首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The major and trace element characteristics of black shales from the Lower Cretaceous Paja Formation of Colombia are broadly comparable with those of the average upper continental crust. Among the exceptions are marked enrichments in V, Cr, and Ni. These enrichments are associated with high organic carbon contents. CaO and Na2O are strongly depleted, leading to high values for both the Chemical Index of Alteration (77–96) and the Plagioclase Index of Alteration (86–99), which indicates derivation from a stable, intensely weathered felsic source terrane. The REE abundances and patterns vary considerably but can be divided into three main groups according to their characteristics and stratigraphic position. Four samples from the lower part of the Paja Formation (Group 1) are characterized by LREE-enriched chondrite-normalized patterns (average LaN/YbN = 8.41) and significant negative Eu anomalies (average Eu/Eu1 = 0.63). A second group of five samples (Group 2), also from the lower part, have relatively flat REE patterns (average LaN/YbN = 1.84) and only slightly smaller Eu anomalies (average Eu/Eu1 = 0.69). Six samples from the middle and upper parts (Group 3) have highly fractionated patterns (average LaN/YbN = 15.35), resembling those of Group 1, and an identical average Eu/Eu1 of 0.63. The fractionated REE patterns and significant negative Eu anomalies in Groups 1 and 3 are consistent with derivation from an evolved felsic source. The flatter patterns of Group 2 shale and strongly concave MREE-depleted patterns in two additional shales likely were produced during diagenesis, rather than reflecting more mafic detrital inputs. An analysis of a single sandstone suggests diagenetic modification of the REE, because its REE pattern is identical to that of the upper continental crust except for the presence of a significant positive Eu anomaly (Eu/Eu1 = 1.15). Felsic provenance for all samples is suggested by the clustering on the Th/Sc–Zr/Sc and GdN/YbN–Eu/Eu1 diagrams. Averages of unmodified Groups 1 and 3 REE patterns compare well with cratonic sediments from the Roraima Formation in the Guyana Shield, suggesting derivation from a continental source of similar composition. In comparison with modern sediments, the geochemical parameters (K2O/Na2O, LaN/YbN, LaN/SmN, Eu/Eu1, La/Sc, La/Y, Ce/Sc) suggest the Paja Formation was deposited at a passive margin. The Paja shales thus represent highly mature sediments recycled from deeply weathered, older, sedimentary/metasedimentary rocks, possibly in the Guyana Shield, though Na-rich volcanic/granitic rocks may have contributed to some extent.  相似文献   

2.
Major, trace and rare earth element (REE) compositions of upper Proterozoic metavolcanic and metasedimentary rocks from the Tsaliet and Tembien Groups in the Werri district of northern Ethiopia were determined to examine their tectonic setting of eruption, provenance and source area weathering conditions. Tsaliet Group metavolcanic rocks in the Werri area have sub-alkaline chemistry characterized by low to intermediate SiO2 contents, high Al2O3, low MgO and very low Cr and Ni. High field strength element (HFSE) abundances are highly variable. ∑REE abundances vary from 66.7 to 161.3 ppm, and chondrite-normalized REE patterns are moderately fractionated, with LaN/YbN values of between 3.1 and 9.0. Europium anomalies are variable (Eu/Eu* 0.80–1.21) but are generally positive (average Eu/Eu* 1.06). On tectonic discrimination diagrams, most samples have either volcanic-arc chemistry or fall in the overlap field with mid-oceanic ridge basalt (MORB). However, primitive mantle-normalized trace element abundances are comparable with sub-alkaline basalts from developed island arcs. 147Sm/144Nd ratios range from 0.1167 to 0.1269 (n = 3), yielding initial εNd(800 Ma) of +3.8 to +4.9 and mean TDM model age of 0.96 Ga, indicative of derivation from juvenile Neoproterozoic mantle. Metasediments from three locations (Werri1, Werri2 and Tsedia) in the Werri and Tsedia Slates have similar Al2O3, TiO2 and HFSE contents but variable and low Na2O, CaO and K2O. Cr and Ni are slightly enriched in the Werri2 and Tsedia suites. SiO2 is very variable, with average values of 70.75, 72.2 and 66.4 wt.% in the Werri1, Werri2 and Tsedia suites, respectively. ∑REE abundances in the metasediments (14.74–108.1) are lower than in the metavolcanics, and are slightly less fractionated, with LaN/YbN ratios of 0.8–5.9. Europium anomalies vary (Eu/Eu* 0.80–1.21) but are insignificant on average (Eu/Eu* 0.96). High values for the Chemical Index of Alteration (generally 70–90), and Plagioclase Index of Alteration (>75) in the Werri metasediments indicate moderate to severe chemical weathering in their source. Average major and trace element compositions of the metasediments and their REE patterns are comparable with the metavolcanics. 147Sm/144Nd ratios of the metasediments range from 0.1056 to 0.1398 (n = 4), with initial εNd(800 Ma) of +3.4 to +5.0 and mean TDM model age of 0.97 Ga, indicating derivation from juvenile Neoproterozoic crust similar to the underlying metavolcanics, with minimal (4–10%) contribution from older crust. The most sensitive tectonic setting discriminators indicate the Werri metasediments represent developed oceanic island arc sediments. The chemical similarity of the Werri metavolcanics to the nearby Adwa metavolcanics, Nakfa terrane in Eritrea, and volcanic units in central Saudi Arabia imply that juvenile Neoproterozoic Arabian Nubian Shield crust extended south at least as far as the Werri area of northern Ethiopia. The comparable geochemistry of the metasediments and their underlying lithologies attests to their derivation from this juvenile crustal material.  相似文献   

