首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Neoproterozoic Ikorongo Group, which lies unconformably on the late Archaean Nyanzian Supergroup of the Tanzania Craton, is comprised of conglomerates, quartzites, shales, siltstones, red sandstones with rare flagstones and gritstones and is regionally subdivided into four litho-stratigraphic units namely the Makobo, Kinenge, Sumuji and Masati Formations.We report geochemical data for the mudrocks (i.e., shales and siltstones) from the Ikorongo basin in an attempt to constrain their provenance and source rock weathering. These mudrocks are compositionally similar to PAAS and PS indicating derivation from mixed mafic–felsic sources. However, the siltstones show depletion in the transition elements (Cr, Ni, Cu, Sc and V) and attest to a more felsic protolith than those for PAAS and PS. The Chemical Index of Alteration (CIA: 52–82) reveal a moderately weathered protolith for the mudrocks. The consistent REE patterns with LREE-enriched and HREE-depleted patterns ((La/Yb)CN = 7.3–38.3) coupled with negative Eu anomalies (Eu/Eu* = 0.71 on average), which characteristics are similar to the average PAAS and PS, illustrate cratonic sources that formed by intra-crustal differentiation.Geochemical considerations and palaeocurrent indications suggest that the provenance of the Ikorongo Group include high-Mg basaltic-andesites, dacites, rhyolites and granitoids from the Neoarchaean Musoma-Mara Greenstone Belt to the north of the Ikorongo basin. Mass balance calculations suggest relative contributions of 47%, 42% and 11% from granitoids, high-magnesium basaltic-andesites and dacites, respectively to the detritus that formed the shales. Corresponding contributions to the siltstones detritus are 53%, 43% and 4%.  相似文献   

2.
The elemental composition of organic matter and the major and trace element compositions of stream sediments from Myanmar (Ayeyarwady and Sittaung rivers) and Thailand (Mekong and Chao Phraya rivers, and their tributaries) were determined to examine their distributions, provenance, and chemical weathering processes. Higher total organic carbon (TOC) and total nitrogen (TN) contents in the finer grained sediments indicate hydrodynamic energy may control their distributions. TOC/TN ratios indicate inputs of both aquatic macrophyte and higher vascular plant material to the river sediments. The major element abundances of the sediments are characterized by predominance of SiO2 in coarser fractions and a marked negative correlation with Al2O3, representing primary grain size primarily control on SiO2 content. Marked depletion of most labile elements (Na2O, CaO, K2O, Ba and Sr) relative to UCC (upper continental crust), indicate destruction of feldspar during chemical weathering in the source area or during transport. However, enrichment of some high field strength elements (Zr, Th, Ce and Y) relative to UCC and higher Zr/Sc ratios indicate moderate concentration of resistant heavy minerals in finer-grained samples. Discriminant diagrams and immobile trace element characteristics indicate that the Mekong, and Chao Phraya river sediments were largely derived from felsic sources with compositions close to typical rhyolite, dacite/granodiorite, UCC, I- and S-type granites. Relative enrichment of ferromagnesian elements (e.g. MgO, Cr, Ni) and high Cr/V and low Y/Ni ratios in Ayeyarwady and Sittaung sediments indicate the presence of a mafic or ultramafic component in their sources. The ICV (Index of Compositional Variability), CIA (Chemical Index of Alteration), PIA (Plagioclase Index of Alteration), αAl, Rb/Sr and K2O/Rb ratios indicate that the Ayeyarwady and Sittaung sediments record low to moderate degrees of chemical weathering in their source, compared to moderate to intense chemical weathering in the Mekong and Chao Phraya river basins. These results are compatible with existing major ion data for river waters collected at the same locations.  相似文献   

3.
Peridotite and granite xenoliths, in the early stage of weathering, occur in the Nyos volcanic region (NW Cameroon). Geochemical data shows that peridotites are marked by high concentrations of MgO (42.30 wt.%, with SiO2/MgO ∼ 1), chromium (2100 ppm), nickel (2100 ppm) and cobalt (104 ppm), as well as by low lanthanide contents (ΣREE: 7.41 ppm). Granites display SiO2 contents (70–73 wt.%), and are mostly peraluminous (1.40 > A/CNK < 1.6). They are also characterized by low contents in chromium (<24 ppm), nickel (ranging from 6 to 15 ppm) and cobalt (ranging from 3 to 6 ppm). Granites possess high lanthanide contents (ΣREE varying between 248.00 and 463.00 ppm), particularly in light lanthanides (LREE/HREE ratios ranging from 21 to 32). The chondrite-normalized patterns of the studied xenoliths are characterized by: (i) LREE enrichments in both rock types; (ii) negative Eu anomalies ([Eu/Eu*] ranging from 0.45 to 0.64) and weak positive Ce anomalies ([Ce/Ce*] ranging from 1.06 to 1.46) in granites. The weathering process provokes a remobilization of several trace elements notably light lanthanides.The geochemical survey of Platinum-Group Elements (PGE) done in these rocks in the early stage of weathering shows that PGE contents are less than 7 ppb in the peridotites. The highly concentrated elements are ruthenium (6.26 ppb) and platinum (5.53 ppb). The total PGE content is 14.57 ppb. These concentrations normalized with respect to chondrites display a flat spectrum from iridium to platinum. PGE contents in the granites are below detection limit except for two samples (LNY01 and LNY02) whose platinum content is close to 0.23 ppb.  相似文献   

