首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In a previous work, the stratospheric effect of a future supersonic aircraft fleet on ozone has been simulated, by using a photochemical diffusive 1D model and a 2D photochemical, radiative dynamical model. The fleet scenario was defined by Aerospatiale and Snecma for a current technology Mach-2 aircraft; the models were limited to simplified homogeneous phase reactions. The results indicated a global ozone decrease of about 1.5% in steady-state conditions. Now the 2D model has been upgraded and includes the classical heterogeneous reactions with Polar Strato- spheric Clouds (PSC) and aerosol. It also takes into account the natural or anthopogenic evolution of the background atmosphere. The scenario has been optimized to meet more realistic conditions. Thus, new results are presented. The main conclusion concerning the calculated impact of a realistic fleet for the next 20–50 years is still weaker than in the previous work: the decrease for the total ozone would always be lower than 0.3%. These results are commented, with the help of a parametric study, pointing out the importance of the background atmosphere and especially the total chlorine loading and the aerosol surface area.  相似文献   

4.
The global structures of annual oscillation (AO) and semiannual oscillation (SAO) of stratospheric ozone are examined by applying spherical harmonic analysis to the ozone data obtained from the Nimbus-7 solar backscattered UV-radiation (SBUV) measurements for the period November 1978 to October 1980. Significant features of the results are: (1) while the stratospheric ozone AO is prevalent only in the polar regions, the ozone SAO prevails both in the equatorial and polar stratospheres; (2) the vertical distribution of the equatorial ozone SAO has a broad maximum of the order of 0.5 (mixing ratio in g/g) and the maximum appears earlier at high altitude (shifting from May [and November] at 0.3 mb [60 km] to November [and May] at 40 mb); (3) above the 40 km level, the maximum of the polar ozone SAO shifts upward towards later phase with altitude with a rate of approximately 10 km/month in both hemispheres; (4) vertical distributions of the polar ozone AOs and SAOs show two peaks in amplitude with a minimum (nodal layer) in between and a rapid phase change with altitude takes place in the respective nodal layers; and (5) the heights of the ozone AO- and SAO-peaks decrease with latitude. The main part of AOs and SAOs of stratospheric ozone including hemispheric asymmetries is ascribable to: (i) temperature dependent ozone photochemistry in the upper stratosphere and mesosphere, (ii) variations of radiation field in the lower stratosphere affected by the annual cycle of solar illumination and temperature in the upper stratosphere and (iii) meridional ozone transport by dynamical processes in the lower stratosphere.  相似文献   

5.
A scheme of a system of physical and chemical processes controlling the production, transport and destruction of ozone and its gaseous catalysts, as well as other related gases in the low and high stratosphere is presented. An account is made of temperature variations of the stratospheric layer resulting from changes in ozone content; also included is the effect of temperature variations on photochemical reaction rates and ozone and other gases transport between atmospheric layers. Parameters describing major relations of the system are inferred from the analysis of ozone and trace gas data and from the results of model calculations of interdependence between variations in temperature and ozone content of the layer.An analysis of minor fluctuations of the linearized system shows that photochemical processes are responsible for its aperiodic stability and that gas transport between atmospheric layers destabilizes the system.  相似文献   

6.
London  Julius  Park  Jae 《Pure and Applied Geophysics》1973,106(1):1611-1617
Summary Observations of the ozone distribution indicate that modifications are required to the photochemical theory. These modifications involve ozone destruction by hydrogen and nitrogen products and ozone transport (both vertical and horizontal) due to atmospheric motions in the stratosphere. If the photochemical terms in the ozone continuity equation are omitted, changes due to atmospheric transport alone can be evaluated.Numerical computations were made of the three-dimensional wind structure as derived from the 12-layer (0–36 km) General Circulation Model developed by NCAR. The results showed that ozone is transported from the equatorial stratosphere poleward and downward in both hemispheres. The horizontal transport is primarily by the Hadley Cell in the tropics and by large-scale eddies in mid and high latitudes. The dominant mechanism for ozone transport are found to be similar to those derived for the horizontal heat and momentum transport found in other general circulation studies.  相似文献   