3.
The newly discovered Dadaoshan Sn deposit is located in the eastern Guangdong Sn–W province, coastal SE China. The Sn mineralization, hosted in Jurassic porphyritic granite and the Lower Jurassic Jinji Formation sedimentary wall rocks, is considered to be granite-related. In this study, the porphyritic granite was LA–ICP–MS zircon U–Pb dated to be 153.2 ± 1.2 Ma, consistent with the syn-mineralization molybdenite Re–Os age of 152.6 ± 1.8 Ma. The porphyritic granite samples are weakly peraluminous (A/CNK = 1.0–1.1) and high-K calc-alkaline. The rocks contain high SiO2 (72.9–75.6 wt%), moderate Rb/Sr (5–9) and low ΣREE (136–223 ppm). They are enriched in F, Li, Rb and Sn, depleted in Ba, Sr, P, Zr, Th, Nb and Y, and have distinct negative Eu anomalies (δEu = 0.09–0.18), suggesting that the porphyritic granite is highly fractionated I-type granite. The calculated initial 87Sr/86Sr (0.711582–0.715173), relatively low ɛNd(t) (−9.48 to −8.54; TDM2 = 1638–1814 Ma), and the zircon εHf(t) (−14.2 to −5.1; two-stage model ages = 1528–2103 Ma) all suggest that the granite was mainly crustal-derived with little mantle input. Sulfur isotopic compositions for the sulfides (arsenopyrite and chalcopyrite: δ34S = −1.1 to 1.4‰, average = −0.1) imply a dominantly magmatic sulfur source. The calculated zircon Ce4+/Ce3+ and EuN/EuN1 ratios of the Dadaoshan granite range from 1.0 to 112 (mean = 31.7) and from 0.04 to 0.37 (mean = 0.14), respectively, indicating a low oxygen fugacity for the magma. The reducing and highly fractionated nature of the Dadaoshan granitic magma may have played a key role in the Sn mineralization.It was previously argued that the Jurassic Sn–W mineralization and its causative magmatism were largely confined in the South China interior, e.g., the Nanling Range. Our new data suggest that the Late Jurassic Sn–W mineralization and its causative magmatism actually extended to the SE China coastal area. The Dadaoshan granite may have been generated from partial crustal melting led by underplating of mantle-derived magmas in an extensional environment. Regional extension may have been related to the west-directed, flat-slab subduction and delamination of the Paleo-Pacific (Izanagi) plate beneath the South China block. Another suite of Early Cretaceous Sn–W-bearing granitic rocks in eastern Guangdong may have mainly been crustal-derived with minor mantle input, and likely occurred under back-arc extensional setting led by the Paleo-Pacific subduction rollback.  相似文献   

4.
Thick horizons of iron formations including Banded Iron Formations (BIFs) and Banded Silicate Formations (BSFs) occur as E–W trending bands in the eastern part of Cauvery Suture Zone (CSZ) in the Sothern Granulite Terrane of India. Some of these occur in close association with the Neoarchean-Neoproterozoic suprasubduction zone complexes, where as some others are associated with metamorphosed accretionary sequences including pyroxene granulites and other high grade rocks. The iron formations are highly deformed and metamorphosed under amphibolite to granulite facies conditions and are composed of quartz–magnetite–hematite–goethite–garnet–pyrite together with grunerite and pyroxene. Here we report the geochemical characteristics of twenty representative samples from the iron formations that reveal a widely varying composition with Fe2O3(t) (22–65 wt.% as total iron) total- Fe2O3/TiO2 (205–6532), MnO/TiO2 (0.25–12.66) and SiO2 (33–85 wt.%), broadly representing the two types of iron formations. These formations also show very low Al/(Al + Fe + Mn) ratio (0.001–0.01), Al2O3 (0.07–0.76 wt.%), Al2O3/TiO2 ratio (2.7–21), MgO (0.01–4.41 wt.%), CaO (0.1–1.24 wt.%), Na2O (0.01–0.05 wt.%) and K2O (0.01 wt.%) together with low total REE (3.38–31.63 ppm). The trace and REE elemental distributions show wide variation with high Ni (274 ppm), and Zn contents (up to 87 ppm) when compared to mafic volcanics of the adjoining areas. Tectonic discrimination plots indicate that the iron formations of the Cauvery Suture Zone are of hydrothermal origin. Their chondrite normalized patterns show slight positive Eu anomaly (Eu/Eu* = up to 1.77) and relatively less fractionation of REE with slight LREE enrichment compared to HREE. However, the PAAS (Post Archean Average of Australian Sediments) normalized REE patterns display significant positive Eu anomaly (Eu/Eu* up to 2.32) with well represented negative Ce anomalies (Ce/Ce* = 0.66–1.28). The above results together with petrological characteristics and available geochronology of the associated lithologies suggest that the iron formations can be correlated to Algoma-type. The Fe and Si were largely supplied by medium to high temperature sub-marine hydrothermal systems in Neoarchean and Neoproterozoic convergent margin settings.  相似文献   