4.
The behaviour of major and trace elements have been studied along two serpentinite weathering profiles located in the Kongo-Nkamouna and Mang North sites of the Lomié ultramafic complex.The serpentinites are characterized by high SiO2 and MgO contents, very low trace, rare earth and platinum-group element contents. Lanthanide and PGE contents are higher in the Nkamouna sample than in Mang North. Normalized REE patterns according to the CI chondrites reveal that: (i) all REE are below chondrites abundances in the Mang North sample; (ii) the (La/Yb)N ratio value is higher in the Nkamouna sample (23.72) than in the Mang one (1.78), this confirms the slightly more weathered nature of the Nkamouna sample. Normalized PGE patterns according to the same CI chondrites reveal a negative Pt anomaly in the Mang sample. The Nkamouna sample is characterized by a flat normalized PGE pattern.All element contents increase highly from the parent rock to the coarse saprolite.In the weathering profiles, Fe2O3 contents decrease from the bottom to the top contrarily to Al2O3, SiO2 and TiO2. The contents of alkali and alkaline oxides are under detection limit.Concerning trace elements, Cr, Ni, Co, Cu, Zn and Sc decrease considerably from the bottom to the top while Zr, Th, U, Be, Sb, Sn, W, Ta, Sr, Rb, Hf, Y, Li, Ga, Nb and Pb increase towards the clayey surface soil. Chromium, Ni and Co contents are high in the weathered materials in particular in the saprolite zone and in the nodules.REE contents are high in the weathered materials, particularly in Nkamouna. Their concentrations decrease along both profiles. Light REE are more abundant than heavy REE. Normalized REE patterns according to the parent rock reveal positive Ce anomalies in all the weathered materials and negative Eu anomalies only at the bottom of the coarse saprolite (Nkamouna site). Positive Ce anomalies are higher in the nodular horizon of both profiles. An additional calculation method of lanthanide anomalies, using NASC data, confirms positive Ce anomalies ([Ce/Ce*]NASC = 1.15 to 60.68) in several weathered materials except in nodules ([Ce/Ce*]NASC = 0.76) of the upper nodular horizon (Nkamouna profile). The (La/Yb)N ratios values are lower in the Nkamouna profile than in Mang site.PGE are more abundant in the weathered materials than in the parent rock. The highest contents are obtained in the coarse saprolite and in the nodules. The elements with high contents along both profiles are Pt (63–70 ppb), Ru (49–52 ppb) and Ir (41 ppb). Normalized PGE patterns show positive Pt anomalies and negative Ru anomalies.The mass balance evaluation, using thorium as immobile element, reveals that:
– major elements have been depleted along the weathering profile, except for Fe, Mn and Ti that have been enriched even only in the coarse saprolite;
– all the trace elements have been depleted along both profiles, except for Cr, Co, Zn, Sc, Cu, Ba, Y, Ga, U and Nb that have been enriched in the coarse saprolite;
– rare earth elements have been abundantly accumulated in the coarse saprolite, before their depletion towards the top of the profiles;
– platinum-group elements have been abundantly accumulated in the coarse saprolite but have been depleted towards the clayey surface soil.
Moreover, from a pedogenetical point of view, this study shows that the weathering profiles are autochtonous, except in the upper part of the soils where some allochtonous materials are revealed by the presence of zircon grains.  相似文献   

