首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lavas of the Biu and Jos Plateaus, Northern Cameroon Volcanic Line (CVL), contain abundant genetically related megacrysts of clinopyroxene, garnet and subordinately plagioclase, ilmenite and amphibole. P, T-estimates of crystallization for the primitive group of cpx and gnt megacrysts are 1.7–2.3 GPa and ~1,400 °C. Because crustal thickness in these areas is only ~30 km (~0.9 GPa), megacrysts must have formed within the lithospheric mantle. Primitive Biu and Jos lavas are isotopically heterogeneous in Sr-Nd isotope space (87Sr/86Sr=0.70285–0.70360 and Nd=7.5–4.6). Biu Plateau megacrysts overlap the range of Biu lavas in Sr-Nd isotope composition, indicating that crustal contamination of Biu lavas was minor. Jos Plateau lavas are isotopically more enriched than their associated megacrysts. Therefore an additional contamination of Jos lavas due to assimilation of continental crust (~5%) or enriched shallow lithospheric mantle is indicated. Lavas of Biu and Jos Plateau do not reflect simple fractionation or equilibrium crystallization products, but instead reflect mixing between primary melts and their fractionated derivatives.Editorial Responsibility: I. Carmichael  相似文献   

2.
The Jiangnan orogenic belt (JOB) has been interpreted as a suture zone between the Yangtze craton and Cathaysian terranes in South China. The Neoproterozoic mafic–ultramafic rocks are extensively exposed in the western JOB, providing an ideal opportunity to study the Neoproterozoic assembly and tectonic evolution of South China. We present integrated field and geochemical studies including LA-ICP-MS zircon U–Pb dating, and whole-rock major and trace element and Sm–Nd isotope analyses of the Neoproterozoic mafic–ultramafic rocks exposed in the northern Guangxi Province, South China. Geochronological results show that the magmatic events took place in two distinct periods: the early Neoproterozoic (861–834 Ma) and the late Neoproterozoic (770–750 Ma). Early Neoproterozoic ultramafic rocks of the Sibao Group have positive εNd(t) values (+ 2.7 to + 6.6) whereas mafic rocks exhibit negative εNd(t) values (− 5.8 to − 0.9). The basaltic rocks show TiO2 contents of 0.62–0.69 wt.% and Mg-number of 59–65, and also display an enrichment of light rare earth elements (LREEs) and pronounced negative Nb, Ta and Ti anomalies on chondrite- and primitive mantle-normalized diagrams, consistent with subduction-related geochemical signatures. Late Neoproterozoic rocks of the Danzhou Group show εNd(t) values (− 1.23 to + 3.19) for both ultramafic and mafic rocks. The basaltic rocks have TiO2 contents of 1.01–1.33 wt.% and Mg-number of 57–60, and have a mixture of MORB- and arc-like geochemical affinities, inferred to have formed in an extensional arc environment. Geochemical signatures suggest that all rock types in this study were derived from subarc mantle wedge sources and underwent various degrees of crustal contamination. Thus, we suggest that subduction may have continued to ca. 750 Ma in the western JOB, implying that the amalgamation event between the Yangtze craton and Cathaysian terranes was later than 750 Ma.  相似文献   