5.
The Matomb region constitutes an important deposit of detrital rutile. The rutile grains are essentially coarse (> 3 mm), tabular and elongated, due to the short sorting of highly weathered detritus. This study reports the major, trace, and rare-earth element distribution in the bulk and rutile concentrated fractions. The bulk sediments contain minor TiO2 concentrations (1–2 wt%), high SiO2 contents (∼77–95 wt%) and variable contents in Al2O3, Fe2O3, Zr, Y, Ba, Nb, Cr, V, and Zn. The total REE content is low to moderate (86–372 ppm) marked by high LREE-enrichment (LREE/HREE ∼5–25.72) and negative Eu anomalies (Eu/Eu* ∼0.51–0.69). The chemical index of alteration (CIA) shows that the source rocks are highly weathered, characteristic of humid tropical zone with the development of ferrallitic soils. In the concentrated fractions, TiO2 abundances exceed 94 wt%. Trace elements with high contents include V, Nb, Cr, Sn, and W. These data associated with several binary diagrams show that rutile is the main carrier of Ti, V, Nb, Cr, Sn, and W in the alluvia. The REE content is very low (1–9 ppm) in spite of the LREE-abundance (LREE/HREE ∼4–40). The rutile concentrated fractions exhibit anomalies in Ce (Ce/Ce* ∼0.58 to 0.83; ∼1.41–2.50) and Eu (Eu/Eu* ∼0.42; 1.20–1.64). The high (La/Sm)N, (La/Yb)N and (Gd/Yb)N ratios indicate high REE fractionation.  相似文献   

6.
Active and abandoned mine activities constitute the sources of deterioration of water and soil quality in many parts of the world, particularly in the African Copperbelt regions. The accumulation in soils and the release of toxic substances into the aquatic ecosystem can lead to water resources pollution and may place aquatic organisms and human health at risk. In this study, the impact of past mining activity (i.e., abandoned mine) on aquatic ecosystems has been studied using ICP-MS analysis for trace metals and Rare Earth Elements (REE) in sediment samples from Lubumbashi River (RL) and Tshamilemba Canal (CT), Katanga, Democratic Republic of the Congo (DRC). Soil samples from surrounding CT were collected to evaluate trace metal and REE concentrations and their spatial distribution. The extent of trace metal contamination compared to the background area was assessed by Enrichment Factor (EF) and Geoaccumulation Index (Igeo). Additionally, the trace metal concentrations probable effect levels (PELs) for their potential environmental impact was achieved by comparing the trace metal concentrations in the sediment/soil samples with the Sediment Quality Guidelines (SQGs). Spearman's Rank-order correlation was used to identify the source and origin of contaminants. The results highlighted high concentrations of trace metals in surface sediments of CT reaching the values of 40152, 15586, 610, 10322, 60704 and 15152 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. In the RL, the concentrations reached the values of 24093, 2046, 5463, 3340, 68290 and 769 mg kg−1 for Cu, Co, Zn, Pb, Fe and Mn, respectively. The ΣREE varied from 66 to 218 and 142–331 mg kg−1 for CT and RL, respectively. The soil samples are characterized by variable levels of trace metals. The EF analysis showed “extremely severe enrichment” for Cu and Co. However, no enrichment was observed for REE. Except for Mo, Th, U, Eu, Mo, Ho and Tm for which Igeo is classified as “moderately polluted and/or unpolluted”, all elements in different sites are classified in the class 6, “extremely polluted”. The trace metal concentrations in all sampling sites largely exceeded the SQGs and the PELs for the Protection of Aquatic Life recommendation. Cu and Co had positive correlation coefficient values (r = 0.741, P < 0.05, n = 14). This research presents useful tools for the evaluation of water contamination in abandoned and active mining areas.  相似文献   

7.
The Naga Ophiolite Belt is a part of the Naga-Arakan-Yoma flysch trough that occurs along the Indo-Myanmar border. It is represented by peridotites, mafic-ultramafic cumulates, mafic volcanics, mafic dykes, plagiogranites, pelagic sediments and minor felsic to intermediate intrusives. Minor plagiogranites, gabbros and thin serpentinite bands occur juxtaposed near Luthur, with the slate-phyllite-metagreywacke sequence (Phokpur Formation) adjacent to the contact. The development of tonalites, trondhjemites and diorites in the oceanic crust, which is grouped as plagiogranites, offers an opportunity to study the process of formation of silicic melts from mafic crust. Plagiogranites from Naga Ophiolite Belt contains moderate SiO2 (51.81–56.71 wt.%), low K2O (0.08–1.65 wt.%) and high Na2O (4.3–5.03 wt.%). The Naga Ophiolite Belt plagiogranites like ocean-ridge granites contain low K2O, high Na2O and CaO. The rocks investigated from Naga Ophiolite Belt contain TiO2 concentrations above the lower limit for fractionated Mid Oceanic Ridge Basalt which is above 1 wt% of TiO2 and the ternary plots of A (Na2O + K2O) F(FeOT) M(MgO) and TiO2-K2O-SiO2/50 indicate that the plagiogranite are tholeiitic in character and gabbro samples are calc-alkaline in nature. The plagiogranites are enriched in Rb, Ba, Th, U, Nb and Sm against chondrite with negative anomalies on Sr and Zr whereas Y and Yb are depleted to Mid Oceanic Ridge Basalt. The chondrite normalized REE patterns of the plagiogranite display enrichments in LREE (LaN/SmN: 2.37–3.62) and flat HREE (Eu/Eu*: 0.90–1.06). The Mid Oceanic Ridge Basalt normalization of gabbro is characterized by strong enrichment of LILE like Ba and Th. The REE pattern is about 50–100 times chondrite with slight enrichment of LREE (LaN/SmN = 2.21–3.13) and flat HREE (Eu/Eu*: 0.94–1.19). The major-element and trace element data of the NOB plagiogranites and their intrusive nature with host gabbroic rock suggest that the plagiogranites were produced by fractional crystallization of basaltic parental magmas at Mid Oceanic Ridge.  相似文献   