7.
The ultraviolet Earth radiance data from the backscatter ultraviolet experiment on Nimbus 4 have been inverted to infer ozone profiles using a single Rayleigh scattering model. Two methods of solution give essentially the same results. Comparison of these profiles with simultaneous rocket sounding data shows satisfactory agreement at low and middle latitudes.Vertical cross-sections of ozone mixing ratio along the orbital tracks indicate that while the gross characteristics of the ozone field above 10 mb are under photochemical control, the influence of atmospheric motions can be found up to the 4 mb level.  相似文献   

8.
The effect of long-term (11-year solar cycle) solar UV variability on stratospheric chemical and thermal structure has been studied using a time-dependent one-dimensional model. Previous studies have suggested substantial variations in local and total ozone, and in stratospheric thermal structure from solar minimum to solar maximum. It is shown here that significant variations also occur in some of the trace constituents. Members of the HO x family and N2O exhibit the largest variations, and these changes, if detected, may provide additional means of verifying the presence of solar UV variability and its effects. Some of the species show large phase differences with the assumed solar flux variation. The role of chemical and transport time constants on the time variations of the trace species is examined. Comparisons with reported ozone and temperature data show reasonable agreement for the period 1960 to 1972.  相似文献   

9.
As predicted by model calculations, long-term changes in the stratospheric ozone content should influence trends in the meso- and thermosphere also. These predictions have been tested by means of ionospheric reflection height data in the low-frequency (LF) range and critical frequency data series of the ionospheric E layer, foE, observed at different stations around the world. It was shown that an essential part of the derived trends in the mesosphere and in the lower thermosphere is correlated with long-term changes of the atmospheric ozone content. During the sub-interval with the strongest ozone decrease (1979–1995) the detected ionospheric trends are most pronounced. Additionally was also demonstrated that the longitudinally dependent ozone trends are related to similar variations in the foE trends.  相似文献   

10.
利用本文所建立的平流层下部臭氧异相光化学系统,研究硫酸气溶胶表面积浓度以及氯化物和氮氧化物的排放强度对系统状态的影响.光化系统由19种分别来自氧族、氢族、氮族、氯族和碳族的化学成分组成.研究结果指出,仅就气溶胶而言,它不是一个重要的决定光化系统行为的因子.然而,当它与奇氯ClOx或奇氮NOx的外源共同影响系统时,通过复杂的非线性光化学过程,它将使系统的行为发生重大变化.可以看到,在某些确定的参数范围内,系统存在多平衡态解,并构成一个“折叠"突变流型.  相似文献   

11.
This paper reports the study data on variations in the ozone content in the middle stratosphere over Moscow based on millimeter wavelength observations during a range of midwinter sudden stratospheric warmings that occurred in the past two decades. The relation of ozone with planetary waves and the intensity of the polar stratospheric vortex has been established. The ozone vertical distribution has been monitored with a highly sensitive spectrometer with a two-millimeter wave band. The discovered phenomena of a relatively long-term lower ozone content in December in the considered cold half-year periods are related to the higher amplitude of the planetary wave with n = 1. Such phenomena preceded the development of strong midwinter stratospheric warmings, which, in turn, were accompanied by a significant increase in the ozone content in January. This ozone enrichment was related to the lower amplitude of the wave with n = 1 and higher amplitude of the wave with n = 2 and was accompanied by geopotential H c.v. growth in the polar vortex center. Specific features of variations in the ozone content under the influence of the major atmospheric processes are observed not only in certain cold half-year periods but are also well seen in the general averaged pattern for winters with strong stratospheric warmings.  相似文献   

12.
Although stratosphere penetrating volcanic eruptions have been infrequent during the last half century, periods have existed in the last several hundred years when such eruptions were significantly more frequent. Several mechanisms exist for these injections to affect stratospheric minor constitutent chemistry, both on the long-term average and for short-term perturbations. These mechanisms are reviewed and, because of the sensitivity of current models of stratospheric ozone to chlorine perturbations, quantitative estimates are made of chlorine injection rates. It is found that, if chlorine makes up as much as 0.5 to 1% of the gases released and if the total gases released are about the same magnitude as the fine ash, then a major stratosphere penetrating eruption could deplete the ozone column by several percent. The estimate for the Agung eruption of 1963 is just under 1% an amount not excluded by the ozone record but complicated by the peak in atmospheric nuclear explosions at about the same time. The long-term contribution to stratospheric CIX by volcanic eruptions is estimated as 0.1 ppbv for the period 1900–60 and 1 ppbv for the much more volcanically active period 1780–1840. All of the estimates are subject to large uncertainties, perhaps a factor of 2 or 3 on the high side and a factor of 10 or more on the low side.Paper presented at the IAGA/IAMAP Joint Assembly, Seattle, WA, U.S.A., August 1977.  相似文献   