3.
4.
ABSTRACT

Abundant evidence points to the Cretaceous crust–mantle interaction and plate subduction in the Gan-Hang Tectonic Belt (GHTB), southeastern China, but the evolutionary process remains poorly constrained. Here we conduct a comprehensive study on Daqiaowu granitic porphyry and diabase dikes in the eastern GHTB, in conjunction with previous studies on simultaneous felsic and mafic rocks along the GHTB, to demonstrate their petrogenesis and geodynamic evolutionary process. The Daqiaowu granitic porphyry (125 Ma), as well as the coeval granitic rocks, exhibits high zircon saturation temperatures, alkalis, 104*Ga/Al ratios, and Zr + Nb + Ce + Y contents, concluding a distinctive belt of the Early Cretaceous (~137–125 Ma) A-type volcanic–intrusive rocks in the GHTB. Their εNd(t) and zircon εHf(t) values gradually increased through time from approximately ?9.0 to ?1.0 and ?10.0 to +4.0, respectively, implying increasing contribution of mantle-derived components to their formation, and hence progressively intensified crust–mantle interaction in an intra-arc rift environment (a geodynamic transition stage from continental arc to back-arc) during the Early Cretaceous. This plausibility is further supported by the Early Cretaceous Daqiaowu diabase dikes and coeval mafic rocks which exhibit arc-like magmatic signatures and were derived from mantle wedge. In contrast, the Late Cretaceous mafic rocks show ocean island basalt-like geochemical characteristics, reflecting a depleted asthenosphere mantle source. This discrepancy of mantle sources concludes that the geodynamic setting in the GHTB may have basically transferred to back-arc regime in the Late Cretaceous. Thus, the Cretaceous geodynamic evolutionary process in the GHTB can be defined as the Early Cretaceous gradually intensified crust–mantle interaction in a geodynamic transition stage (from continental arc to back-arc extension) and the Late Cretaceous back-arc extensional setting.  相似文献   

5.
The results of ICP-MS trace-element (LILE, HFSE, REE) study of the Late Mesozoic–Early Cenozoic volcanic rocks of the Okhotsk and Japan seas and geochronological K-Ar dating of the Eocene volcanic rocks are presented. Specifics of volcanism developed on submarine rises of these seas was characterized for the first time, and magma sources and geodynamic settings of the volcanic complexes predating the formation of the deep-water basins were determined. It is established that the Late Mesozoic magmas were formed in a subduction setting from spinel peridotites of suprasubduction mantle wedge, which was metasomatically reworked by aqueous fluids that were released by dehydration of sedimentary layer of subducting oceanic plate. This follows from the elevated concentrations of H2O, alkalis, potassium, LILE and LREE, and lowered HFSE (including Ta-Nb minimum) and HREE contents, at lowered Sm/Yb, Nb/Ta, Nb/Y and elevated La/Nb, Ba/La, and Zr/Y ratios. Eocene adakite-like volcanic rocks were identified for the first time in the Sea of Okhotsk. They vary from andesitic to more felsic compositions with elevated MgO (>4%) and elevated La/Yb (>14) and Sr/Y (50–60) ratios. Identification of adakite-like volcanic rocks serves as evidence in support of the transform continental-margin (or plate sliding) setting, which is characterized by breaking apart of subduction slab and formation of slab “windows” acting as pathways for the transfer of asthenospheric mantle into continental lithosphere. New geochemical data on the Late Mesozoic–Early Cenozoic volcanic rocks of the Okhotsk and Japan seas and analysis of literature data were used to distinguish two geodynamic settings within these seas: subduction and transform margin. Similar settings operated at that time in the adjacent continental- margin volcanic belts (Akinin and Miller, 2011; Martynov and Khanchuk, 2013; et al.).  相似文献   

6.
The Uimen-Lebed’ volcanoplutonic terrane is located at the junction of the Gorny Altai, Gornaya Shoriya, and western Sayan structures and is part of the Devonian-Early Carbonaceous Salair-Altai volcanoplutonic belt. The volcanic facies of the terrane composes the contrasting Nyrnin-Sagan Group, which includes basalt-basaltic andesite and basalt-rhyolite associations. The plutonic facies makes up the multiplet Elekmonar Group, which includes two independent complexes: monzogabbro-monzodiorite-granodiorite-granite and granodiorite-granite-leucogranite. The volcanic and plutonic rocks are asymmetrically distributed: volcanic sequences fill inherited depressions in the eastern part of the terrane, whereas plutonic complexes are located in its western part at the fault system branching from the transregional Kuznetsk-Teletsk-Kurai fault zone. The basalts of the Nyrnin-Sagan Group show geochemical signatures of both suprasubduction and rift-related rocks. The evolution of basaltoid magmatism reflects the formation and development of a suprasubduction mantle wedge in the inner part of an active continental margin accompanied by the influence of an intraplate mantle source. The silicic volcanism was generated under lower crustal conditions (P > 10 kbar) at the expense of metabasic materials and was accompanied by the influx of potassium into the anatectic zones. The gabbroids of the Elekmonar Group show suprasubduction geochemical features and no signatures of rift-related structures. The composition of the Elekmonar granitoids indicates significantly shallower (compared with the silicic volcanics) depths of their generation. The Uimen-Lebed’ volcanoplutonic terrane in the northeastern part of Gorny Altai was formed in the inner part of an active continental margin of the Andean type. Its magmatic complexes were formed over a considerable time range, from the early Emsian, when the formation of the active continental margin began, to the end of the Eifelian or, more likely, the beginning of the Givetian stage.  相似文献   