8.
Mesoarchean to Neoarchean orthogneisses (2.95–2.79 Ga) in the Fiskenæsset region, southern West Greenland, are composed of an older suite of metamorphosed tonalites, trondhjemites, and granodiorites (TTGs), and a younger suite of high-K granites. The TTGs are characterized by high Al2O3 (14.2–18.6 wt.%), Na2O (3.4–5.13 wt.%), and Sr (205–777 ppm), and low Y (0.7–17.4 ppm) contents. On chondrite- and N-MORB-normalized trace element diagrams, the TTGs have the following geochemical characteristics: (1) highly fractionated REE patterns (La/Ybcn = 14–664; La/Smcn = 4.3–11.0; Gd/Ybcn = 1.5–19.7); (2) strong positive anomalies of Sr (Sr/Sr* = 1.0–15.9) and Pb (Pb/Pb* = 1.4–34.9); and (3) large negative anomalies of Nb (Nb/Nb* = 0.01–0.34) and Ti (Ti/Ti* = 0.1–0.6). The geochemical characteristics of the TTGs and trace element modeling suggest that they were generated by partial melting of hydrous basalts (amphibolites) at the base of a thickened magmatic arc, leaving a rutile-bearing eclogite residue. Field observations suggest that spatially and temporarily associated tholeiitic basalts (now amphibolites) in the Fiskenæsset region might have been the sources of TTG melts. The high-K granites have steep REE patterns (La/Ybcn = 3.8–506; La/Smcn = 2.7–18.9; Gd/Ybcn = 0.92–12.1) and display variably negative Eu anomalies (Eu/Eu* = 0.37–0.96) and moderate Sr (84–539 ppm) contents. Four outlier granite samples have variably positive Eu (Eu/Eu* = 1.0–12) anomalies. Given that the granodiorites have higher K2O/Na2O than the tonalites and trondhjemites, it is suggested that the granites were derived from partial melting of the granodiorites. It is speculated that the dense eclogitic residues, left after TTG melt extraction, were foundered into the sub-arc mantle, leading to basaltic underplating beneath the lower rust. Melting of the granodiorites in response to the basaltic underplating resulted in the production of high-K granitic melts. Formation of the Fiskenæsset TTGs, the foundering of the eclogitic residues into the mantle, and the emplacement of the high-K granites led to the growth of Archean continental crust in the Fiskenæsset region.  相似文献   

9.
Three plutons (Deh-Siahan, Bande-Bagh and Baghe-Khoshk Sharghi, collectively referred to as the DBB hereafter) in southwestern Kerman, in the southeastern part of the Urumieh–Dokhtar magmatic assemblage (UDMA) of the Zagros orogenic belt differ from the typical calc-alkaline metaluminous, I-type intrusions of the region. The DBB intrusions have a distinct lithological assemblage varying from diorite through monzogranite and monzonite to alkali feldspar syenite and alkali granite. The DBB granitoids are metaluminous to slightly peraluminous, alkaline to shoshonitic in composition and have high total alkali contents with K2O > Na2O, high FeOT/MgO values, and low CaO and MgO contents. They are enriched in some LILEs (such as Rb and Th) and HFSEs (such as Zr, Y and REEs except Eu) and depleted in Sr and Ba relative to primordial mantle, and have low concentrations of transitional metals. These features along with various geochemical discriminant diagrams suggest that the DBB granitoids are post-collisional A-type granitoids, which had not been recognized previously in the UDMA. The chondrite-normalized REE patterns of the DBB granitoids show slightly enriched light REEs [(La/Sm)N = 2.26–4.13], negative Eu anomalies [(Eu/Eu*)N = 0.19–0.74] and flat heavy REE patterns [(Gd/Yb)N = 0.80–1.87]. The negative Eu anomaly indicates an important role for plagioclase and/or K-feldspar during fractional crystallization. Whole-rock Rb–Sr isotope analysis yields an isochron age of 33 ± 1 Ma with an initial 87Sr/86Sr value of 0.7049 ± 0.0001. Whole-rock Sm–Nd isotope analysis gives εNdt values from + 2.56 to + 3.62 at 33 Ma. The positive εNdt and low ISr values of the DBB granitoids together with their TDM of 0.6–0.7 Ga suggest their formation from partial melting of a lithospheric mantle source, modified by fluids or melts from earlier subduction processes. Melting of lithospheric mantle occurred via a dehydration melting process at pressures below the garnet stability field, as a consequence of lithospheric mantle delamination or break-off of a subducted slab and melting of the lithospheric mantle by upwelling of hot asthenosphere. On the basis of Rb/Sr age dating and the post-collisional geochemical signatures of the DBB granitoids, along with extensive pre-collisional volcanic eruptions in Middle Eocene, we suggest Late Eocene for the time of collision between the Arabian and Central Iranian plates. This also implies that the calc-alkaline I-type intrusions in the southwestern Kerman and in other parts of the UDMA may have formed in a post-collisional context.  相似文献   

