首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
The spectral attenuation of solar irradiation was measured during summer in two types of coastal waters in southern Chile, a north Patagonian fjord (Seno Reloncaví) and open coast (Valdivia). In order to relate the light availability with the light requirements of upper subtidal seaweeds, the saturating irradiance for photosynthesis (Ek) from PI curves was measured. In addition the UV risk was assessed. Based on the z1% of PAR, the lower limit of the euphotic zone in the studied systems averaged 21 m (Kd 0.24 m?1) in Seno Reloncaví and 18 m (Kd 0.27 m?1) in the coast of Valdivia. Photosynthesis of the studied seaweeds was saturated at markedly lower irradiances than found in their natural depths at the time of the study. Solar radiation penetrating into these depths at both locations largely supports the light requirements for the photosynthesis of subtidal species: 50–160 μmol m?2 s?1 for seaweeds from Seno Reloncaví (7 m tidal range) and 20–115 μmol m?2 s?1 for Valdivia assemblages (2 m tidal range). Optimal light conditions to saturate photosynthesis (Ek) were present at 10–16 m water depth. The attenuation of solar irradiation did not vary significantly between the fjord and coastal sites of this study. However, the underwater light climates to which seaweeds are exposed in these sites vary significantly because of the stronger influence of tidal range affecting the fjord system as compared with the open coastal site. The patterns of UV-B penetration in these water bodies suggest that seaweeds living in upper littoral zones such as the intertidal and shallow subtidal (<3 m) may be at risk.  相似文献   

2.
《Marine pollution bulletin》2014,78(1-2):274-281
Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7 ± 34.6 mg m−2) and during the rainy season for macroalgae at site 4 (296.0 ± 82.4 g m−2). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m−2 and the macroalgal biomass between 1 and 296.0 g m−2. The bulk biomass (phytoplankton + macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio.  相似文献   

3.
Recent studies have shown that polychlorinated biphenyl (PCB) levels are high in coastal sites. Various types of deposition events, including dry deposition, air–water exchange and wet deposition, were analyzed as part of the study to illustrate the pollution level. The atmospheric levels and deposition mechanisms of 82 PCBs were investigated in Mudanya, a coastal city in Turkey. A total of 175 samples and 112 blanks were collected. Air–water exchange and particle phase dry deposition fluxes were 120 ± 90 ng/m2-d and 125 ± 160 ng/m2-d, respectively. The wet-dry deposition sampler (WDDS) consisted of two reservoirs, wet and dry. Collected with the WDDS, the dry deposition flux was 21 ± 20 ng/m2-d, and the wet deposition fluxes (during the rainy period) were 145 ± 130 ng/m2-d and 195 ± 270 ng/m2-d for the dissolved and particulate phases, respectively. Mass transfer coefficients (MTCs), dry deposition velocities and washout ratios were calculated and compared with the literature values.  相似文献   

4.
The subsidence rates of the Aegean margins during the Middle-Upper Pleistocene were evaluated based on new and historical seismic profiling data. High-resolution seismic profiling (AirGun, Sparker and 3.5 kHz) have shown that (at least) four major oblique prograding sequences can be traced below the Aegean marginal slopes at increasing subbottom depths. These palaeo-shelf break glacial delta sediments have been developed during successive low sea-level stands (LST prograding sequences), suggesting continuous and gradual subsidence of the Aegean margins during the last 400 ka. Subsidence rates of the Aegean margins were calculated from the vertical displacement of successive topset-to-foreset transitions (palaeo-shelf break) of the LST prograding sediment sequences.The estimated subsidence rates that were calculated in the active boundaries of the Aegean microplate (North Aegean margins, Gulfs of Patras and Corinth) are high and range from 0.7 to 1.88 m ka?1, while the lowest values (0.34–0.60 m ka?1) are related to the low tectonic and seismic activity margins like the margin of Cyclades plateau. Lower subsidence rates (0.34–0.90 m ka?1) were estimated for the period 146–18 ka BP (oxygen isotopic stages 6–2) and higher (1.46–1.88 m ka?1) for the period from 425 to 250 ka BP (oxygen isotopic stages 12/10–8). A decrease of about 50% of the subduction rates in the Aegean margins was observed during the last 400 ka.During the isotopic stages 8, 10, 11 and 12, almost the 50–60% of the present Aegean Sea was land with extensive drainage systems and delta plains and large lakes in the central and North Aegean. Marine transgression in the North Aegean was rather occurred during the isotopic 9 interglacial period. The estimated palaeomorphology should imply fan delta development and sediment failures in the steep escarpments of the North Aegean margins and high sedimentation rates and turbidite sediment accumulation in the basins. It is deduced that the Black Sea was isolated from the Mediterranean during the Pleistocene prior oxygen isotopic stage 5.  相似文献   

