首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work investigated an interrelationship between the monthly means of time derivatives of horizontal geomagnetic field, dH/dt, sunspot number, R z , and aa index for the period of substorms (from ?90 to ?1800 nT) during the years 1990–2009. A total of 232 substorms were identified during the period of study. The time derivative of horizontal geomagnetic field, dH/dt, used as a proxy for geomagnetically induced current (GIC) exhibited high positive correlation with sunspot number (0.86) and aa index (0.8998). The obtained geomagnetic activity is in 92.665% explicable by the combined effect of sunspot number and aa index. The distribution of substorms as a function of years gives a strong support for the existence of geomagnetic activity increases, which implies that as the sunspot number increases the base level of geomagnetic activity increases too.  相似文献   

2.
We study the annual frequency of occurrence of intense geomagnetic storms (Dst < –100 nT) throughout the solar activity cycle for the last three cycles and find that it shows different structures. In cycles 20 and 22 it peaks during the ascending phase, near sunspot maximum. During cycle 21, however, there is one peak in the ascending phase and a second, higher, peak in the descending phase separated by a minimum of storm occurrence during 1980, the sunspot maximum. We compare the solar cycle distribution of storms with the corresponding evolution of coronal mass ejections and flares. We find that, as the frequency of occurrence of coronal mass ejections seems to follow very closely the evolution of the sunspot number, it does not reproduce the storm profiles. The temporal distribution of flares varies from that of sunspots and is more in agreement with the distribution of intense geomagnetic storms, but flares show a maximum at every sunspot maximum and cannot then explain the small number of intense storms in 1980. In a previous study we demonstrated that, in most cases, the occurrence of intense geomagnetic storms is associated with a flaring event in an active region located near a coronal hole. In this work we study the spatial relationship between active regions and coronal holes for solar cycles 21 and 22 and find that it also shows different temporal evolution in each cycle in accordance with the occurrence of strong geomagnetic storms; although there were many active regions during 1980, most of the time they were far from coronal holes. We analyse in detail the situation for the intense geomagnetic storms in 1980 and show that, in every case, they were associated with a flare in one of the few active regions adjacent to a coronal hole.  相似文献   

3.
The correlation between geomagnetic activity and the sunspot number in the 11-year solar cycle exhibits long-term variations due to the varying time lag between the sunspot-related and non-sunspot related geomagnetic activity, and the varying relative amplitude of the respective geomagnetic activity peaks. As the sunspot-related and non-sunspot related geomagnetic activity peaks are caused by different solar agents, related to the solar toroidal and poloidal fields, respectively, we use their variations to derive the parameters of the solar dynamo transforming the poloidal field into toroidal field and back. We find that in the last 12 cycles the solar surface meridional circulation varied between 5 and 20 m/s (averaged over latitude and over the sunspot cycle), the deep circulation varied between 2.5 and 5.5 m/s, and the diffusivity in the whole of the convection zone was ~108 m2/s. In the last 12 cycles solar dynamo has been operating in moderately diffusion dominated regime in the bulk of the convection zone. This means that a part of the poloidal field generated at the surface is advected by the meridional circulation all the way to the poles, down to the tachocline and equatorward to sunspot latitudes, while another part is diffused directly to the tachocline at midlatitudes, “short-circuiting” the meridional circulation. The sunspot maximum is the superposition of the two surges of toroidal field generated by these two parts of the poloidal field, which is the explanation of the double peaks and the Gnevyshev gap in sunspot maximum. Near the tachocline, dynamo has been operating in diffusion dominated regime in which diffusion is more important than advection, so with increasing speed of the deep circulation the time for diffusive decay of the poloidal field decreases, and more toroidal field is generated leading to a higher sunspot maximum. During the Maunder minimum the dynamo was operating in advection dominated regime near the tachocline, with the transition from diffusion dominated to advection dominated regime caused by a sharp drop in the surface meridional circulation which is in general the most important factor modulating the amplitude of the sunspot cycle.  相似文献   