10.
Through detailed studies we have delineated a suite of banded TTG gneisses from the Zanhuang Complex. The protolith of the gneisses, predominantly tonalite, has undergone intensive metamorphism, deformation and anatexis and in a banded structure is intimately associated with melanocratic dioritic gneiss and leucocratic trondhjemitic veins. SHRIMP Zircon U–Pb data show that the tonalite was formed ca. 2692 ± 12 Ma ago. The tonalitic gneiss has the features of high SiO2 (67.76–73.31%), high Al2O3 (14.38–15.83%), rich in Na2O (4.48–5.07%) and poor in K2O (0.77–1.93%). The gneiss is strongly fractioned in REE ((La/Yb)N = 12.02–24.65) and shows a weak positive Eu anomaly (Eu/Eu* = 1.05–1.64). It has high contents of Ba (199–588 ppm) and Sr (200–408 ppm), low contents of Yb (0.32–1.00 ppm) and Y (3.41–10.3 ppm) with high Sr/Y ratios (21.77–96.77) and depletion in HFSE Nb, Ta and Ti. These characteristics are similar to those of the high-Si adakitic rocks. The melanocratic dioritic gneiss has low SiO2 (59.81%), high MgO (6.34%), high Al2O3 (14.02%) contents, rich in Na2O (3.7%) and poor in K2O (1.79%), with high Mg index (Mg# = 67). REE and trace elements are on the whole similar to that of the tonalitic gneiss, but compatible element abundances V (116 ppm), Cr (249 ppm), Co (37 ppm) and Ni (179 ppm) are higher. The leucocratic felsic bands (approximating trondhjemite in composition) have major oxides similar to that of the TTG gneisses but the REE and compatible elements are extremely low, which are indicative of the products of anatexis. The tonalitic gneiss has positive εNd(t) (2.37–3.29) and low initial Sr (0.69719–0.70068) values with depleted mantle Nd model age of ca. 2.8 Ga, suggesting its generation from partial melting of mantle-derived juvenile crust. The dioritic gneiss was also derived from subduction environment, but has undergone significant metasomatism of mantle wedge. The delineation of the ca. 2.7 Ga TTG gneisses in the Zanhuang Complex further proves that the North China Craton experienced large-scale continental crustal accretion in early Neoarchean, and gives new constraints on the subdivision of the early blocks and greenstone belts of the craton.  相似文献   

11.
The Manipur Ophiolite Complex (MOC) located in the Indo-Myanmar Orogenic Belt (IMOB) of Northeast India forms a section of the Tethyan Ophiolite Belt of the Alpine–Himalayan orogenic system. Whole rock compositions and mineral chemistry of mantle peridotites from the MOC show an affinity to the abyssal peridotites, characterized by high contents of Al2O3 (1.28–3.30 anhydrous wt.%); low Cr# of Cr-spinel (0.11–0.27); low Mg# of olivine (∼Fo90) and high Al2O3 in pyroxenes (3.71–6.35 wt.%). They have very low REE concentrations (∑REE = 0.48–2.14 ppb). Lherzolites display LREE-depleted patterns (LaN/SmN = 0.14–0.45) with a flat to slightly fractionated HREE segments (SmN/YbN = 0.30–0.65) whereas Cpx-harburgites have flat to upward-inflected LREE patterns (LaN/SmN = 0.13–1.23) with more fractionated HREE patterns (SmN/YbN = 0.13–0.65) than the lherzolite samples. Their platinum group elements (PGE) contents (<50 ppb) and distinct mantle-normalised PGE patterns with the Pd/Ir values (1.8–11.9) and Pt/Pt* values (0.2–1.1) show an affinity to the characteristic of the residual mantle material. Evaluation of mineralogical and petrological characteristics of these peridotites suggests that they represent the residues remaining after low degree of partial melting (∼2–12%) in the spinel stability field of a mid-oceanic ridge environment. The well-preserved mid-oceanic ridge characteristics of these peridotites further suggest that the mantle section was subsequently trapped in the forearc region of the subduction zone without undergoing significant modification in their chemistry by later subduction-related tectonic and petrological processes before its emplacement to the present crustal level.  相似文献   