5.
《Marine pollution bulletin》2014,85(1-2):391-400
A comparative study of 23 PAH congeners in sediment of the Caspian Sea coast and Anzali Wetland was conducted in 2010. Surface sediment was analyzed using chromatography and mass spectrometry. Total PAH concentrations ranged between 212 and 9009 ng g1 dw. Spatial distribution maps revealed that PAH levels were higher in the coastal areas of the Caspian Sea where oil related activities have been common since 1800’s. Diagnostic ratios analysis indicated that PAHs largely originated from petrogenic processes. PAH toxicity level was assessed using sediment quality guidelines and toxic equivalent concentrations to determine toxic effects on marine organism. Based on these investigations, in our study areas, the probability of toxicity for benthic organisms is “low to medium”. The toxic equivalent concentrations of carcinogenic PAHs varied between 11 and 231 ng TEQ/g; higher total toxic equivalent concentrations values were found in the coastal areas of the Caspian Sea.  相似文献   

6.
This study assessed the levels of marine debris pollution and identified its main sources in Korea. The surveys were bimonthly conducted by NGO leaders and volunteers on 20 beaches from March 2008 to November 2009. The quantities of marine debris were estimated at 480.9 (±267.7) count  100 m−1 for number, 86.5 (±78.6) kg  100 m−1 for weight, and 0.48 (±0.38) m3  100 m−1 for volume. The level of marine debris pollution on the Korean beaches was comparable to that in the coastal areas of the North Atlantic ocean and South Africa. Plastics and styrofoam occupied the majority of debris composition in terms of number (66.7%) and volume (62.3%). The main sources of debris were fishing activities including commercial fisheries and marine aquaculture (51.3%). Especially styrofoam buoy from aquaculture was the biggest contributor to marine debris pollution on these beaches.  相似文献   

7.
《Continental Shelf Research》2007,27(10-11):1584-1599
Historic data from the Russian-American Hydrochemical Atlas of Arctic Ocean together with data from the TRANSDRIFT II 1994 and TUNDRA 1994 cruises have been used to assess the spatial and inter-annual variability of carbon and nutrient fluxes, as well as air–sea CO2 exchange in the Laptev and western East Siberian Seas during the summer season. Budget computations using summer data of dissolved inorganic phosphate (DIP), dissolved inorganic nitrogen (DIN) and dissolved inorganic carbon (DIC) gives that the Laptev Sea shelf is a net sink of DIP and DIN of 2.5×106, 23.2×106 mol d−1, respectively, while it is a net source of DIC (excluding air–sea exchange) of 1249×106 mol d−1. In the East Siberian Seas the budget computations give 0.5×106, −11.4×106 and −173×106 mol d−1 (minus being a sink) for DIP, DIN, and DIC, respectively. In summers, the Laptev Sea Shelf is net autotrophic while the East-Siberian Sea Shelf is net heterotrophic, and both systems are weak net denitrifying. The Laptev Sea Shelf takes up 2.1 mmol CO2 m−2 d−1 from atmosphere, whereas the western part of the East-Siberian Sea Shelf loose 0.3 mmol CO2 m−2 d−1 to the atmosphere. The variability of DIP, DIN and DIC fluxes during summer in the different regions of the Laptev and East Siberian Seas depends on bottom topography, river runoff, exchange with surrounding seas and wind field.  相似文献   