5.
The chemical characteristics of sedimentary rocks provide important clues to their provenance and depositional environments. Chemical analyses of 192 samples of Katangan sedimentary rocks from Kolwezi, Kambove–Kabolela and Luiswishi in the central African Copperbelt (Katanga, Congo) are used to constrain (1) the source and depositional environment of RAT and Mines Subgroup sedimentary rocks and (2) the geochemical relations between the rocks from these units and the debate on the lithostratigraphic position of the RAT Subgroup within the Katangan sedimentary succession. The geochemical data indicate that RAT, D. Strat., RSF and RSC are extremely poor in alkalis and very rich in MgO. SD are richer in alkalis, especially K2O. Geochemical characteristics of RAT and Mines Subgroups sedimentary rocks indicate deposition under an evaporitic environment that evolved from oxidizing (Red RAT) to reducing (Grey RAT and Mines Subgroup) conditions. There is no chemical difference between RAT and fine-grained clastic rocks from the lower part of the Mines Subgroup. The geochemical data preclude the genetic model that RAT are syn-orogenic sedimentary rocks originating from Mines Group rocks by erosion and gravity-induced fragmentation in front of advancing nappes.  相似文献   

6.
鄂西南利川地区三叠纪须家河组砂岩碎屑颗粒富石英(Q),贫岩屑(L)与长石(F),平均值分别为:76.23%、7.08%与4.88%,Q/(Q+F+L)平均值为0.86,具有锆石-板钛矿-磁铁矿-电气石重矿物组合,指示源岩以酸性岩或低级变质岩为主。砂岩主量元素Si O2含量高(77.14%~92.79%,平均84.14%),Al2O3次之(3.86%~14.15%,平均9.69%),(Fe2O3T+Mg O)*(0.98%~3.20%,平均1.50%)、Ti O2*(0.09%~1.09%,平均0.39%)含量低,Al2O3/Si O2比值低(0.04~0.18,平均0.12),K2O/Na2O比值高(4.90~82.41,平均40.01),最接近被动大陆边缘特征值。样品具有与上地壳相似的高场强元素与大离子亲石元素组成,ΣREE分布于62×10-6~495×10-6之间,平均181×10-6,球粒陨石标准化配分型式与上地壳极为相似,呈现轻稀土富集、重稀土平坦、中度Eu、Ce负异常特征,特征微量、稀土元素含量及比值,如:Th、La、Ce、Rb/Sr、Th/U、La/Sc,指示了晚三叠世构造背景为被动与活动大陆边缘。样品成分变异指数ICV均1(0.18~0.68,平均0.45),指示物源主要为再循环的沉积物,而沉积物再循环会导致粘土矿物比例增加,从而使化学风化指标CIA值得到累积。较高的CIA值(72.10~96.28,平均81.18)表明沉积物累积经历的化学风化作用强烈,而CIA与ICV强烈负相关,则表明CIA值的变化主要是由不同时期输入碎屑物成分不同引起的。结合物源、构造背景判别图解,上述特征综合表明研究区须家河组形成于被动大陆边缘(为主)与活动大陆边缘环境,其物源来自东南的雪峰隆起区(为主)与北侧的秦岭造山带。  相似文献   

7.
This present study describes the elemental geochemistry of fluvial sediments in the Kurigram (upstream) to Sirajganj–Tangail (downstream) section of the Brahmaputra–Jamuna River, Bangladesh, with the aim of evaluating their provenance, weathering and tectonic setting. Petrographically, the sediments are rich in quartz (68%), followed by feldspars (8.5%) and lithic grains (7%). The bulk sediment chemistry is influenced by grain size. Concentrations of TiO2, Fe2O3, MgO, K2O, P2O5, Rb, Nb, Cr, V, Y, and, Ce, Th and Ga slightly decrease with increasing SiO2/Al2O3 and grain size, suggesting clay matrix control. In contrast, concentrations of CaO, Na2O, Sr and Pb increase with increasing SiO2/Al2O3 and grain size, suggesting residence of these substances in feldspar. Decrease in Zr as grain size increases is likely controlled both by clay matrix and heavy minerals. In addition, heavy minerals' sorting also influences Ce, Th, Y and Cr abundances in some samples. The sediments are predominantly quartzose in composition with abundant low-grade metamorphic and sedimentary lithics, low feldspars and trace volcanic detritus, indicating a quartzose recycled orogen province as a source of the sediments. Discriminant diagrams together with immobile element ratio plots show that, the Brahmaputra–Jamuna River sediments are mostly derived from rocks formed in an active continental margin. Moreover, the rare earth element ratios as well as chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomalies indicate derivation of the sediments of Brahmaputra–Jamuna River from felsic rock sources of upper continental crust (UCC). The chemical indices of alteration suggest that Brahmaputra–Jamuna River sediments are chemically immature and experienced low chemical weathering effects. In the A–CN–K ternary diagram, most of the samples close to the plagioclase–K-feldspar join line and to the UCC plot, and in the field of various lithologies of Higher Himalayan Crystalline Series, suggesting that rocks in these series are likely source rocks. Therefore, the elemental geochemistry of the Brahmaputra–Jamuna River sediments is controlled mostly by mechanical breakdown of lithic fragments and subsequent preferential attrition of muscovite > albite > quartz.  相似文献   