12.
13.
Shilu is a large porphyry–skarn deposit in the Yunkai district in Guangdong Province, South China. The Shilu granitic intrusion in the mine area is a granodiorite which is genetically related to Cu mineralization. Plagioclase in the granodiorite has a zoned texture and is mainly andesine with minor amounts of labradorite, whereas the K-feldspars exhibit Carlsbad twins and some are also characterized by a zonal texture. K-feldspars from the granodiorite show high contents of Or (87–92 wt.%) with minor Ab (8–13 wt.%) and negligible An value of 0–0.3 wt.%. Biotite can be classified as magnesio-biotite, and is characterized by Mg-rich [Mg/(Mg + Fe) = 0.54–0.60] and AlVI-low (average values = 0.11). Hornblende is chiefly magnesiohornblende and tschermakite. LA-ICP-MS zircon U–Pb age of the Shilu granodiorite is 107 ± 0.7 Ma, which is consistent with molybdenites Re–Os age of 104.1 ± 1.3 Ma. Geochemical data indicate that the Shilu granodiorite is silica-rich (SiO2 = 63.43–65.03 wt.%) and alkali-rich (K2O + Na2O = 5.45–6.05 wt.%), as well as calcium-rich (CaO = 4.76–5.1 wt.%). Trace element geochemistry results show enrichments in large ion lithophile elements (e.g., Rb, K, and Ba) and depletions in some high field strength elements (e.g., Nb, P, Ta, and Ti). The total rare earth element (REE) content of the granodioritic rocks is low (∑ REE < 200 ppm), and is characterized by light REE enrichment [(La/Yb)N > 9] and moderately negative Eu anomalies (Eu/Eu* = 0.83–0.90). These mineralogical, geochronological, and geochemical results suggest that the Shilu granodiorite has a mixed crust–mantle source with a geochemical affinity to I-type granitoids. Hornblende thermobarometry yielded magmatic crystallization temperatures of 686–785 °C and crystallization pressures between 1.0 and 2.34 kbar, which is converted to depths in a range of 3.31 to 7.71 km. Biotite thermobarometry yielded similar temperatures and lower pressures of 680–780 °C and 0.8–2 kbar (depth 2.64–6.6 km), respectively. The parent magma had a high oxygen fugacity. The Shilu granodiorite has a relatively low εNd/t–t value and high (87Sr/86Sr)i value, and Nd isotopes yield two-stage depleted mantle Nd model ages of 969–1590 Ma. Our new data, combined with previous studies, imply that the granodiorite and the associated Shilu Cu–Mo deposit was formed in an extensional environment, closely related to remelting of residual subducted slab fragments in the Jurassic.  相似文献   

14.
Kajan subvolcanic rocks in the Urumieh–Dokhtar magmatic arc (UDMA), Central Iran, form a Late Miocene-Pliocene shallow-level intrusion. These subvolcanics correspond to a variety of intermediate and felsic rocks, comprising quartz diorite, quartz monzodiorite, tonalite and granite. These lithologies are medium-K calc-alkaline, with SiO2 (wt.%) varying from 52% (wt.%) to 75 (wt.%). The major element chemical data also show that MgO, CaO, TiO2, P2O5, MnO, Al2O3 and Fe2O3 define linear trends with negative slopes against SiO2, whilst Na2O and K2O are positively correlated with silica. Contents of incompatible trace elements (e.g. Ba, Rb, Nb, La and Zr) become higher with increasing SiO2, whereas Sr shows an opposite behaviour. Chondrite-normalized multi-element patterns show enrichment in LILE relative to HFSE and troughs in Nb, P and Ti. These observations are typical of subduction related magmas that formed in an active continental margin. The Kajan rocks show a strong affinity with calc-alkaline arc magmas, confirmed by REE fractionation (LaN/YbN = 4.5–6.4) with moderate HREE fractionation (SmN/YbN = 1.08–1.57). The negative Eu anomaly (Eu/Eu* <1), the low to moderate Sr content (< 400 ppm) and the Dy/Yb values reflect plagioclase and hornblende (+- clinopyroxene) fractionation from a calc-alkaline melt Whole–rock Sr and Nd isotope analyses show that the 87Sr/86Sr initial ratios vary from 0.704432 to 0.705989, and the 143Nd/144Nd initial ratios go from 0.512722 to 0.512813. All the studied samples have similar Sr-Nd isotopes, indicating an origin from a similar source, with granite samples that has more radiogenic Sr and low radiogenic Nd isotopes, suggesting a minor interaction with upper crust during magma ascent. The Kajan subvolcanic rocks plot within the depleted mantle quadrant of the conventional Sr-Nd isotope diagram, a compositional region corresponding to mantle-derived igneous rocks.  相似文献   