8.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   

9.
Observations of lake ice at the shore, complete ice cover, ice duration, ice thickness and other measures for 18 Polish lakes were collected for the 50 year period (1961–2010). Average ice dates in early winter became later: first appearance of ice along shore 2.3 days decade−1 and complete ice cover 1.2 days decade−1 while complete ice cover disappeared earlier (5.6 days decade−1) as did last ice at the shore (4.3 days decade−1). The duration of ice cover decreased by 5.6 days decade−1 and average ice thickness declined by 6.1 cm decade−1. The magnitude of these values for individual lakes decreased from eastern to western Poland. This geographic gradient is likely related to regional atmospheric circulation because in winter this part of Europe is strongly affected by continental air, an influence that is greater in the east. A multivariate redundancy analysis (RDA), used in order to examine the dependence of ice measures on lake physical properties and location, indicated longitude and altitude as key factors explaining lake ice dynamics such as the disappearance of ice and ice cover, ice cover duration and thickness. Lake volume and average depth influenced mostly the appearance of ice and ice cover.  相似文献   

10.
Evapotranspiration (LE) is an important factor for monitoring crops, water requirements, and water consumption at local and regional scale. In this paper, we applied the semi-empirical model to estimate the daily latent heat flux (LEd = Rnd + A  B(Ts  Ta)). LEd has been estimated using satellite images (Thematic Mapper sensor) and a local dataset (incoming and outgoing short- and long-wave radiation) measured during three years. We first estimated the daily net Radiation (Rnd) from a linear equation derived from the instantaneous net Radiation (Rnd = CRni + D). Subsequently, coefficients A and B have been estimated for two different cover vegetations (pasture and soybean). For each vegetation cover, an error analysis combining Rnd, A, B, and surface and air temperatures has been calculated. Results showed that Rnd had good performance (nonbias and low RMSE). LEd errors for pasture and soybean were ±28 W m−2 and ±40 W m−2 respectively.  相似文献   

11.
Wind-driven processes exert an important impact on aquatic ecosystems, especially on shallow reservoirs. Flow and heat transport under wind in the Douhe reservoir in China were simulated by a two-dimensional mathematical model. Areas corresponding to different temperature rises were calculated for different wind speed conditions with high frequency. It is shown that high temperature rise areas increase for maximum wind speed conditions while low temperature rise areas keep constant for various wind speed conditions. The concentration of Chl.a decreases with the increase of wind speed, indicating that low wind speed is suitable for algae blooming in the Douhe reservoir. The effects of wind on Bacillariophyta biomass growth become more obvious with the increase of temperature rise areas. The influenced areas of lower temperature rise (0.2–1.49 °C) and higher temperature rise (1.5–2 °C) zone are 8.57 × 106 m2 and 5.18 × 106 m2, respectively, and corresponding total variation amounts of Bacillariophyta biomass are 2.24 × 105/m2 and 0.42 × 105/m2, respectively. Results show that wind has a significant impact on ecological effects due to thermal discharge from thermal power plant into shallow reservoirs.  相似文献   

12.
Data on the distribution of fCO2 were obtained during a cruise in the Aegean Sea during February 2006. The fCO2 of surface water (fCO2sw) was lower than the atmospheric fCO2 (fCO2atm) throughout the area surveyed and ΔfCO2 values varied from ?34 to ?61 μatm. The observed under-saturation suggests that surface waters in the Aegean represent a sink for atmospheric CO2 during the winter of 2006. Higher fCO2sw values were recorded in the ‘less warm’ and ‘less saline’ shallow northernmost part of the Aegean Sea implying that the lower seawater temperature and salinity in this area play a crucial role in the spatial distribution of fCO2sw.A first estimate of the magnitude of the air–sea CO2 exchange and the potential role of the Aegean Sea in the transfer of atmospheric CO2 was also obtained. The air–sea CO2 fluxes calculated using different gas transfer formulations showed that during February 2006, the Aegean Sea absorbs atmospheric CO2 at a rate ranging from ?6.2 to ?11.8 mmol m?2 d?1 with the shipboard recorded wind speeds and at almost half rate (?3.5 to ?5.5 mmol m?2 d?1) with the monthly mean model-derived wind speed. Compared to recent observations from other temperate continental shelves during winter period, the Aegean Sea acts as a moderate to rather strong sink for atmospheric CO2.Further investigations, including intensive spatial and temporal high-resolution observations, are necessary to elucidate the role of the Aegean Sea in the process of transfer of atmospheric CO2 into the deep horizons of the Eastern Mediterranean.  相似文献   

