首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
采用与作者2014年发表的“大别-苏鲁及其邻近地区基于背景噪声的勒夫波群速度成像”文章相同的资料,用频时分析提取5 000余条瑞雷波和4 000余条勒夫波相速度频散曲线,反演得到了8—32 s的瑞雷波和勒夫波相速度分布图像.结果显示,瑞雷波与勒夫波相速度分布具有很好的一致性.8 s的相速度分布与地表构造特征相吻合,造山带与隆起区均表现为高速,盆地因其规模不同而显示不同程度的低速.随着周期的增大,大别 苏鲁的高速带由强变弱,但始终存在.16—24 s的高速可能主要受到中地壳高速的控制,而32 s的高速则可能与上地幔顶部的高速有关.比较大别造山带与苏鲁造山带的平均频散曲线,发现大别造山带和苏鲁造山带的勒夫波频散曲线均高于AK135模型计算的理论频散曲线,而瑞雷波则没有这一现象. 这可能意味着两个地区有比较强烈的径向各向异性.   相似文献   

2.
蒙古中南部地区基于天然地震的 勒夫波相速度层析成像   总被引:5,自引:2,他引:3  
借助中蒙国际科技合作项目获取的宽频带地震台阵观测数据, 采用小波变换频时分析技术提取了蒙古中南部地区901条双台间基阶勒夫波相速度频散曲线. 通过对该曲线进行二维反演, 重构了蒙古中南部地区12—80 s周期内横向分辨率约为50 km的勒夫波相速度分布图. 结果显示, 蒙古中南部地区相速度分布存在一定的横向不均匀性. 短周期内(12—20 s), 相速度分布受地表地形的控制, 杭爱—肯特山盆表现为高速异常, 乌兰巴托盆地、 中戈壁带及南戈壁带均表现为低速异常; 中等周期内(20—40 s), 研究区相速度分布形态与短周期类似, 但横向不均匀性强度减弱; 中长周期内(40—70 s), 南戈壁带和杭爱—肯特山盆为低速异常, 中戈壁带为高速异常, 整个区域表现出南北低速异常夹中部高速异常的形态, 与瑞雷波中长周期速度分布形态显著不同. 结合中戈壁带分布大量新生代火山岩, 推测研究区域内存在较强的径向各向异性.   相似文献   

3.
熊诚  艾三喜  谢祖军  熊熊 《地震学报》2019,41(3):302-313
基于我国台湾地区24个宽频带地震台记录到的长达18个月的三分量连续波形数据,采用交叉项互相关方法提取了瑞雷波的经验格林函数张量,进而反演获得了台湾地区6—22 s周期的瑞雷波相速度分布图像,较好地刻画了该地区的地壳速度结构。结果显示:短周期图像上的滨海平原、屏东平原等呈低速特征,西部丘陵、中央山脉和海岸山脉呈高速特征;低速区域随相速度周期的增大而逐渐东移;中长周期图像上,中央山脉南北部均呈低速且南侧的速度较北侧低,表明欧亚板块和菲律宾海板块碰撞后的物质从东北和西南两个方向被侧向挤出时南部可能较北部活跃;台中—南投地区在对应深度附近的高速异常,表明新生代时期的澎湖地台在南海北缘的拉张与碰撞演化过程中,保留了其相对稳定的性质。   相似文献   

4.
目前,利用台阵观测记录反演浅地表土层波速剖面的研究一般单独进行面波频散曲线(Dispersion Curve,简称DC)或微动水平与竖向谱比(Microtremor Horizontal-to-Vertical Spectral Ratio,简称MHVSR)反演,但其反演的速度结构往往存在明显的多解性。鉴于此,文中发展了DC与MHVSR联合反演方法,提出了一种新的反演策略。区别于已有的反演方法,文中方法首先利用微动台阵记录获得面波频散曲线,进而采用改进的半波长法获得场地初始速度结构,最后通过DC和MHVSR的联合反演得到场地最佳速度结构。该反演方法的优势体现在2个方面:1)在面波频散曲线提取环节,综合应用修正空间自相关(MSPAC)法和频率-波数(F-K)法,拓宽了采用单一方法提取频散曲线的频率范围; 2)在初始速度结构确定环节采用了改进半波长法,可较好解决当前其他反演方法依赖一定先验信息的难题。文中分别以一理论算例及台阵观测算例验证了新反演策略的有效性及稳定性。结果表明,单独的DC反演模型的理论MHVSR在峰值频率之后(特别在高频段)与理论算例模型的MHVSR有差异,单独的MHVSR...  相似文献   