7.
Subduction zones are one of the most characteristic features of planet Earth. Convergent plate junctions exert enormous influence on the formation and recycling of continental crust, and they are also responsible for major mineral resources and earthquakes, which are of crucial importance for society. A subduction-related geologic unit containing high-pressure rocks occurs in the Barragán area (Valle del Cauca Department) on the western flank of the Central Cordillera of the Colombian Andes. Blueschists and amphibolites, serpentinized meta-ultramafic rocks, graphite-chlorite-muscovite-quartz schists, protocataclasites, and graphite-chlorite-andalusite-andesine-garnet-muscovite?± titanite schists are exposed in this region. In spite of the petrotectonic importance of blueschists, the high-pressure metamorphism of the Central Cordillera of Colombia has been rarely studied. New geochemical data indicate that protoliths of the blueschist- and amphibolite-facies rocks possessed normal mid-ocean ridge basalt bulk compositions. 40Ar/39Ar geochronology for a metapelite rock associated with the blueschists shows a plateau age of ~120 million years. We suggest that high-P/T conditions were present from ~150 to 125 Ma, depending on the model of generation and exhumation considered.  相似文献   

8.
This paper presents new ID-TIMS U–Pb zircon and titanite ages from the El-Sibai gneiss complex in the Eastern Desert of Egypt. The zircon data support previous studies, indicating that the protoliths of the gneissic (oldest) units in the area were emplaced during the East African orogeny, and do not represent an older pre-Neoproterozoic, reworked cratonic basement. The crystallization ages of three compositionally distinct orthogneiss protoliths are c. 685, 682 and 679 Ma, respectively. A U–Pb titanite age from one orthogneiss overlaps with the protolith age, indicating that the gneisses did not undergo post-magmatic high-temperature metamorphism. The gneissic textures of the rocks are therefore interpreted to reflect syn-emplacement deformation. This, and evidence for static amphibolite facies metamorphism in country-rock metavolcanics, lead us to conclude that the gneisses of El-Sibai do not represent an exhumed middle crustal gneiss dome, but are part of the island arc affined allochthon into which they were emplaced synchronously with NW-ward nappe translation. We also report ages from rocks cross-cutting the gneisses and the surrounding island arc affined assemblages that yield the hitherto youngest robust pre-Cretaceous intrusive ages in the Eastern Desert. The dated rocks are an anorthosite and a cross-cutting syenogranite giving ages of c. 541 and 540 Ma, respectively. We consider this late magmatic pulse to be anorogenic, most likely reflecting a separate extensional event involving asthenospheric upwelling and decompression melting of the mantle.  相似文献   