13.
The Chinese Continental Scientific Drilling (CCSD) project is located at the Sulu ultrahigh-pressure metamorphic (UHPM) belt. It offers a unique opportunity for studying the radiogenic heat production of both shallower and deeper rocks. Based on the concentrations of radiogenic elements U, Th and K on 349 samples from main hole of CCSD (CCSD MH), pilot holes and exposures, we determined radiogenic heat productions of all major rock types in the Sulu UHPM belt. Results show the mean values of orthogneiss and paragneiss are respectively 1.65 ± 0.81 and 1.24 ± 0.61 µW m? 3. Due to different composition and grade of retrogressive metamorphism, the eclogites display significant scatter in radiogenic heat production, ranging from 0.01 to 2.85 µW m? 3, with a mean of 0.44 ± 0.55 µW m? 3. The radiogenic heat production in ultramafic rocks also varies within a large range of 0.02 to 1.76 µW m? 3, and the average turns out to be 0.18 ± 0.31 µW m? 3. Based on the measurements and crustal petrologic model, the vertical distribution model of heat production in Sulu crust is established. The resulting mean heat production (0.76 µW m? 3) contributes 24 mW m? 2 to the surface heat flow. 1-D thermal model indicates that the temperature at the Moho reaches above 750 °C, and the thermal thickness of the lithosphere is ~ 75 km, in good agreement with the geophysical results. The high teat flow (~ 75 mW m? 2) together with thin lithosphere presents strong support for the extension events during the late Cretaceous and Cenozoic.  相似文献   

14.
This study examines the recent evolution of the Greenland ice sheet and its six major drainage basins. Based on laser altimetry data acquired by the Ice, Cloud and Land Elevation Satellite (ICESat), covering the period September–November 2003 to February–March 2008, ice surface height changes and their temporal variations were inferred. Our refined repeat track analysis is solely based on ICESat data and is independent of external elevation models, since it accounts for both ice height changes and the local topography. From the high resolution ice height change pattern we infer an overall mean surface height trend of −0.12 ± 0.006 m yr−1. Furthermore, the largest changes could be identified at coastal margins of the ice sheet, exhibiting rates of more than −2 m yr−1. The total ice volume change of the entire ice sheet amounts to −205.4 ± 10.6 km3 yr−1. In addition, we assessed mass changes from 78 monthly Gravity Recovery and Climate Experiment (GRACE) solutions. The Release-04 gravity field solutions of GeoForschungsZentrum Potsdam cover the period between August 2002 and June 2009. We applied an adjusted regional integration approach in order to minimize the leakage effects. Attention was paid to an optimized filtering which reduces error effects from different sources. The overall error assessment accounts for GRACE errors as well as for errors due to imperfect model reductions. In particular, errors caused by uncertainties in the glacial isostatic adjustment models could be identified as the largest source of errors. Finally, we determined both seasonal and long-term mass change rates. The latter amounts to an overall ice mass change of −191.2 ± 20.9 Gt yr−1 corresponding to 0.53 ± 0.06 mm yr−1 equivalent eustatic sea level rise. From the combination of the volume and mass change estimates we determined a mean density of the lost mass to be 930 ± 11 kg m−3. This value supports our applied density assumption 900 ± 30 kg m−3 which was used to perform the volume–mass-conversion of our ICESat results. Hence, mass change estimates from two independent observation techniques were inferred and are generally in good agreement.  相似文献   