4.
There are limited homogeneous instrumental observations of the sunspot magnetic fields, but the Earth is a sort of a probe reacting to interplanetary disturbances which are manifestation of the solar magnetic fields. We find correlations between some parameters of geomagnetic activity (the geomagnetic activity “floor”—the minimum value under which the geomagnetic activity cannot fall in a sunspot cycle, and the rate of increase of the geomagnetic activity with increasing sunspot number), and sunspot magnetic fields (the sunspot magnetic field in the cycle minimum, and the rate of increase of the sunspot magnetic field from cycle minimum to cycle maximum). Based on these correlations we are able to reconstruct the sunspot magnetic fields in sunspot minima and maxima since sunspot cycle 9 (mid 19th century).  相似文献   

5.
太阳活动对地球的影响是人们关心的重要研究课题。太阳黑子相对数作为描述太阳活动的一个参量,虽然不如射电流量密度等参量具有明确的物理意义,但是由于它有较长的观测历史以及在统计上可较好地反映太阳活动的变化,因此在较长期的太阳活动预报等工作中仍是个常用的参量,为有关部门所使用。 将上一个太阳周即第21周的种种预报极值与实际极值165.3比较,可知:一般说  相似文献   

6.
Relative variations in the number of sunspots and sunspot groups in activity cycles have been analyzed based on data from the Kislovodsk Mountain Astronomical Station and international indices. The following regularities have been established: (1) The relative fraction of small sunspots decreases linearly and that of large sunspots increase with increasing activity cycle amplitude. (2) The variation in the average number of sunspots in one group has a trend, and this number decreased from ~12 in cycle 19 to ~7.5 in cycle 24. (3) The ratio of the sunspot index (Ri) to the sunspot group number index (G gr) varies with a period of about 100 years. (4) An analysis of the sunspot group number index (G gr) from 1610 indicates that the Gnevyshev-Ohl rule reverses at the minimums of secular activity cycles. (5) Ratio of the total area to area of Ssp/Sum nuclei has long-term variation with a period approximately 8 cycles. Minimum ratio falls on 16–17 cycles of activity. (6) It has been indicated that the magnetic field intensity and sunspot area in the current cycle are related to the amplitude of the next activity cycle.  相似文献   

7.
Using the characteristic values of sunspot number variations during the descent and ascent of solar cycles,a neural network is designed to make long-term predications of the ascending period and the maximum smoothed monthly mean sunspot number for the Solar Cycle 23. Moreover,the factor of geomagnetic disturbance is also added as an input. The trained and tested results from Solar Cycle 12 to 22 have been obtained. Finally,the predictions of the ascending period and the maximum smoothed monthly mean sunspot number are given for Solar Cycle 23.  相似文献   

8.
利用我国9个电离层观测站第21和22太阳周大约20年的foF2月中值数据,分析太阳活动和地磁活动对电离层foF2的影响,结果显示白天和夏季夜间foF2和太阳黑子数R之间存在着明显非线性关系,并且随着纬度的降低逐渐增强.当回归分析加入地磁Ap指数时,多重回归模型与实测值误差进一步减小,说明同时考虑太阳活动和地磁活动的非线性影响能够更好地描述foF2的变化.基于foF2与太阳黑子数R及地磁指数Ap之间的非线性统计关系,利用Fourier级数建立9个单站谱模型,并与国际参考电离层IRI进行了比较,精度有一定提高.  相似文献   

9.
Numerous studies of interrelations between solar activity and global climate changes report contradictory conclusions. The topic as such is too complex, and manifestations of the studied relationship appear to differ in time and space, and sometimes are even of the opposite sense, In this study the data on air temperature and precipitation totals from Hurbanovo, one of the oldest meteorological observatories in Europe, are used to study their evolution within the interval 1871–1995, covering solar cycles 12–22, The variability of the meteorological elements mentioned is compared with that of the sunspot number and aa index of geomagnetic activity. The sensitivity of climate changes to variable solar forcing is presented as a comparison of extreme (maximum/minimum) activity conditions. Harmonic components with periods close to the length of the solar secular and solar magnetic cycles were found in climate evolution profiles.  相似文献   