13.
With the aid of a one-dimensional steady-state, stratospheric model we have calculated ozone changes coused by atmosphric injections of NOx, N2O and chlorofluoromethanes. Adopting the fast rate constant, for the reaction HO2+NO»OH+NO2 measured by Howard and Evenson, we calculate much smaller perturbations of the ozone layer by NOx and N2O additions than previously estimated, but about two times larger ozone reductions as a result of continued emissions of chlorofluoromethanes, CF2Cl2 and CFCl3.The model results are sensitive to adopted values for the rate coefficients for the reactions HO2+O3»OH+2O2 and OH+HO2»H2O+O2 and the eddy diffusion profile near the tropopause. More accurate assessments of ozone perturbations require the development of photochemical models that incorporate meteorological processes in more than one dimension.  相似文献   

14.
Based on total ozone data from the World Ozone Data Center and stratospheric geopotential height data from the Meteorological Institute of Berlin Free University for the months of January through March for the time period of 1958–1996, the influence of the 11-year solar cycle and the equatorial quasi-biennial oscillation (QBO) on total ozone and the stratospheric circulation at 30 hPa over Northern Europe is investigated. The analysis is performed for different levels of solar activity. The relationship of the equatorial QBO with ozone and the stratospheric circulation over the study region exhibits unique features attributed to strong opposite connections between the equatorial zonal wind and ozone/stratospheric dynamics during periods of solar minimum and maximum. Using the Solar/QBO effect, a statistical extraction of the interannual variations of total ozone and stratospheric circulation over Northern Europe has been attempted. The variations extracted and observed for late winter show very good correspondence. The solar/QBO effect in total ozone and stratospheric dynamics over Northern Europe appears to be related to planetary wave activity.  相似文献   

15.
Züllig  W. 《Pure and Applied Geophysics》1973,106(1):1544-1552
Summary The intensity of the polar vortex at 10 mb is used to calculate theoretical values of mean total ozone north of 40° latitude. A satisfactory fit is attained between the development in time of the theoretical ozone and that of the mean of the observed total ozone. The results lead to the conclusion, that a one-cell mean meridional motion relative to the polar night vortex is important for the transport of heat and ozone.  相似文献   

16.
Despite substantial progress in atmospheric modeling, the agreement of the simulated atmospheric response to decadal scale solar variability with the solar signal in different atmospheric quantities obtained from the statistical analysis of the observations cannot be qualified as successful. An alternative way to validate the simulated solar signal is to compare the sensitivity of the model to the solar irradiance variability on shorter time scales. To study atmospheric response to the 28-day solar rotation cycle, we used the chemistry–climate model SOCOL that represents the main physical–chemical processes in the atmosphere from the ground up to the mesopause. An ensemble simulation has been carried out, which is comprised of nine 1-year long runs, driven by the spectral solar irradiance prescribed on a daily basis using UARS SUSIM measurements for the year 1992. The correlation of zonal mean hydroxyl, ozone and temperature averaged over the tropics with solar irradiance time series have been analyzed. The hydroxyl has robust correlations with solar irradiance in the upper stratosphere and mesosphere, because the hydroxyl concentration is defined mostly by the photolysis. The simulated sensitivity of the hydroxyl to the solar irradiance changes is in good agreement with previous estimations. The ozone and temperature correlations are more complicated because their behavior depends on non-linear dynamics and transport in the atmosphere. The model simulates marginally significant ozone response to the solar irradiance variability during the Sun rotation cycle, but the simulated temperature response is not robust. The physical nature of this is not clear yet. It seems likely that the temperature (and partly the ozone) daily fields possess their own internal variability, which is not stable and can differ from year to year reflecting different dynamical states of the system.  相似文献   

