical structure is solved assuming hydrostatic equilibrium. The disk's brightness results from three emission processes: (1) the reprocessing of stellar photons in the optically thick disk's regions; (2) the scattering of stellar photons in the optically thin parts of the disk; and (3) the thermal emission of the disk due to viscous energy dissipation during the accretion process.We discuss the relative importance of these emission processes at wavelengths ranging from 1.2 to 20m.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

20.
The synchronization between the orbital motion and axial rotation of the two component stars of a binary system is reviewed. Some previous published papers are mentioned and the general conclusion is outlined: If we shall use a rotating coordinate system synchronous with one of the two stellar axial rotations, it is not possible to obtain a Jacobi integral and the Roche geometry cannot be further analyzed. In addition, a theoretical approach is summarized in order to use the axial rotations of the two component stars, even if the constants of the stellar structure (k2)1, (k2)2must be taken into consideration. So it is found that if the stellar angular velocities are higher than the corresponding Keplerian angular velocity (ωi≫ ωk, i= ), the problem of the rotational effect could be of practical consideration. Finally, a theoretical relationship between the two constants (k2)1and (k2)2of the stellar structure is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号