10.
Applying spectral analysis to the Atlantic and Pacific hurricane time series, we found periodicities that coincide with the main sunspot and magnetic solar cycles. To assess the possibility that these periodicities could be associated with solar activity, we obtain correlations between hurricane occurrence and several solar activity-related phenomena, such as the total solar irradiance, the cosmic ray flux and the Dst index of geomagnetic activity. Our results indicate that the highest significant correlations are found between the Atlantic and Pacific hurricanes and the Dst index. Most importantly, both oceans present the highest hurricane–Dst correlations during the ascending part of odd solar cycles and the descending phase of even solar cycles. This shows not only the existence of a 22 yr cycle but also the nature of such periodicity. Furthermore, we found that the Atlantic hurricanes behave differently from the Pacific hurricanes in relation to the solar activity-related disturbances considered.  相似文献   

11.
—Maximum entropy spectral analysis (MESA) has been applied to 24 series of hourly daily data and only one daily mean series for the horizontal (H) and vertical (Z) components of the geomagnetic field for the year 1983 as observed at Narssarssuaq, Greenland (71.2°N, 36.7°E) (gm coordinate). The method has isolated some prominent medium frequency signal components. The maximum peaks for H are at 06 hr (0.174 cycles per day (cpd), 3.2 × 104 db) and 08 hr (0.09 cpd, 3.5 × 104 db). Similarly, the maximum peak in Z is observed at 04 hr (0.114 cpd, 5.7 × 104 db). The spectral results for the daily-mean data indicate periods are greater than two days, with 178.5 days (nearly semiannual) being common to both H and Z. Other harmonics have been found for all the series of H and Z components which are mainly caused by the "Effective Period", i.e., the period produced by the combined effect of the sunspot numbers and the sun’s rotation period. Such frequencies correspond very well with those found in the geomagnetic indices A p ?, C p and AE. This suggests that the disturbance transient variations are caused by viscous interaction of the solar energies emanating from sunspot regions with the outermost magnetospheric boundary which, in turn, influences the magnetosphere-iono sphere coupling and produces the medium intensity long-duration continuous auroral activities (MILD CAAs) over high latitude regions. Thus, the higher latitude geomagnetic activities are nothing but the "effective period driven MILDCAAs" having a recurrence tendency of 27/n, where n is an integer.  相似文献   

12.
Summary The time variations of the amplitudes and phases of the semi-annual variation in geomagnetic activity, characterized by the linear planetary index aa, have been analysed for the period 1868–1985. The results provide qualitative confirmation of Murayama's conclusions [13] about the systematic f phase in dependence on the changes in the level of solar activity and give support to Russel-McPherron's mechanism [16] concerning the effect of the predominant polarity of the interplanetary magnetic field. A distinctly expressed variation of the phase differences in the course of the sunspot cycle and of the 22-year cycle, and specific variations related to the sequence of four consecutive cycles have been established, as well as a well-defined 90-year period, all of them as a reflection of analogous variations in solar activity. The variations of the phase differences observed around the equinoxes can be explained by the combined effect of the mechanisms of the axial and equinoctial hypothesis. It is assumed that a displacement of the maxima of the semi-annual variation to dates after the equinoxes will be observed in the ascending parts and a reverse displacement towards the equinoxes and earlier dates in the desccending parts of the following sunspot cycles 22 nad 23.On leave from the Geophysical Institute of the Bulgarian Academy of Sciences, Akad. G. Bonchev Str. bl. 3, Sofia 1113, Bulgaria.  相似文献   

13.
The dependence of the correlation coefficient r(h, fo) between the stratospheric parameter h(100) and critical frequency foF2 revealed in the data of two solar cycles (1979–1989 and 1990–2000) on geomagnetic activity is analyzed. It is shown that the character of the r(h, fo) dependence on limitation on the Ap geomagnetic index is the same in both cycles but depends on the time of day and solar activity level for the given year. It is also found that there is a considerable difference in the absolute values of r(h, fo) between two cycles.  相似文献   