5.
Rayleigh wave dispersion data usually appear in the form of multimodal spectra for a layered model structure. The number of dispersion modal curves depends on the number of layers in the model. The measured dispersion velocities from the frequency–wavenumber (F–K) space, however, may not represent the true phase velocities of the fundamental-mode dispersion curve, but apparent phase velocities. The present study discusses how multimode curves are generated in the multichannel analysis of surface waves (MASW) method and the cause of the apparent velocity produced by the F–K method. Results from a field trial demonstrate that apparent phase velocities fail to reveal thin layers with low velocities. A better agreement of the inverted model with the geotechnical record is obtained by using the data points extracted from the fundamental-mode curve of the MASW spectral image.  相似文献   

6.
Rayleigh-wave phase velocities have been utilized to determine shear (S)-wave velocities in near-surface geophysics since early 1980s. One of the key steps is to calculate theoretical dispersion curves of an earth model. When the S-wave velocity of the surface layer is higher than some of the layers below, however, the Rayleigh-wave phase velocity in a high-frequency range calculated by existing algorithms approaches the lowest S-wave velocity among the layers above the half-space, rather than a value related to the S-wave velocity of the surface layer. According to our numerical modeling results based on wave equation, trends of the Rayleigh-wave dispersive energy approach about a 91% of the S-wave velocity of the surface layer at a high-frequency range when its wavelength is much shorter than the thickness of the surface layer, which cannot be fitted by a dispersion curve calculated by existing algorithms. We propose a method to calculate Rayleigh-wave phase velocities of models with a high-velocity surface layer by considering its penetration depth. We build a substituted model that only contains the layer with the lowest S-wave velocity among the layers above the half-space and the layers above it. We use the substituted model to replace the original model to calculate phase velocities when the Rayleigh-wave wavelength is not long enough to penetrate the lowest S-wave velocity layer. Several synthetic models are used to verify fitness between the dispersion curve calculated by our proposed method and the trend of the highest dispersive energy. Examples of inversion also demonstrate high accuracy of using our method as the forward calculation method during the inversions.  相似文献   

7.
声波测井中的相速度与群速度讨论(英文)   总被引:3,自引:2,他引:1  
声波测井过程中获取的速度到底是相速度还是群速度,目前仍存在一些争议,本文从理论分析和数值模拟的角度,使用三种模型对这一问题进行了研究。首先,构造一个相速度与群速度可调的稳态声波传播模型——不同声速的两个平面波叠加模型,利用慢度时间相关(STC)方法提取声波波速,数值模拟结果表明,无论相速度较大或是群速度较大,STC方法提取出来的波速都是相速度;其次,通过频散分析和割线积分得到刚性壁圆柱流体模型中的频散曲线与分波波形,使用STC方法得到的速度与相速度的频散曲线吻合较好,而直接读取波至获得的速度与群速度的频散曲线趋势一致;最后,利用频散分析和实轴积分方法,获得偶极子在慢地层中激发的模式及全波波形,得到的结果再次验证了刚性壁圆柱流体模型中的结论。  相似文献   

