首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combined study of petrography, whole-rock major and trace elements as well as Rb?Sr and Sm?Nd isotopes, and mineral oxygen isotopes was carried out for two groups of low-T/UHP granitic gneiss in the Dabie orogen. The results demonstrate that metamorphic dehydration and partial melting occurred during exhumation of deeply subducted continent. Zircon δ18O values of ? 2.8 to + 4.7‰ for the gneiss are all lower than normal mantle values of 5.3 ± 0.3‰, consistent with 18O depletion of protolith due to high-T meteoric-hydrothermal alteration at mid-Neoproterozoic. Most samples have extremely low 87Sr/86Sr ratios at t1 = 780 Ma, but very high 87Sr/86Sr ratios at t2 = 230 Ma. This suggests intensive fluid disturbance due to the hydrothermal alteration of protoliths during Neoproterozoic magma emplacement and the metamorphic dehydration during Triassic continental collision. Rb–Sr isotopes, Th/Ta vs. La/Ta and Th/Hf vs. La/Nb relationships suggest that Group I gneiss experienced lower degrees of hydrothermal alteration, but higher degrees of dehydration, than Group II gneiss. The two groups of gneiss have similar patterns of REE and trace element partition. Group I gneiss displays good correlations between Nb and LREEs but no correlations between Nb and LILEs (Rb, Ba, Pb, Th and U), indicating differential mobilities of LILEs during the dehydration. Thus the correlation between Nb and LREEs is inherited from protolith rather than caused by metamorphic modification. Relative to Group I gneiss, Group II gneiss has stronger negative Eu anomaly, lower contents of Sr and Ba but higher contents of Rb, Th and U. In particular, Nb correlates with LILEs (e.g., Rb, Sr, Ba, Th and U), but not with LREEs (La and Ce). This may indicate decoupling between the dehydration and LILEs transport during continental collision. Furthermore, dehydration melting may have occurred due to breakdown of muscovite during “hot” exhumation. Group II gneiss has extremely low contents of FeO + MgO + TiO2 (1.04 to 2.08 wt.%), high SiO2 contents of 75.33 to 78.23 wt%, and high total alkali (Na2O + K2O) contents (7.52 to 8.92 wt.%), comparable with compositions predicted from partial melting of felsic rocks by experimental studies. Almost no UHP metamorphic minerals survived; felsic veins of fine-grain minerals occurs locally between coarse-grain minerals, resulting in a kind of metatexite migmatites due to dehydration melting without considerable escape of felsic melts from the host gneiss. In contrast, Group I gneiss only shows metamorphic dehydration. Therefore, the two groups of gneiss show contrasting behaviors of fluid–rock interaction during the continental collision.  相似文献   

2.
The Miao'ershan uranium ore district is one of the most important granite-hosted uranium producers in South China. There are several Triassic granite plutons in the Miao'ershan batholith, but uranium ore deposits mainly occur within the Douzhashan granitic body. Precise zircon U–Pb dating indicated that these Triassic granite plutons were emplaced during 204 to 215 Ma. The Douzhashan U-bearing granite lies in the central part of the Miao'ershan batholith, and has higher U contents (8.0 to 26.1 ppm, average 17.0 ppm) than the nearby Xiangcaoping granite (5.0 to 9.3 ppm, average 7.0 ppm) and the Yangqiaoling granite (6.4 to 18.3 ppm, average 11.5 ppm) in the south part of the batholith. The Douzhashan granite is composed of medium-grained two-mica granite, whereas the Xiangcaoping and Yangqiaoling granites are composed of porphyritic biotite granite. Both the Xiangcaoping and Douzhashan granites have high A/CNK ratios (> 1.10), high (87Sr/86Sr)i ratios (> 0.720) and low εNd(t) values (− 11.3 to − 10.4), suggesting that they belong to strongly peraluminous S-type granites. The Douzhashan granite has low CaO/Na2O ratios, high Rb/Sr and Rb/Ba ratios, indicating a partial melting origin of clay-rich pelitic rocks. In contrast, the Xiangcaoping granite formed from clay-poor psammite-derived melt. The Yangqiaoling granite shows different geochemical characteristics with the Douzhashan and Xiangcaoping granites, indicating a different magma source. The Yangqiaoling granite has higher εNd(t) of − 9.4 to − 8.3 and variable A/CNK values from 0.98 to 1.19, suggesting a mixture source of meta-sedimentary rocks and meta-igneous rocks. Crystallization fractionation is not the main mechanism for U enrichment in the Douzhashan granite. We suggest that U-rich pelitic rock sources may be the key factor to generate peraluminous U-bearing granites in South China. Searching for those granites which are reduced, strongly peraluminous and were derived from U-rich pelitic rocks, is the most effective way for exploring granite-hosted U deposits.  相似文献   