9.
《International Geology Review》2012,54(16):2016-2029
The Salmas area, in the northernmost part of the Sanandaj–Sirjan zone of Iran, contains a crystalline mafic–intermediate complex that intrudes into the Precambrian metamorphic basement complex and is composed of gabbroic and gabbrodiorite cumulates and fine-grained non-cumulate gabbronorites and diorites. These rocks have fine- to coarse-grained texture and are mainly composed of plagioclase, pyroxenes, and amphibole. Major element geochemistry indicates that the pluton has a low-K with tholeiitic affinity. Variations of major and trace elements on Harker diagrams, including negative correlations MgO, Fe2O3, CaO, and Co and positive correlations Na2O, K2O, Rb, Ba, and La, with increasing SiO2 and chondrite-normalized REE patterns, suggest that fractional crystallization of gabbroic rocks could have played a significant role in the formation of evolved rocks. The chondrite-normalized REE patterns are not fractionated (LaN /LuN = 1.3–5.4) and display strong Eu anomalies (Eu/Eu* = 1.15–1.76) in cumulate rocks, which we attributed to cumulus plagioclase. Sr and Nd isotopic ratios vary from 0.704698 to 0.705866 and from 0.512548 to 0.512703, respectively. Gabbronorites with high 143Nd/144Nd ratios, low 87Sr/86Sr ratios, and high MgO, Ni, and Cr contents indicate that they were generated from relatively primitive magmas. We used petrogenetic modelling to constrain sources. Trace element ratio modelling indicates that the gabbroic rocks were generated from a spinel-peridotite source via 5–20% degrees of fractional melting at a depth of ~52 km. Major and REE modelling shows that the diorites are the products of fractional crystallization of gabbronorites.  相似文献   

10.
Acta Geochimica - The high-MgO ultramafic volcanic rocks in the NW Ad Dhala province are classified as meimechite according to the IUGS classification scheme. This province represents the...  相似文献   

11.
The G?ksun(Kahramanmaras)ophiolite(GKO),cropping out in a tectonic window bounded by the Malatya metamorphic unit on both the north and south,is located in the EW-trending lower nappe zone of the southeast Anatolian orogenic belt(Turkey).It exhibits a complete oceanic lithospheric section and overlies the Middle Eocene Maden Group/Complex with a tectonic contact at its base.The ophiolitic rocks and the tectonically overlying Malatya metamorphic(continental)unit were intruded by I-type calc-alkaline Late Cretaceous granitoid(~81-84 Ma).The ultramafic to cumulates in the GKO are represented by wehrlite,plagioclase wehrlite,olivine gabbro and gabbro.The crystallization order for the cumulate rocks is as follows:olivine±chromian spinel→clinopyroxene→plagioclase.The major and trace element geochemistry as well as the mineral chemistry of the ultramafic to mafic cumulate rocks suggest that the primary magma generating the GKO is compositionally similar to that observed in the modern island-arc tholeiitic sequences.The mineral chemistry of the ultramafic to mafic cumulates indicates that they were derived from a mantle source that was previously depleted by earlier partial melting events.The highly magnesian olivine(Fo77-83),clinopyroxene(Mg#of 82-90)and the highly Ca-plagioclase(An81-89)exhibit a close similarity to those,which formed in a supra-subduction zone(SSZ)setting.The field and the geochemical evidence suggest that the GKO formed as part of a much larger sheet of oceanic lithosphere,which accreted to the base of the Tauride active continental margin,including the ispendere,K?mürhan and the Guleman ophiolites.The latter were contemporaneous and genetically/tectonically related within the same SSZ setting during the closure of the Neotethyan oceanic basin(Berit Ocean)between the Taurides to the north and the Bitlis-Pütürge massif to the south during the Late Cretaceous.  相似文献   

12.
Zircon U–Pb, mica 40Ar/39Ar ages and geochemistry of the Permo-Triassic mafic to intermediate dyke swarms at the south-western margin of the Indochina Terrane, central Thailand, are reported here and used to decipher the timing of the Sukhothai-Indochina & Sibumasu-Indochina collisions during the Permo-Triassic stages of the Indosinian Orogeny. The mafic dyke swarms in the folded layers of the Khao Khwang Fold–Thrust Belt (KKFTB) were emplaced between the Late Permian and the Late Triassic. The volcanic rocks range from slightly tholeiitic to mostly calc-alkalic, but can be subdivided into three different volcanic groups on the basis of trace and incompatible element abundances such as Ni, Cr, P, Co, and Th. However, all the groups present similar chemical footprints and are enriched in large ion lithophile elements (LILEs) (Rb, Ba, Sr, Pb) and light rare earth elements (LREEs), and depleted in HFSE such as Nb, and Ti highlighting the volcanic arc nature of the system. Isotopically, the three groups are characterized by subtle differences in εNd(t) values (from + 3.2 to + 5.2) and initial 87Sr/86Sr ratios (from 0.7056 to 0.7067). The KKFTB mafic dykes share a few geochemical characteristics of the mafic dykes from the Chiang Khong volcanic suite in the Sukhothai terrane, and from the Loei volcanic belt in northern Indochina. These geochemical features suggest that the KKFTB mafic dykes, and the volcanic rocks in central-northern Thailand, were likely emplaced in a similar orogenic setting. The rocks of Group III are interpreted to have intruded from the Early Triassic (255 ± 6 Ma) to the Late Triassic (207 ± 2 Ma), and were probably sourced from a more crustally contaminated magma.  相似文献   