8.
Backscatter from multi-beam sonar (MBS) was used to discriminate ecologically relevant seabed characteristics based on 62 reference sites sampled with georeferenced video, sediment grab and rock dredge between 50 and 500 m water depth. A simple biotope characteristic of soft (unconsolidated) and hard (consolidated) was used to compare the acoustic backscatter data with the data on mega-epifauna and substrate type obtained from video and physical sampling. Substrate type of homogeneous reference sites was predicted by matching the backscatter incidence angle profile (0–70°) to that of a seabed scattering model. Referencing the seabed backscatter to a consistent incidence angle (40°) gave a metric with high spatial resolution (2.4–20 m), which minimised errors of range, incident angle and beam compensation. This simple metric provided a consistent approach to analyse and interpret the data and was strongly correlated with substrate type and faunal functional groups. The high resolution backscatter metric was a closer match to the small spatial scale of seabed patch lengths observed by video (50% <50 m).  相似文献   

9.
Earthquake has left much life and property damages. The occurrence of such events necessitates the execution of plans for combating the earthquakes. One of the most important methods for combating earthquakes includes assessing dynamic characteristics of soil and site effect. One of the methods by which one can state dynamic characteristics of the soil of an area is the measurement of microtremors. Microtremors are small-scale vibrations that occur in the ground and have an amplitude range of about0.1–1 microns. Microtremor measurement is fast, applicable, cost-effective. Microtremor measurements were taken at 15 stations in the Babol, north of Iran. Regarding H/V spectral ratio method, peak frequency and amplification factor were calculated for all microtremor stations.According to the analysis, the peak frequency varies from0.67 to 8.10 Hz within the study area. Also, the authors investigated the validity of the results by comparing them with SESAME guidelines and geotechnical conditions of study area. The microtremor analysis results are consistent with SESAME guidelines and geotechnical condition of study area. The results show that the microtremor observations are acceptable methods for assessing dynamic characteristics of soil and site effect in the Babol City.  相似文献   

10.

煤层开采留下大范围采空区,可能引发地面沉降和塌陷,危害地面建筑物和地下设施安全,查明采空区的空间位置与结构形态,对矿区环境治理、土地资源开发利用和确保地铁、铁路等大工程建设地质安全具有重要意义.然而,采空区探测一直是公认的行业难题,尤其是当采空区位于城镇等复杂强干扰环境下,传统的采空区物探面临诸多挑战.本文采用微动剖面探测新方法研究广州地铁14号线二期乐嘉路站—岗贝站区间的煤层采空区,介绍在城区交通要道开展地铁线路采空区微动剖面法探测的方法技术.探测查明2#、4#煤层采空区、六处岩巷与二处竖井,与钻孔揭露情况和历史记载的煤矿开采水平巷道吻合,探测结果为地铁设计建设提供了可靠的物探依据和地质安全保障.

  相似文献   

11.
During the last two decades, important advances have been made in the investigation of gravity waves. However, more efforts are needed to study certain aspects of gravity waves. In the real atmosphere, gravity waves occur with different properties at different altitudes and, most often, simultaneously. In this case, when there is more than one dominant wave, the determination of gravity wave characteristics, such as the vertical wavelength and the phase velocity, is difficult. The interpretation of temperature perturbation plots versus the altitude and time as well as the application of the Fourier spectral analysis can produce errors.Exact knowledge of the wave characteristics is important both for determination of other characteristics, for example, the horizontal wave components, and for study of wave climatology. The wavelet analysis of vertical temperature profiles allows one to examine the wave's location in space. Up to now, gravity waves have been studied mainly by continuous wavelet transformation to determine dominant waves. We apply wavelet analysis to a time series of temperature profiles, observed by the ALOMAR ozone lidar at Andoya, Norway, and by the U. Bonn lidar system at ESRANGE, Sweden, both for determination of the dominant waves and for specifying the vertical wavelengths and the vertical component of the phase velocities. For this purpose, the wavelet amplitude spectra and the wavelet phase spectra are filtered and Hovmöller diagrams for dominant wavelengths are constructed. The advantage of this type of diagrams is that they give clear evidence for the localization of the dominant waves in space and time and for the development of their phase fronts.  相似文献   