8.
The sediment geochemistry, including REE, of surface and core samples from Mansar Lake, along with mineralogical investigations, have been carried out in order to understand the provenance, source area weathering, hydrolic sorting and tectonic setting of the basin. The geochemical signatures preserved in these sediments have been exploited as proxies in order to delineate these different parameters.The major element log values (Fe2O3/K2O) vs (SiO2/Al2O3) and (Na2O/K2O) vs (SiO2/Al2O3) demarcate a lithology remarkably similar to that exposed in the catchment area. The chondrite normalized REE patterns of lake samples are similar to Post Archaean Australian Shale (PAAS) with LREE enrichment, a negative Eu anomaly and almost flat HREE pattern similar to a felsic and/or cratonic sedimentary source. However, the La–Th–Sc plot of samples fall in a mixed sedimentary domain, close to Upper Continental Crust (UCC) and PAAS, suggesting sedimentary source rocks for the Mansar detritus. It also indicates that these elements remained immobile during weathering and transportation. The mineralogical characteristic, REEs, and high field strength elements (HFSE), together with the high percentage of metamorphic rock fragments in the Siwalik sandstone, support a metamorphic source for lower Siwalik sediments. A very weak positive correlation between Zr and SiO2, poor negative correlation with Al2O3, negative correlation of (La/Yb)N and (Gd/Yb)N ratios with SiO2 and positive correlation with Al2O3, suggest that Zr does not dominantly control the REE distribution in Mansar sediments. The petrographic character and textural immaturity indicate a short distance transport for the detritus. The distribution of elements in core samples reflect fractionation. The higher Zr/Th and Zr/Yb ratios in coarse sediments and PAAS compared to finer grained detritus indicate sedimentary sorting. Plots of the geochemical data on tectonic discrimination diagrams suggest that the sediments derived from the lower Siwalik were originated within a cratonic interior and later deposited along a passive margin basinal setting. It therefore reveals lower Siwalik depositional history.  相似文献   

9.
吴海波  李军辉 《地质学报》2012,86(4):661-670
呼和湖凹陷是海拉尔盆地未来油气勘探的新战场,目前勘探程度较低,关于烃源岩的认识比较薄弱,精细评价该区烃源岩对有利区带预测具有重要意义。以层序地层学和地球化学理论为指导,综合运用有机碳(TOC)、生烃潜量Pg(S1+S2)、氯仿沥青"A"、干酪根元素特征、岩石热解特征和干酪根类型指数(KTI)及显微组分特征、镜质组反射率(Ro)和源岩甾萜烷特征等方面资料,从不同层序和同一层序不同体系域对呼和湖凹陷的烃源岩特征进行综合评价研究。结果表明,呼和湖凹陷烃源岩非均质性特征明显,烃源岩生烃的层位主要分布于Sq4、Sq3和Sq2层序的湖侵体系域和高位体系域,尤其是Sq3和Sq2层序的湖侵体系域中。应用这一方法进行烃源岩评价,不仅对呼和湖凹陷的油气勘探工作具有重要的意义,同时对于勘探程度低、钻井稀少的含油气盆地中的烃源岩评价工作更为有效。  相似文献   

10.
 Sediment geochemistry of a shallow (6-m average) reservoir (Lake Waco) was evaluated for the spatial distribution of major and trace elements. Sixty bottom and core samples along a 21-km transect within the reservoir, 18 overbank sediment samples, and 8 rock types in the drainage area were collected and analyzed for major (Al, Ca, Fe) and trace elements (As, Ba, Cr, Cu, Hg, Mn, Ni, Pb, Sr, V, Zn). Elemental concentrations in the reservoir sediments closely correspond to concentrations in the regional rocks and represent a mixture of overbank sediment composition of the tributaries. Elemental concentrations were statistically regressed against Al concentrations in order to establish regional baseline levels and thereby distinguish natural from anthropogenic sources. Spatial geochemical trends, considered in terms of element-to-Al ratio versus V-to-Al ratio, relate to the natural and anthropogenic sources contributing to the elemental concentrations. The spatial elemental distribution in the reservoir, which receive sediments from two mineralogically contrasting basins, reflect textural and mineralogical transition within the reservoir and suggest a progressive mixing of sediment from the tributaries. The spatial elemental distribution and sediment texture suggest that the sediment-source, which determines the sediment-type, has a greater influence on the major- and trace-element distributions in shallow reservoir sediments than bathymetry. Received: 25 September 1997 · Accepted: 3 February 1998  相似文献   