14.
foF2月中值太阳循环变化及单站谱模型研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用我国9个电离层观测站第21和22太阳周大约20年的foF2月中值数据,分析太阳活动和地磁活动对电离层foF2的影响,结果显示白天和夏季夜间foF2和太阳黑子数R之间存在着明显非线性关系,并且随着纬度的降低逐渐增强.当回归分析加入地磁Ap指数时,多重回归模型与实测值误差进一步减小,说明同时考虑太阳活动和地磁活动的非线性影响能够更好地描述foF2的变化.基于foF2太阳黑子数R及地磁指数Ap之间的非线性统计关系,利用Fourier 级数建立9个单站谱模型,并与国际参考电离层IRI进行了比较,精度有一定提高.  相似文献   

15.
Summary With the aid of 36 monthly and a double 12-month running average, graphs of the smoothed run of geomagnetic activity were constructed from the monthly values of the geomagnetic activity index aa for the period 1868–1978 and they were then used to determine the run of the geomagnetic activity, expressed during a uniform period and devoid of the secular variation of geomagnetic activity, for the individual 11-year cycles Nos 12–20 and the average runs for even and odd cycles, as well as for the whole period of the 9 cycles. The analysis and comparison of the graphs substantiates and renders more accurate the tendency, observed earlier, towards a regular alternation of geomagnetic activity cycles with double and single maxima. Wheareas a saddle-like shape with a maximum in the neighbourhood of the first and third quarter of the cycle is characteristic of the shape of the even cycle, the second maximum being, as a rule, the main one, the odd cycle is characterized by a peak-like shape with the main maximum in the vicinity of the cycle's centre.  相似文献   

16.
Global and regional geomagnetic field models give the components of the geomagnetic field as functions of position and epoch; most utilise a polynomial or Fourier series to map the input variables to the geomagnetic field values. The only temporal variation generally catered for in these models is the long term secular variation. However, there is an increasing need amongst certain users for models able to provide shorter term temporal variations, such as the geomagnetic daily variation. In this study, for the first time, artificial neural networks (ANNs) are utilised to develop a geomagnetic daily variation model. The model developed is for the southern African region; however, the method used could be applied to any other region or even globally. Besides local time and latitude, input variables considered in the daily variation model are season, sunspot number, and degree of geomagnetic activity. The ANN modelling of the geomagnetic daily variation is found to give results very similar to those obtained by the synthesis of harmonic coefficients which have been computed by the more traditional harmonic analysis of the daily variation.  相似文献   

17.
18.
We analyze 100–150 years-long temperature and precipitation records from 14 meteorological stations in Romania, in connection with long-term trends in solar and geomagnetic activities. The comparison of solar (sunspot number) and geomagnetic (aa index) parameters with the mean air temperature over the Romanian territory, at interdecadal timescales, shows positive correlation coefficients, while the comparison with the mean precipitation shows negative correlation coefficients. The correlation of climatic parameters seems to be stronger for geomagnetic activity than for solar activity. The Romanian temperature series are examined in the context of other European stations and of averages on the European, northern hemisphere, and global scale, respectively. Long-term (interdecadal and centennial) trends and differences between local trends and average trends for larger areas are discussed. The study indicates that solar and geomagnetic activity effects are present on the 22-year Hale cycle timescale. The temperature variation on this timescale lags the solar/geomagnetic ones by 5–9 years.  相似文献   

19.
Oscillatory modes with the period of approximately 7–8 yr were detected in monthly time series of sunspot numbers, geomagnetic activity aa index, NAO (North Atlantic Oscillation) index and near-surface air temperature from several mid-latitude European locations. Instantaneous phases of the modes underwent synchronization analysis and their statistically significant phase coherence, beginning from 1950s, has been observed. Thus the statistical evidence for a coupling between solar/geomagnetic activity and climate variability has been obtained from continuous monthly data, independent of the season, however, confined to the temporal scale related to oscillatory periods about 7–8 yr.  相似文献   

20.
Summary After the removal of the eleven-year periodicity, long-term patterns of the aa indices of geomagnetic activity and of Wolf's sunspot numbers are defined. The positions of maxima and minima exhibit the same regularities as the secular variations of the geomagnetic filed components. This result is associated with the motion of the Sun round the barycentre of the solar system.Presented at symposium Planet 88, Tihany, September 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号