15.
The study analyses the long-term biophysical and demographic changes in Dal lake, located in the heart of Srinagar city, Kashmir India, using a repository of historical, remote sensing, socio-economic and water quality data supported by the extensive field observations. The lake faces multiple pressures from the unplanned urbanization, high population growth, nutrient load from intensive agriculture and tourism. The data showed that the lake has shrunk from 31 km2 in 1859–24 km2 in 2013. Significant changes were observed in the land use and land cover (LULC) within the lake (1859–2013) and in the vicinity of the lake (1962–2013). Analysis of the demographic data indicates that the human population within the lake has shown more than double the national growth rate. Additionally, 7 important water quality parameters from 82 well distributed sites across the lake were analyzed and compared with the past data to determine the historical changes in the water quality from 1971 to 2014. The changes in the LULC and demography have adversely affected the pollution status of this pristine lake. Ortho-phosphate phosphorous concentration has increased from 16.75 μg L−1 in 1977–45.78 μg L−1 in 2014 and that of the nitrate-nitrogen from 365 μg L−1 to 557 μg L−1, indicating nutrient enrichment of the lake over the years. Built-up area within the lake has increased 40 times since 1859, which, together with the changes in the population and settlements, have led to the high discharge of untreated nutrient-rich sewage into the lake. Similarly the expansion of floating gardens within the lake and agriculture lands in the catchment has contributed to the increased nutrient load into the lake due to the increasing use of fertilizers. The information about the existing land cover, demography and water quality was integrated and analyzed in GIS environment to identify the trophic status of the lake. The analysis indicated that 32% of the lake falls under sever degradation, 48% under medium degradation while as 20% of the lake waters are relatively clean. It is believed that the results provide improved knowledge and insights about the lake health and causal factors of its degradation necessary for effectively restoring its ecological and hydrological functionality.  相似文献   

16.
The seasonal cycle of chlorophyll concentration in the Bay of Biscay and western English Channel has been examined using satellite data (chlorophyll, sea surface temperature (SST), photosynthetically available radiation (PAR) and wind) along the line of the ferry Pride of Bilbao (Bilbao to Portsmouth). The spring phytoplankton bloom develops regularly in the oceanic region of the Bay of Biscay from mid March to the beginning of May with peak chlorophyll concentrations ranging 2–4 mg m?3. Low wind turbulence is a major factor allowing the development of productivity pulses in the Bay of Biscay during spring. Exceptional blooms of phytoplankton take place in summer (July–August) in the western English Channel with chlorophyll concentrations as high as 40 mg m?3. Some environmental factors (SST, wind, pressure and tide) are examined. Autumn blooms of phytoplankton (1–2 mg m?3) are also detected in the northern Bay of Biscay, shelf-break and Celtic Sea in October. A 11 years pluri-annual synthesis of SeaWiFS satellite measurements is presented.  相似文献   

17.
Three populations of Diplodon chilensis (Hiridae, Bivalvia) from North Patagonia (Lacar lake, Argentina) have been studied to determine how organic matter (OM) influence their growth, density, morphometric and metabolic parameters in two pristine sites (Yuco and Nonthué) and in a growing touristic locality (San Martín de los Andes Bay, site SMA) affected by urban discharges. In Nonthué (chemical and biological oxygen demand ratio COD/BOD ratio of 4.7), a dense neighboring forest provides higher quantities of vegetal detritus compared to Yuco, while in SMA the OM input increase is related to anthropogenic impact, mainly sewage discharges, which is more biodegradable (COD/BOD ratio of 1.7). Our results show that population's size distribution and growth rates are affected positively by increased OM, independently of its natural or anthropogenic origin. The modal shell length interval for SMA and Nonthué is two-fold higher (70 mm), in agreement to the growth rate increase (k = 0.079), compared to Yuco (35 mm, k = 0.045). The morphometric relationships between size–size and size–mass show a higher slope for SMA and Nonthué, which underline allometric differences between these two populations and the Yuco's one. The lower population densities in both sites (SMA 33 ind./m2 and Nonthué 76 ind./m2) compare to Yuco (176 ind./m2) and the absence of individuals younger than 7 and 5 years old, respectively, in SMA and Nonthué could be related to the higher allochthonous OM content in the sediments and total suspended solids in water. Increased OM due to urban pollution in SMA bivalves leads to higher oxidative damage to lipids, which is not counterbalanced by the higher detoxification enzyme glutathione-S-transferase activity. Hence, we can conclude that pollution would explain the drastic reduction in population density, probably related to a high impair in the juvenile's survival/recruitment, the higher observed mortality and the lower population longevity. When increased OM is supply by the forest, like in Nonthué, this has less negative effect on population density and no effect on longevity at all. However, a negative effect of oxygen depletion due to increased OM (either anthropogenic or natural) on juvenile survival cannot be discarded, but further studies should be carried out to support this idea.  相似文献   