11.
Tropical chemical weathering produces extensive lateritization and formation of deep weathering profiles. Both processes are fundamental to landscape evolution and slope instability. The Aburrá Valley of the northern Colombian Andes is characterized by tropical conditions. The valley slopes are mostly covered by hillslope deposits originating from four basement rock suites which comprise contrasting granitoid, volcanic–sedimentary, ophiolitic, and metamorphic sources, respectively. Tropical chemical weathering of the Aburrá hillslope deposits and their respective bedrock were examined using X-ray fluorescence and X-ray diffraction analysis, to document and quantify their chemical weathering profiles, compositions, and mineralogical properties. The Chemical Index of Alteration (CIA), loss on ignition (LOI), and the Mobiles index (Imob) were used to quantify the degree of weathering of hillslope deposits and bedrock source. Weathering trends were analyzed using A–CN–K and A–CNK–FM diagrams. The material mantling the slopes in the Aburrá Valley records an intense weathering history. Chemical weathering is characterized by increased development of clay minerals (kaolinite, halloysite) and iron and aluminum sesquioxides. Lateritization characterizes the final stage of the weathering profiles. Concentrations of CaO, Na2O, K2O decrease markedly in the weathering products compared to the fresh bedrock source, whereas concentrations of Al2O3, Fe2O3, and MgO increase significantly. CIA ratios of matrix slope deposits derived from all four sources near 100, whereas those of boulder slope deposits and saprolites are lower, but exceed source rock values. Different A–CN–K weathering paths are evident for each lithotype, validating the correlation established between the hillslope deposits and their various parents. Chemical weathering indices in some samples are strongly influenced by the presence of sesquioxides, as reflected by high LOI, anomalously low CIA, and varying enrichment trends on the A–CNK–FM diagrams. Consequently, different chemical indices based on different criteria need to be combined to obtain best results, as illustrated here by the combination of LOI, CIA, and Imob. The overall results suggest that tropical conditions have dominated for a long time in the northern Colombian Andes, leading to uniformly high weathering indices in matrix slope deposits irrespective of parent lithotype. Prolonged warm and humid conditions could thus be responsible for the weathering and remobilization of extensive old hillslope deposits during the Quaternary. However, in addition to the influence of climatic factors, tectonism has also undoubtedly influenced slope evolution in the Aburrá Valley.  相似文献   

12.
In this study, an assessment of the lithogenic concentrations of trace metals in soils and saprolite over basement rock units in Ibadan, SW-Nigeria is presented in respect of bedrock types and geochemical controls on the weathering-associated release of trace metals. Consequently, soil, weathered and fresh rock samples from the Precambrian Basement of SW Nigeria were collected from three different bedrock units within Ibadan metropolis and subjected to mineralogical and geochemical analyses. The analytical results revealed major proportions of oxides in the range of 18–20% Al2O3, 2–6% Na2O and 1–6% K2O for weathered profiles over granite-gneiss and pegmatite units, compared to 2–3% Al2O3, <0.5% Na2O and <1.0% K2O over schist-quartzite. For the trace elements, weathered profiles on granite-gneiss and schist-quartzite settings exhibit similar enrichment trends (enrichment factor, EF l) for most of the trace elements, unlike the pegmatite bedrock. However, enrichments are relatively greater in the top soil unit compared to the intermediate saprolite unit, especially for Pb, Ni, Zn, Cr, Co, Rb, Sr and Ba, a situation attributed to leaching and redistribution within the weathered profiles through pedogenetic process and percolating groundwater.Furthermore, the estimated weathering indices using Ruxton Ratio (RR = {SiO2/Al2O3}) and Chemical Index of Alteration (CIA = 100{Al2O3/[Al2O3 + CaO + Na2O + K2O]}) revealed RR of 2.9–3.7 and CIA of 54–73% for granite-gneiss and pegmatite units, implying medium levels of weathering, compared to RR of 30.8–35.5 and CIA of >60% for schist-quartzite units, which suggest weak chemical weathering. Also, the estimated high percentage loss, especially for Pb, Rb, Sr, Ba relative to the bedrocks, shows that the trace elements can be mobilized within the weathering profiles even at a low degree of chemical weathering. Such weathering-induced release of trace metals is of environmental significance as natural lithogenic input sources and as background reference for future monitoring of possible human/anthropogenic impacts.  相似文献   