13.
《International Geology Review》2012,54(14):1691-1719
This study investigates the formation of lower oceanic crust and geochemical variations of basalts along the Central Indian Ridge (CIR, lat. 7°45′–17°10′ S). Harzburgites, various gabbroic cumulates, medium- to fine-grained oxide gabbros, diabases, and pillow basalts were recovered by dredging from segment ends such as ridge-transform intersections (RTIs), non-transform discontinuities (NTDs), and transform offset areas. The occurrence of both harzburgites and gabbroic rocks with minor basalts at all segments ends, and leucogabbro intrusive into harzburgite at the 12°45′ S NTD indicates that oceanic crust at segment ends exposes mantle-derived harzburgites and gabbroic intrusions with a thin basaltic cover due to sparse magmatic activity. Basalts collected along the entire ridge show wide compositional variations between N (normal)- and E (enriched)-mid-ocean ridge basalt (MORB). T (transitional)-MORBs with enriched affinities are more prominent than N-MORBs. There is no tendency of enrichment towards specific directions. (La/Sm)N variations in MORB along the CIR (8°–21°S) fluctuates at a regional scale with local high positive anomalies reflecting compositional heterogeneity of the sub-CIR mantle domain.  相似文献   

14.
E?irdir Lake is the second largest fresh water lake with 482 km2 surface area of Turkey. The lake is an indispensable water source for our country and region because of available water capacity and usage aims such as drinking-irrigation water, tourism, and fishing. However, especially contaminants located in the E?irdir Lake catchment affect the lake water quality negatively in times. Therefore, determination of the water quality of the lake has quite importance for region human health and sustainable usage of the lake. The major factors that control the quality of the E?irdir Lake water are agricultural activities in the basin, water–rock interaction, and domestic and industrial wastes. This study investigates the anthropogenic and geologic impact originated from pollution sources and water–rock interaction in the lake watershed basin to the E?irdir Lake water quality. For this purpose, geological, hydrogeological, and hydrological properties of the lake basin with point and nonpoint pollution sources were investigated. To determine the water quality of the lake, 48 water samples were collected especially from locations representing effects of pollutants in May and October 2009. The analysis results were compared with maximum permissible limit values recommended by World Health Organization and Turkish drinking water standards. The contents of all chemical and physical parameters are higher in dry periods than wet period, and water pollution was observed at discharge points of the streams into the lake. Also, pH, turbidity, potassium, chemical oxygen demand, ammonium, aluminum, iron, and lead concentrations were found to be above drinking water standards.  相似文献   