12.
The spectral analysis of surface waves (SASW) method is an in situ, seismic method for determining the shear wave velocity (or maximum shear modulus) profile of a site. The SASW test consists of three steps: field testing, evaluation of dispersion curve by phase unwrapping method, and determination of shear modulus profile by inversion process. In general, field testing and dispersion curve evaluation are regarded as simple work. However, because of characteristic of Fourier transform used in the conventional phase unwrapping method, dispersion curve is sensitive to background noise and body waves in the low frequency range. Furthermore, under some field conditions such as pavement site, the usual phase unwrapping method can lead to erroneous dispersion curve. To overcome problem of the usual phase unwrapping method, in this paper, a new method of determining dispersion curve for SASW method was applied using time–frequency analysis based on harmonic wavelet transform as an alternative method of a current phase unwrapping method. To estimate the applicability of proposed method to SASW method, numerical simulations at various layered soil and pavement profiles were performed and the dispersion curves by proposed method are more reliable than those by the usual phase unwrapping method.  相似文献   

13.
Rayleigh wave phase velocities of South China block and its adjacent areas   总被引:2,自引:0,他引:2  
Using records of continuous seismic waveforms from 609 broadband seismic stations in the South China Block and its adjacent areas in 2010–2012, empirical Green's functions of surface waves were obtained from cross-correlation functions of ambient noise data between these stations. High quality phase velocity dispersion curves of Rayleigh waves were obtained using time-frequency analysis. These interstation dispersion curves were then inverted to build Rayleigh wave phase velocity maps at periods of 6–50 s. The results of phase velocity maps indicate that phase velocities at 6–10 s periods are correlated with the geological features in the upper crust. Major basins and small-scale grabens and basins display slow velocity anomalies; while most of the orogenic belts and the fold belts display high velocity anomalies. With the gravity gradient zone along Taihang Mountain to Wuling Mountain as the boundary for the phase velocity maps at period of 20–30 s, the western area mainly displays low velocity anomalies, while the eastern side shows high velocity anomalies. Phase velocities in the eastern South China Block south to the Qinling-Dabie orogenic belt is higher than that in the eastern North China Block to the north, which is possibly due to the differences of tectonic mechanisms between the North China Craton and the South China Block. The phase velocities at periods of40–50 s are possibly related to the lateral variations of the velocity structure in the lower crust and upper mantle: The low-velocity anomalies in the eastern part of the Tibetan Plateau are caused by the thick crust; while the Sichuan Basin and the southern part of the Ordos Basin display distinct high-velocity anomalies, reflecting the stable features of the lithosphere in these blocks. The lateral variation pattern of phase velocities in the southern part of the South China Block is not consistent with the surface trace of the block boundary in the eastern Yunnan Province and its vicinities. The phase velocities in the Sichuan Basin are overall slow at short periods and gradually increase with period from the central part to the edge of the basin, indicating the features of shallower basement in the center and overall stable lithospheric mantle of the basin. The middle and upper crust of the southern Ordos Basin in the North China Block is heterogeneous, while in lower crust and the uppermost mantle the phase velocities mainly exhibit high anomalies. High-velocity anomalies are widespread at the middle of the Qinling-Dabie orogenic belt, as well as the areas in southeastern Guangxi with Caledonian granite explosion, but its detailed mechanism is still unclear.  相似文献   

14.
A novel approach to infer streamflow signals for ungauged basins   总被引:1,自引:0,他引:1  
In this paper, we present a novel paradigm for inference of streamflow for ungauged basins. Our innovative procedure fuses concepts from both kernel methods and data assimilation. Based on the modularity and flexibility of kernel techniques and the strengths of the variational Bayesian Kalman filter and smoother, we can infer streamflow for ungauged basins whose hydrological and system properties and/or behavior are non-linear and non-Gaussian. We apply the proposed approach to two watersheds, one in California and one in West Virginia. The inferred streamflow signals for the two watersheds appear promising. These preliminary and encouraging validations demonstrate that our new paradigm is capable of providing accurate conditional estimates of streamflow for ungauged basins with unknown and non-linear dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号