15.
《Applied Geochemistry》2005,20(3):639-659
The oxidation of sulfide minerals from mine wastes results in the release of oxidation products to groundwater and surface water. The abandoned high-sulfide Camp tailings impoundment at Sherridon, Manitoba, wherein the tailings have undergone oxidation for more than 70 a, was investigated by hydrogeological, geochemical, and mineralogical techniques. Mineralogical analysis indicates that the unoxidized tailings contain nearly equal proportions of pyrite and pyrrhotite, which make up to 60 wt% of the total tailings, and which are accompanied by minor amounts of chalcopyrite and sphalerite, and minute amounts of galena and arsenopyrite. Extensive oxidation in the upper 50 cm of the tailings has resulted in extremely high concentrations of dissolved SO4 and metals and As in the tailings pore water (pH < 1, 129,000 mg L−1 Fe, 280,000 mg L−1 SO4, 55,000 mg L−1 Zn, 7200 mg L−1 Al, 1600 mg L−1 Cu, 260 mg L−1 Mn, 110 mg L−1 Co, 97 mg L−1 Cd, 40 mg L−1 As, 15 mg L−1 Ni, 8 mg L−1 Pb, and 3 mg L−1 Cr). The acid released from sulfide oxidation has been extensive enough to deplete carbonate minerals to 6 m depth and to partly deplete Al-silicate minerals to a 1 m depth. Below 1 m, sulfide oxidation has resulted in the formation of a continuous hardpan layer that is >1 m thick. Geochemical modeling and mineralogical analysis indicate that the hardpan layer consists of secondary melanterite, rozenite, gypsum, jarosite, and goethite. The minerals indicated mainly control the dissolved concentrations of SO4, Fe, Ca and K. The highest concentrations of dissolved metals are observed directly above and within the massive hardpan layer. Near the water table at a depth of 4 m, most metals and SO4 sharply decline in concentration. Although dissolved concentrations of metals and SO4 decrease below the water table, these concentrations remain elevated throughout the tailings, with up to 60,600 mg L−1 Fe and 91,600 mg L−1 SO4 observed in the deeper groundwater. During precipitation events, surface seeps develop along the flanks of the impoundment and discharge pore water with a geochemical composition that is similar to the composition of water directly above the hardpan. These results suggest that shallow lateral flow of water from a transient perched water table is resulting in higher contaminant loadings than would be predicted if it were assumed that discharge is derived solely from the deeper primary water table. The abundance of residual sulfide minerals, the depletion of aluminosilicate minerals in the upper meter of the tailings and the presence of a significant mass of residual sulfide minerals in this zone after 70 a of oxidation suggest that sulfide oxidation will continue to release acid, metals, and SO4 to the environment for decades to centuries.  相似文献   

16.
《Applied Geochemistry》2000,15(9):1369-1381
Thirty-eight samples of stream sediments draining high-grade metamorphic rocks in the Walawe Ganga (river) Basin, Sri Lanka, were analysed for their REE contents, together with samples of metamorphic suites from the source region. The metamorphic rocks are enriched in light REE (LREE) compared to heavy REE (HREE) and are characterised by high La/Lu ratios and negative Eu anomalies. The chondrite-normalised patterns for these granulite-grade rocks are similar to that of the average post-Archaean upper crust, but they are slightly enriched with La and Ce. The REE contents of the <63-μm fraction of the stream sediments are similar to the probable source rocks, but the other grain size fractions show more enriched patterns. The <63-μm stream sediments fraction contains lower total REE, more pronouncd negative Eu anomalies, higher EuN/SmN and lower La N/LuN ratios relative to other fractions. The lower La N/LuN ratio is related to the depletion of heavy minerals in the <63-μm fraction. The 63–125-μm and 125–177-μm grain size fractions of sediments are particularly enriched in LREE (average ΣLREE=2990 μg/g and 3410 μg/g, respectively). The total HREE contents are surprisingly uniform in all size fractions. However, the REE contents in the Walawe Ganga sediments are not comparable with those of the granulite-grade rocks from the source region of the sediments. The enrichment of REE is accounted for by the presence of REE containing accessory mineral phases such as zircon, monazite, apatite and garnet. These minerals are derived from an unknown source, presumably from scattered bodies of granitic pegmatites.  相似文献   

17.
《Applied Geochemistry》2006,21(11):1969-1985
Gossan Creek, a headwater stream in the SE Upsalquitch River watershed in New Brunswick, Canada, contains elevated concentrations of total Hg (HgT up to 60 μg/L). Aqueous geochemical investigations of the shallow groundwater at the headwaters of the creek confirm that the source of Hg is a contaminated groundwater plume (neutral pH with Hg and Cl concentrations up to 150 μg/L and 20 mg/L, respectively), originating from the Murray Brook mine tailings, that discharges at the headwaters of the creek. The discharge area of the contaminant plume was partially delineated based on elevated pH and Cl concentrations in the groundwater. The local groundwater outside of the plume contains much lower concentrations of Hg and Cl (<0.1 μg/L and 3.8 mg/L, respectively) and displays the chemical characteristics of an acid-sulfate weathering system, with low pH (4.1–5.5) and elevated concentrations of Cu, Zn, Pb and SO4 (up to 5400 μg Cu/L, 8700 μg Zn/L, 70 μg Pb/L and 330 mg SO4/L), derived from oxidation of sulfide minerals in the Murray Brook volcanogenic massive sulfide deposit and surrounding bedrock. The HgT mass loads measured at various hydrologic control points along the stream system indicate that 95–99% of the dissolved HgT is attenuated in the first 3–4 km from the source. Analyses of creek bed sediments for Au, Ag, Cu, Zn, Pb and Hg indicate that these metals have partitioned strongly to the sediments. Mineralogical investigations of the contaminated sediments using analytical scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM), reveal discrete particles (<1–2 μm) of metacinnabar (HgS), mixed Au–Ag–Hg amalgam, Cu sulfide and Ag sulfide.  相似文献   