18.
The mass-induced sea level variability and the net mass transport between Mediterranean Sea and Black Sea are derived for the interval between August 2002 and July 2008 from satellite-based observations and from model data. We construct in each basin two time series representing the basin mean mass signal in terms of equivalent water height. The first series is obtained from steric-corrected altimetry while the other is deduced from GRACE data corrected for the contamination by continental hydrology. The series show a good agreement in terms of annual and inter-annual signals, which is in line with earlier works, although different model corrections influence the consistency in terms of seasonal signal and trend.In the Mediterranean Sea, we obtain the best agreement using a steric correction from the regional oceanographic model MFSTEP and a continental hydrological leakage correction derived from the global continental hydrological model WaterGAP2. The inter-annual time series show a correlation of 0.85 and a root mean square (RMS) difference of 15 mm. The two estimates have similar accuracy and their annual amplitude and phase agree within 3 mm and 23 days respectively. The GRACE-derived mass-induced sea level variability yields an annual amplitude of 27 ± 5 mm peaking in December and a trend of 5.3 ± 1.9 mm/yr, which deviates within 3 mm/yr from the altimetry-derived estimate.In the Black Sea, the series are less consistent, with lower accuracy of the GRACE-derived estimate, but still show a promising agreement considering the smaller size of the basin. The best agreement is realized choosing the corrections from WaterGAP2 and from the regional oceanographic model NEMO. The inter-annual time series have a correlation and RMS differences of 0.68 and 55 mm, their annual amplitude and phase agree within 4 mm and 6 days respectively. The GRACE-derived seawater mass signal has an annual amplitude of 32 ± 4 mm peaking in April. On inter-annual time scales, the mass-induced sea level variability is stronger than in the Mediterranean Sea, with an increase from 2003 to 2005 followed by a decrease from 2006 to 2008.Based on mass conservation, the mass-induced sea level variations, river runoff and precipitation minus evaporation are combined to derive the strait flows between the basins and with the Atlantic Ocean. At the Gibraltar strait, the net inflow varies annually with an amplitude of 52 ± 10 × 10−3 Sv peaking end of September (1 Sv = 106 m3 s−1). The inflow through the Bosphorus strait displays an annual amplitude of 13 ± 3 ×10−3 Sv peaking in the middle of March. Additionally, an increase of the Gibraltar net inflow (3.4 ± 0.8 × 10−3 Sv/yr) is detected.  相似文献   

19.
An annual amplitude of ∼18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from the Gravity Recovery and Climate Experiment (GRACE) satellites and steric-corrected altimetry from 2003 to 2011. The annual mass variations in the region dominate the mean SLV, and generally reach maximum in late January/early February. The annual steric component of the mean SLV is relatively small (<3 cm) and out of phase of the mass-induced SLV. In situ bottom pressure records at the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. In addition, the horizontal water mass flux of the Red Sea estimated from GRACE and steric-corrected altimetry is validated by hydrographic observations.  相似文献   

20.
《Marine pollution bulletin》2012,65(12):2761-2769
In this study, we investigated the influence of low level contamination by copper, lead and zinc on the functioning of estuarine sandflat ecosystems by comparing the strength and variability of relationships between benthic macrofauna and fluxes (oxygen and nutrients) at three clean and three mildly contaminated sites. Specifically, as indicators of ecosystem functioning, we examined relationships between bivalve biomass, total benthic respiration and ammonium release, and ammonium uptake and benthic primary production. Furthermore, a small amount of organic matter was added to experimental plots at all sites (35 g/0.2 m2) to evaluate stress-on-stress responses relative to controls. Relationships were strongest at the clean sites (steepest slopes, highest r2 values, lowest p-values) and weakest at the mildly contaminated sites and in organically enriched plots. Our results suggest that changes in ecosystem functioning may be occurring at mild (<ERL) levels of pollution that are unlikely to cause widespread mortality of macrofauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号