15.
Sr–Nd isotope data are reported for the early Precambrian sub-alkaline mafic igneous rocks of the southern Bastar craton, central India. These mafic rocks are mostly dykes but there are a few volcanic exposures. Field relationships together with the petrological and geochemical characteristics of these mafic dykes divide them into two groups; Meso-Neoarchaean sub-alkaline mafic dykes (BD1) and Paleoproterozoic (1.88 Ga) sub-alkaline mafic dykes (BD2). The mafic volcanics are Neoarchaean in age and have very close geochemical relationships with the BD1 type. The two groups have distinctly different concentrations of high-field strength (HFSE) and rare earth elements (REE). The BD2 dykes have higher concentrations of HFSE and REE than the BD1 dykes and associated volcanics and both groups have very distinctive petrogenetic histories. These rocks display a limited range of initial 143Nd/144Nd but a wide range of apparent initial 87Sr/86Sr. Initial 143Nd/144Nd values in the BD1 dykes and associated volcanics vary between 0.509149 and 0.509466 and in the BD2 dykes the variation is between 0.510303 and 0.510511. All samples have positive ? Nd values; the BD1 dykes and associated volcanics have ? Nd values between +0.3 and +6.5 and the BD2 dykes between +1.9 to +6.0. Trace element and Nd isotope data do not suggest severe crustal contamination during the emplacement of the studied rocks. The positive ? Nd values suggest their derivation from a depleted mantle source. Overlapping positive ? Nd values suggest that a similar mantle source tapped by variable melt fractions at different times was responsible for the genesis of BD1 (and associated volcanics) and BD2 mafic dykes. The Rb–Sr system is susceptible to alteration and resetting during post-magmatic alteration and metamorphism. Many of the samples studied have anomalous apparent initial 87Sr/86Sr suggesting post-magmatic changes of the Rb–Sr system which severely restricts the use of Rb–Sr for petrogenetic interpretation.  相似文献   

16.
In addition to ophiolites in the structure of the Otrozhnaya sheet, the igneous rocks were established within the Middle Devonian-Lower Carboniferous tuffaceous-terrigenous complex earlier considered to be the cover of the ophiolite association. In order to establish their geodynamic formation setting, the geochemical study of igneous rocks was conducted. The volcanic rocks from the ophiolite complex are similar to MORB; subvolcanic rocks of tuffaceous-terrigenous complex have a suprasubduction origin. An abundance of pyroclastic rocks and the type of sediments allow us to conclude about their formation in an island arc setting. The existence of the Middle Devonian-Lower Carboniferous island arc complex within the Ust’-Belaya Mountains gives rise to continue the Koni-Taigonos arc inside the region and testifies to its subsistence in the Devonian.  相似文献   

17.
Lower Miocene Boyalik volcanic rocks, situated approximately 80 km south of Ankara, exhibit both alkaline and calc‐alkaline characteristics. Alkaline products are trachybasaltic and trachyandesitic, whereas calc‐alkaline products are dacitic. The phenocrysts in the dacites consist primarily of plagioclase and hornblende, with lesser amounts of biotite. The groundmass contains plagioclase and quartz microcrysts. Trachyandesites are mainly composed of plagioclase and biotite phenocrysts with a groundmass of alkali feldspar microlites and minor clinopyroxene microcrysts. Trachybasalts are mainly composed of olivine and plagioclase phenocrysts, with minor clinopyroxene phenocrysts associated with alkali feldspar, plagioclase and clinopyroxene microlites and microcrysts in the groundmass. Oxides are common accessory phases in all products. Boyalik volcanic rocks have essentially homogeneous incompatible trace element patterns with variable Nb and Th anomalies, enrichment in Rb, Ba, K, La, Ce and Nd, and positive Sr anomalies. Some trace element ratios (e.g. Ba/Ta, Ba/Nb, Th/U and Ce/Pb) are variable among the series. For instance, dacites and trachyandesites have higher Ba/Ta (724–2509), Ba/Nb (45–173) and Th/U (3.5–8.7) and lower Ce/Pb (7.1–3.9) values than the trachybasalts. Trace element data indicate that the series are chemically distinct but probably were derived from a common lithospheric mantle source via variable degrees of partial melting. The magmas then underwent a process of evolution involving assimilation and fractional crystallization (AFC) during ascent to the surface. Although trachyandesites and dacites were generated from a lithospheric mantle source via ~1% and ~1.5% to ~5% degrees of partial melting, respectively, trachybasalts were derived from the same source via higher degrees of partial melting (~20%) with neglegible crustal contamination. Boyalik volcanism is linked to an intracontinental transpressional setting. However, the overall geochemical features are consistent with derivation from a mantle source that records earlier Eocene subduction between the Sakarya continental fragment and the K?r?ehir block during time.  相似文献   