13.
Petrography and geochemistry (major, trace and rare earth elements) of clastic rocks from the Lower Cambrian Lalun Formation, in the Posht-e-badam block, Central Iran, have been investigated to understand their provenance. Petrographical analysis suggests that the Lalun conglomerates are dominantly with chert clasts derived from a proximal source, probably chert bearing Precambrian Formations. Similarly, purple sandstones are classified as litharenite (chertarenite) and white sandstones as quartzarenite types. The detrital modes of purple and white sandstones indicate that they were derived from recycled orogen (uplifted shoulders of rift) and stable cratonic source. Most major and trace element contents of purple sandstones are generally similar to upper continental crust (UCC) values. However, white sandstones are depleted in major and trace elements (except SiO2, Zr and Co) relative to UCC, which is mainly due to the presence of quartz and absence of other Al-bearing minerals. Shale samples have considerably lower content in most of the major and trace elements concentration than purple sandstones, which is possibly due to intense weathering and recycling. Modal composition (e.g., quartz, feldspar, lithic fragments) and geochemical indices (Th/Sc, La/Sc, Co/Th, Cr/Th, Cr/V and V/Ni ratios) of sandstones, and shales (La/Sc and La/Cr ratios) indicate that they were derived from felsic source rocks and deposited in a passive continental margin. The chondrite-normalized rare earth element (REE) patterns of the studied samples are characterized by LREE enrichment, negative Eu anomaly and flat HREE similar to an old upper continental crust composed chiefly of felsic components in the source area. The study of paleoweathering conditions based on modal composition, chemical index of alteration (CIA), plagioclase index of alteration (PIA) and A–CN–K (Al2O3 − CaO + Na2O − K2O) relationships indicate that probably chemical weathering in the source area and recycling processes have been more important in shale and white sandstones relative to purple sandstones. The results of this study suggest that the main source for the Lalun Formation was likely located in uplifted shoulders of a rifted basin (probably a pull-apart basin) in its post-rift stage (Pan-African basement of the Posht-e-badam block).  相似文献   

14.
The Gulf of Mannar along the Tuticorin coast is a coral base of the southeast coast of India. To obtain a preliminary view of its environmental conditions, geochemical distribution of major elements (Si, Al, Fe, Ca, Mg, Na, K, P), trace elements (Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) and acid leachable elements (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, Cd) were analyzed in surface sediment samples from two seasons. Geochemical fractionation confirmed the lithogenic origin of metals, which were mainly associated with the detrital phase. The sediments in the gulf are sandy with abundant calcareous debris, which controls the distribution of total and acid leachable elements. Enrichment factors relative to crust vary by a magnitude of two to three and the presence of trace metals indicates the input of Cr, Pb, Cd, Cu and Zn in both forms through industrial activities. Factor analysis supports the above observation with higher loadings on acid leachable elements and its association with CaCO3. The increase in concentration of trace metals (Cr, Pb, Cd, Cu, Co, Ni, Zn) along the Gulf of Mannar indicates that the area has been contaminated by the input from riverine sources and the industries nearby. The present study indicates that other sources should be evaluated in the long-term monitoring program.  相似文献   

15.
The Lagonegro Units are a part of the southern Apennines orogenic wedge. The age of the Lagonegro successions ranges from lower–middle Triassic to Oligo-Miocene. During late Cretaceous and Oligocene the deposition of calcareous-clastic sediments occurred interbedded with shales (Flysch Rosso Fm). During Oligocene and early Miocene, in the Mediterranean area, an important variation of the tectonic regime occurred, and siliciclastic sediments of the Numidian Basin unconformably lay on the Meso-Cenozoic units of the Lagonegro Basin. In the Lucanian Apennine, the Aquitanian–Langhian Numidian Flysch Fm overlies the Flysch rosso Fm. The shales of the Flysch rosso Fm have a peculiar geochemical fingerprint relative to typical shales of post-Archean age. The abundance of Ni and Cr is significantly higher and the HREE chondrite-normalized patterns are steep with a (Gd/Yb)ch>2. A supply of material from the African Archean terranes could be the cause. The palaeo-weathering indices record changes at the source, reflecting variations in the tectonic regime. The oldest samples are derived from an environment in which steady-state weathering conditions prevailed, whereas the youngest samples are related to non-steady-state weathering conditions. This difference could record deformational events that affected the Mediterranean area during the Oligocene and early Miocene. The sample at the top of the studied log has very high silica content and an abundant coarse grain-sized fraction. This suggests that this sample belongs to the Numidian Flysch Fm. The geochemical proxies of this sample are different from those associated with samples from the Flysch rosso Fm, indicating that the source-area of the Numidian Flysch Fm did not include the Archean terranes.  相似文献   