18.
In Douala (Littoral Cameroon), the Cretaceous to Quaternary formation composed of marine to continental sediments are covered by ferrallitic soils. These sediments and soils have high contents of SiO2 (≥70.0 wt%), intermediate contents of Al2O3 (11.6–28.4 wt%), Fe2O3 (0.00–20.5 wt%) and TiO2 (0.04–4.08 wt%), while K2O (≤0.18 wt%), Na2O (≤0.04 wt%), MgO (≤0.14 wt%) and CaO (≤0.02 wt%) are very low to extremely low. Apart from silica, major oxides and trace elements (REE included) are more concentrated in the fine fraction (<62.5 μm) whose proportions of phyllosilicates and heavy minerals are significant. The close co-associations between Zr, Hf, Th and ∑REE in this fraction suggest that REE distribution is controlled by monazite and zircon. CIA values indicate intense weathering. Weathering products are characterized by the association Al2O3 and Ga in kaolinite; the strong correlation between Fe2O3 and V in hematite and goethite; the affinity of TiO2 with HFSE (Hf, Nb, Th, Y and Zr) in heavy minerals. The ICV values suggest mature sediments. The PCI indicates a well-drained environment whereas U/Th and V/Cr ratios imply oxic conditions. La/Sc, La/Co, Th/Cr, Th/Sc and Eu/Eu* elemental ratios suggest a source with felsic components. Discrimination diagrams are consistent with the felsic source. The REE patterns of some High-K granite and granodiorite of the Congo Craton resemble those of the samples, indicating that they derive from similar source rocks.  相似文献   

19.
We discuss here the mineralogical and geochemical characteristics of mafic intrusive rocks from the Nagaland-Manipur Ophiolites (NMO) of Indo-Myanmar Orogenic Belt, northeast India to define their mantle source and tectonic environment. Mafic intrusive sequence in the NMO is characterized by hornblende-free (type-I) and hornblende-bearing (type-II) rocks. The type-I is further categorized as mafic dykes (type-Ia) of tholeiitic N-MORB composition, having TiO2 (0.72–1.93 wt.%) and flat REE patterns (LaN/YbN = 0.76–1.51) and as massive gabbros (type-Ib) that show alkaline E-MORB affinity, having moderate to high Ti content (TiO2 = 1.18 to 1.45 wt.%) with strong LREE-HREE fractionations (LaN/YbN = 4.54–7.47). Such geochemical enrichment from N-MORB to E-MORB composition indicates mixing of melts derived from a depleted mantle and a fertile mantle/plume source at the spreading center. On the other hand, type-II mafic intrusives are hornblende bearing gabbros of SSZ-type tholeiitic composition with low Ti content (TiO2 = 0.54 wt.%–0.86 wt.%) and depleted LREE pattern with respect to HREE (LaN/YbN = 0.37–0.49). They also have high Ba/Zr (1.13–2.82), Ba/Nb (45.56–151.66) and Ba/Th (84.58–744.19) and U/Th ratios (0.37–0.67) relative to the primitive mantle, which strongly represents the melt composition generated by partial melting of depleted lithospheric mantle wedge contaminated by hydrous fluids derived from subducting oceanic lithosphere in a forearc setting. Their subduction related origin is also supported by presence of calcium-rich plagioclase (An16.6–32.3). Geothermometry calculation shows that the hornblende bearing (type-II) mafic rocks crystallized at temperature in range of 565°–625 °C ± 50 (at 10 kbar). Based on these available mineralogical and geochemical evidences, we conclude that mid ocean ridge (MOR) type mafic intrusive rocks from the NMO represent the section of older oceanic crust which was generated during the divergent process of the Indian plate from the Australian plate during Cretaceous period. Conversely, the hornblende-bearing gabbros (type-II) represent the younger oceanic crust which was formed at the forearc region by partial melting of the depleted mantle wedge slightly modified by the hydrous fluids released from the subducting oceanic slab during the initial stage of subduction of Indian plate beneath the Myanmar plate.  相似文献   

20.
Mineralization with ion adsorption rare earth elements (REEs) in the weathering profile of granitoid rocks from Nanling region of Southeast China is an important REE resource, especially for heavy REE (HREE) and Y. However, the Jurassic granites in Zhaibei which host the ion adsorption light REE (LREE) ores are rare. It is of peraluminous and high K calc-alkaline composition, which has similar geochemical features of high K2O + Na2O and Zr + Nb + Ce + Y contents and Ga/Al ratio to A-type granite. Based on the chemical discrimination criteria of Eby [Geology 20 (1992) 641], the Zhaibei granite belongs to A1-type and has similar source to ocean island basalts. The rock is enriched in LREE and contains abundant REE minerals including LREE-phosphates and halides. Minor LREE was also determined in the feldspar and biotite, which shows negligible and negative Eu anomalies, respectively. This indicates that the Zhaibei granite was generated by extreme differentiation of basaltic parent magmas. In contrast, granites associated with ion adsorption HREE ores contain amounts of HREE minerals, and show similar geochemical characteristics with fractionated felsic granites. Note that most Jurassic granitoids in the Nanling region contain no REE minerals and cannot produce REE mineralization. They belong to unfractionated M-, I- and S-type granites. Therefore, accumulation of REE in the weathering profile is controlled by primary REE mineral compositions in the granitoids. Intense fractional crystallization plays a role on REE enrichment in the Nanling granitoid rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号