18.
19.
Major and trace element compositions of rocks and coexisting phenocrysts of the Thingmúli volcano suggest a revision of the existing models for the formation of intermediate and silicic melts in Iceland. The new data define two compositional tholeiitic trends with a significant gap between them. A high-iron trend (HFe) contains 6–14 wt% total FeO in silicic rocks with c. 1 wt% MgO, as well as sodic plagioclase and hedenbergite phenocrysts. A low-iron trend (LFe) contains 3–5 wt% FeO at c. 1 wt% MgO, which is typical of Iceland but higher than MORB compositions. The most evolved phenocrysts of the LFe trend do not reach iron-rich end members. The HFe trend is interpreted as a result of fractional crystallization; numerical modelling using the MELTS algorithm suggests that crystallization took place under redox conditions constrained to one-log unit below the fayalite-magnetite-quartz oxygen buffer (FMQ-1). The LFe trend is explained by a combination of mixing between rhyolite and ferrobasalt, assimilation of hydrated crust and fractional crystallization under higher redox conditions (FMQ). The two trends and the gap are best defined in a plot of Mg# versus SiO2 that is useful to unravel petrogenetic processes. For example, intermediate and silicic rocks of the Holocene volcanic systems of spreading rifts (e.g. Krafla), propagating rifts (e.g. Hekla) and off-rifts (Öræfajökull) also fall into high- and low-iron fields and outline a gap similar to Thingmúli. The identification of two compositional trends in erupted intermediate and silicic volcanic products shows that processes in the deep roots of single volcanic systems are highly diverse and likely controlled by local variations in the thermal gradients and the extend of hydrothermal alteration. Generalizations about the relationship between the compositions of intermediate and silicic rocks and plate tectonic setting, therefore, should be avoided.  相似文献   

20.
Basanites and nephelinites from the Tertiary Rhön area (Germany), which are part of the Central European Volcanic Province (CEVP), have high MgO, Ni and Cr contents and prominent garnet signatures indicating that they represent near-primary magmas formed by melting of a CO2-bearing peridotitic mantle source at high pressure. The Pb and Hf isotope (and previously published Nd and Sr isotope) ratios of the Rhön lavas are rather uniform, whereas the Os isotope composition is highly variable. For the most primitive basanites, Pb, Os and Hf isotope compositions fall within the range of enriched MORB and some OIB. Other basanites and nephelinites with low Os concentrations have distinctly more radiogenic Os (187Os/188Os: 0.160–0.469) isotope compositions, which are inferred to originate from crustal contamination. The samples with the highest Os concentrations have the lowest Os isotope ratios (187Os/188Os(23 Ma): 0.132–0.135), and likely remain unaffected by crustal contamination. Together with their fairly depleted Sr, Nd and Hf isotope ratios, the isotopic composition of the Rhön lavas suggests derivation from an asthenospheric mantle source. Prominent negative K and Rb anomalies, however, argue for melting amphibole or phlogopite-bearing sources, which can only be stable in the cold lithosphere. We therefore propose that asthenospheric melts precipitated at the asthenosphere-lithosphere thermal boundary as veins in the lithospheric mantle and were remelted or incorporated after only short storage times (about 10–100 million years) by ascending asthenospheric melts. Due to the short residence time incorporation of the vein material imposes the prominent phlogopite/amphibole signature of the Rhön alkaline basalts but does not lead to a shift in the isotopic signatures. Melting of the lithospheric mantle cannot strictly be excluded, but has to be subordinate due to the lack of the respective isotope signatures, in good agreement with the fairly thin lithosphere observed in the Rhön area. The fairly radiogenic Pb isotope signatures are expected to originate from melting of enriched, low melting temperature portions incorporated in the depleted upper (asthenospheric) mantle and therefore do not require upwelling of deep-seated mantle sources for the Rhön or many other continental alkaline lavas with similar Pb isotope signatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号