16.
对于北疆阿尔泰地区泥盆纪所处的大地构造环境,目前仍旧存在不同观点.前人基于阿尔泰南缘泥盆纪火山岩地球化学研究,分别提出了活动大陆边缘和被动大陆边缘裂谷等不同构造观点.阿尔泰造山带南缘的泥盆纪浅变质碎屑沉积岩地球化学研究表明,该套浅变质碎屑沉积岩原岩主要为泥质或砂质沉积岩.尽管不同岩性样品主量元素含量不同,但其化学蚀变指数(CIA)小于75,成分变异指数(ICY)接近或小于1.0,斜长石蚀变指数(PIA)平均70,说明其源区物质比较新鲜,成熟度相对较低,化学风化作用较弱.同样,不同岩性样品微量元素含量差别较大,但表生过程中不活泼的微量元素比值却比较一致,轻稀土(LREE)中度富集(LaN/YbN=2.88~9.90),重稀土(HREE)比较平坦,并伴有明显的Eu负异常(Eu/Eu*=0.45~0.89).绝大多数样品具有高的La/Sc(1~3)、La/Y(0.5~1)和Ti/Zr(10~35),以及较低的Sc/Cr(0.1~0.3)比值,类似于大陆岛弧相关环境碎屑沉积物.在La-Th-Sc和Th-Sc-Zr/10构造环境判别图解中,除一千枚岩样品外,其他所有样品均落入大陆岛弧区.以上地球化学特征明显不同于大洋岛弧和被动陆缘沉积物,说明该套浅变质碎屑沉积岩可能沉积于活动大陆边缘的大陆岛弧相关环境,为认识阿尔泰造山带泥盆纪岛弧增生构造演化过程提供了一个重要证据.  相似文献   

17.
王居里  胡洋  王敏  王建其 《岩石学报》2019,35(2):523-540
布拉特矿化次火山岩出露于谢米斯台中部,岩性主要为英安斑岩和流纹斑岩。本文通过锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素等研究,探讨其形成的构造环境、成因及成矿意义。结果表明,英安斑岩形成年龄为434.9±2.3Ma,属高钾钙碱性-钾玄岩系列准铝质-强过铝质岩石;岩石稀土总量中等(∑REE=97.9×10~(-6)~107×10~(-6)),富集轻稀土且轻重稀土分异明显((La/Yb)_N=7.93~9.95),具较弱铕负异常(δEu=0.78~0.90),相对富集Rb、Th、U、K等元素,亏损Nb、Ta、P、Ti等元素;岩石具有低的(~(87)Sr/~(86)Sr)_i值(0.7036~0.7043)和正的ε_(Nd)(t)值(+2.64~+5.01),t_(DM1)(Nd)=750~930Ma。流纹斑岩形成年龄为423.2±0.9Ma,属高钾钙碱性-钾玄岩系列准铝质-强过铝质岩石;稀土总量中等(∑REE=65.3×10~(-6)~127×10~(-6)),富集轻稀土且轻重稀土分异明显((La/Yb)_N=6.82~8.24),具较强铕负异常(δEu=0.51~0.71),相对富集Rb、Th、U、K等元素,亏损Nb、Ta、P、Ti等元素;岩石具有低的(~(87)Sr/~(86)Sr)_i值(0.7022~0.7038)和正的ε_(Nd)(t)值(+2.86~+5.78),t_(DM1)(Nd)=680~940Ma;锆石ε_(Hf)(t)=+9.8~+14.9,t_(DM2)(Hf)=456~783Ma。综合研究表明,布拉特矿化英安斑岩和流纹斑岩是不同岩浆演化结晶的产物,二者都形成于活动大陆边缘弧环境,可能是新生下地壳部分熔融形成的花岗质岩浆与部分源自地幔楔的玄武质岩浆发生混合、向上运移、冷凝结晶的产物。较晚形成的流纹斑岩岩浆形成过程中新生下地壳部分熔融的比例有所降低,熔出的岩浆相对更偏酸性;谢米斯台地区以志留纪-早泥盆世火山岩、次火山岩和中酸性侵入体为代表的岩浆岩带为一个主体形成于早古生代的陆缘弧岩浆岩带,是形成和寻找斑岩型铜矿的有利地区。  相似文献   