17.
In solar cycles 22–23, all solar indices showed maxima near 1990 and 2000 and minima in 1996. The maximum to minimum variation was only 1–2% in the UV range 240–350 nm. Dobson ozone intensities did not show any clear relationship with solar cycle and ozone variations were less than 10%. The UV-B (295–325 nm) observed at ground by Brewer spectrophotometers at some locations had variations of 50–100% for 295–300 nm, and 20–50% for 305–325 nm. The maxima were in different years at different locations (even with separations of only 300 km), did not match with the solar cycle, and were far too large to be explained on the basis of ozone changes (1% decrease of ozone is expected to cause 2% increase of UV-B). Thus, if the data are not bad, the UV-B changes do not match with solar activity or ozone changes and must be mostly due to other local effects (clouds, etc.?). When data are averaged over wide geographical regions, UV-B variation ranges are smaller (10–20%, probably because localised, highly varying cloud effects get filtered out), and are roughly as expected from ozone variations.  相似文献   

18.
The interaction between the factors of the quasi-biennial oscillation (QBO) and the 11-year solar cycle is considered as an separate factor influencing the interannual January–March variations of total ozone over Northeastern Europe. Linear correlation analysis and the running correlation method are used to examine possible connections between ozone and solar activity at simultaneous moment the QBO phase. Statistically significant correlations between the variations of total ozone in February and, partially, in March, and the sunspot numbers during the different phases of QBO are found. The running correlation method between the ozone and the equatorial zonal wind demonstrates a clear modulation of 11-y solar signal for February and March. Modulation is clearer if the QBO phases are defined at the level of 50 hPa rather than at 30 hPa. The same statistical analyses are conducted also for possible connections between the index of stratospheric circulation C1 and sunspot numbers considering the QBO phase. Statistically significant connections are found for February. The running correlations between the index C1 and the equatorial zonal wind show the clear modulation of 11-y solar signal for February and March. Based on the obtained correlations between the interannual variations of ozone and index C1, it may be concluded that a connection between solar cycle – QBO – ozone occurs through the dynamics of stratospheric circulation.  相似文献   

19.
A Fourier transform spectrometer was used to measure infrared spectra of the exhaust gas of an aircraft’s jet engine. The measured spectra were modelled by use of the program FASCODE. For this simulation, the inhomogeneous gas mixture is divided into several homogenous layers which are characterized by their geometrical extents, temperatures, pressures and chemical compositions. To obtain values for the temperatures and the CO, NO, H2O and CO2 concentrations of the layers a nonlinear least-squares algorithm was implemented. The program (FITFAS) not only changes the parameters to find the minimum of the squared differences between measurement and calculation; it also provides the variances and covariances of the parameters. Thus information is obtained to which parameters (besides the interesting ones) must be fitted (or be accurately known). It also tells us whether or not another spectral interval is more suitable for the determination of a specific parameter.  相似文献   

20.
本文利用热层-电离层-中间层能量和动力学卫星TIMED中宽带发射辐射计SABER观测的临边大气长波红外背景辐射数据来研究平流层增温效应,基于2012/2013年1—3月在20~100 km高度内的临边大气长波红外背景辐射数据,采用微扰方法,得到辐射扰动的时空分布.结果显示:大气长波红外背景辐射扰动数据能够更精细的展示平流层增温事件的发生,2013年平流层爆发性增温效应下最大辐射扰动幅度出现在40 km处可达160%,而利用温度扰动数据表征此事件的发生时最大温度扰动幅度出现在40 km处只有21%.针对2012年弱平流层增温效应,温度扰动幅度最大值出现在40 km处为16.4%,而辐射扰动幅度的最大值在40 km处可达91%.大气长波红外背景辐射的纬度分布体现出此事件发生于高纬度地区;其经度分布在20~50 km范围内呈现"w"形状;而50 km和80 km处大气长波红外背景辐射的极值区域范围随着事件的发生在高纬度地区都是先扩大随后缩小的过程.这表明高层大气临边红外辐射信号可用于研究平流层增温效应,尤其是对于温度弱起伏的小扰动事件.这对于掌握临近空间环境辐射形成机理及其变化特性亦具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号