18.
Pramod Singh   《Chemical Geology》2009,266(3-4):251-264
The sediments of the Ganga River from different depositional regimes in the Plain region such as the river channel, active flood-plain and the older flood-plain sediments from the inter-fluve region were analysed for major, trace and the rare earth elements (REEs). These are compared with catchment zone sediments of the river and probable source rocks in the Himalaya. The lower CIA values between 48 and 54.7 for the catchment sediments indicates that the sediments supplied to the Ganga Plain are chemically immature and subjected mostly to physical weathering due to higher erosion rates in the Himalaya. The CIA values ranging between 55 and 74, with average value of 59, 61.4 and 67 for sediments from the Plain's bed-load, active flood-plain and older flood-plain from the inter-fluve region indicates that silicate weathering of Ganga River sediments has occurred only after entering into the plains. This is likely because of higher residence time and change in the climate from cold-frigid in the Himalaya to tropical sub-humid in the plains. Therefore, the use of geochemical data on ancient system to infer climate in their source region may not always be true. Although the CIA values indicate a moderate chemical weathering in the plains, it is far from impressive. Dominance of physical weathering in the catchment region and lower degree of chemical weathering in the Plains indicate that weathering of sediments supplied by Himalayan Rivers, particularly the Ganga River may not have affected the atmospheric CO2 to a significant level as is generally believed. Thus the net effect of the Himalaya on the CO2 sequestration and consequent global cooling needs a re-evaluation.The plots of sediments in ternary diagram among La, Th, Sc and ratios involving Co/Th, La/Sc and Sc/Th indicate granitic to granodioritic source rocks to the sediments. The ratio plots involving relatively immobile Al2O3, TiO2 and FeO along with REE plots suggest that out of the major Himalayan lithologies, gneisses and Cambro-Ordovician granites of HHCS have acted as the dominant source to the sediments.The plots of LogNa2O/K2O vs. LogSiO2/Al2O3 and FeO/SiO2 vs. Al2O3/SiO2 diagrams show that the combination of processes including erosion, weathering, sorting and aeolian activity has together played a major role in progressively changing the chemistry from source rock to catchments bed-load to Plains bed-load, active flood-plains and the older inter-fluve sediments in the Ganga River system. The above plots demonstrate that as a result of above processes the ratios between the elements generally thought to be immobile and used in provenance studies does not always remain invariant and the linear trend line in the scatter gram between the two immobile elements show rotation around the fine grained end member.  相似文献   

19.
研究区内火山岩从基性—中性—中酸性都有出露,包括橄榄玄武岩、安山岩和英安岩,且都属于非碱性系列。通过对主元素和微量元素的研究,认为本区火山岩为滞后型弧(陆缘弧)火山作用的产物。源区由于存在大量的因俯冲作用进入地幔的陆壳物质以及流体的交代作用,从而出现富含金云母和不相容元素的交代富集型地幔源,并具有壳源的元素组成特征。火山岩的形成是富集地幔部分熔融的结果,但在成岩过程中可能存在单斜辉石、斜长石、橄榄石和Ti—Fe氧化物等矿物的分离结晶作用,以及橄榄石的堆晶作用。  相似文献   

20.
出露于扬子地块西南缘的盐边群为一套火山-沉积岩系,其深入研究对探讨扬子西缘新元古代构造环境具有重要意义.本文对盐边群中碎屑沉积岩进行了较系统的岩石学、碎屑物质组成和地球化学研究,并从小坪组和乍古组中各选取了1件变质砂岩样品进行锆石U-Pb年龄和Hf同位素分析.变质砂岩主要由棱角状-次棱角状火山岩岩屑、石英和长石矿物碎屑组成.碎屑沉积岩Al2O3/SiO2值为0.12~0.4,K2O/Na2O值范围为0.14 ~9.45(其中板岩K2O/Na2O值多大于1.0,而变质砂岩中多数样品的K2O/Na2O值小于1.0).所有样品具有轻-中等程度的轻重稀土元素分异((La/Yb)N=1.6 ~9.37),多数样品具有明显的负Eu异常.εNd(t)值范围为-1.77~ +5.01.变质砂岩碎屑锆石U-Pb年龄峰值为900~ 910Ma,同时存在少量太古代-古元古代碎屑锆石.小坪组和乍古组变质砂岩中年轻碎屑锆石206pb/238U年龄加权平均值分别为888±8Ma和884±14Ma.碎屑物质组成、地球化学和锆石U-Pb年龄结果共同表明,盐边群碎屑沉积为近源沉积,物源区主要为岛孤中酸性火山岩和花岗岩.结合关刀山岩体(857Ma)和荒田组玄武岩(880~830Ma)研究结果,进一步限定盐边群的时代为880~830Ma,形成于弧后盆地环境,其沉积物源区为华夏地块向扬子地块俯冲过程中,扬子西南缘形成的火山岛孤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号