3.
Geochronological, geochemical and whole-rock Sr–Nd isotopic analyses have been completed on a suite of alkaline ultramafic dykes from southwest (SW) Guizhou Province, China with the aim of characterising their petrogenesis. The Baiceng ultramafic dykes have a LA-ICP-MS zircon 206Pb/238U age of 88.1 ± 1.1 Ma (n = 8), whereas two phlogopites studied by 40Ar/39Ar dating methods give emplacement ages of 85.25 ± 0.57 Ma and 87.51 ± 0.45 Ma for ultramafic dykes from Yinhe and Lurong, respectively. In terms of composition, these Late Mesozoic ultramafic dykes belong to the alkaline magma series due to their high K2O (3.31–5.04 wt.%) contents. The dykes are characterised by enrichment of light rare earth element (LREE) and large-ion lithosphile elements (LILEs) (Rb and Ba), negative anomalies in high field strength elements (HFSEs), such as, Nb, Ta and Ti relative to primitive mantle, low initial 87Sr/86Sr ratios (0.7060–0.7063) and positive εNd(t) values (0.3–0.4). Such features suggest derivation from low degree (< 1%) partial melting of depleted asthenospheric mantle (garnet-lherzolite), and contamination to various degrees (~ 10%) by interaction with upper crustal materials.  相似文献   

4.
This study provides 87Sr/86Sr, δ13C and δ18O data from the best-preserved limestone and dolomite of the Ediacaran carbonate-dominated Khorbusuonka Group of the Olenek Uplift, NE Siberian Craton, as well as detrital zircon geochronological data from both underlying and overlying sandstones. The Maastakh Formation is characterized by 87Sr/86Sr ratios of ca. 0.70822 and δ13C values between + 4.8 and + 6.0‰. 87Sr/86Sr ratios in limestones of the Khatyspyt Formation are fairly uniform, ranging from 0.70783 to 0.70806. The carbon isotopic composition slowly decreases from bottom (+ 3.7‰) to top (− 0.2‰) of section. The Sr isotopic composition of the Turkut Formation varies from 0.70824 to 0.70914, value of δ13C is about zero: − 0.7…+0.7 ‰. The youngest population of detrital zircons from Maastakh Formation indicates that these rocks were formed not later than 630 Ma. U–Pb detrital zircons data of Kessyusa Group has a single peak at about 543 Ma, which is almost identical to the earlier dating. Based on biostratigraphy and isotopic data, the Sr isotopic compositions from the Khatyspyt Formation (87Sr/86Sr = 0.70783–0.70806) represent the composition of seawater at 560–550 Ma. Such low values of 87Sr/86Sr ratio in Ediacaran water were probably caused by the quick opening of Iapetus Ocean.  相似文献   

5.
The Zhuguangshan complex carries some of the most important granite-hosted uranium deposits in South China. Here we investigate the Changjiang and Jiufeng granites which represent typical U-bearing and barren granites in the complex, using zircon U-Pb ages, whole-rock geochemistry, Sr-Nd isotopic and zircon Hf isotopic data, and mineral chemistry, to constrain the petrogenesis and uranium mineralization. LA-ICP-MS zircon U-Pb dating shows that both the Changjiang and Jiufeng granites were emplaced ca. 160 Ma. These rocks show high silica, weakly to strongly peraluminous compositions, enrichment in Rb, Th, and U, and depletion in Ba, Nb, Sr, P, and Ti. These features coupled with the high initial 87Sr/86Sr ratios, negative εNd(t) values and εHf(t) values, and the Paleoproterozoic two stage model ages of these two granites suggest that the two granites belong to S-type granites, and the parental magmas of the two granites were derived from the Paleoproterozoic metasedimentary rocks. However, the granitoids show different mineralogical characteristics. The biotite in the Changjiang granite belongs to siderophyllite, marking higher degree of chloritization, whereas the biotite in the Jiufeng granite is ferribiotite, characterized by only slight chloritization. Compared with the Jiufeng granite, the biotite in the Changjiang granite has lower crystallization temperature and oxygen fugacity, but higher F content, and the uraninite has higher UO2 content but lower ThO2 content, and stronger corrosion. The chemical ages of uraninites from both granites are (within error) consistent with the zircon U-Pb ages and are considered to represent the emplacement ages of granites. Chemical ages of pitchblende in the Changjiang granite yield 118 ± 8 Ma, 87 ± 4 Ma, and 68 ± 6 Ma, representing multiple episodes of hydrothermal events that are responsible for the precipitation of U ores in the Changjiang uranium ore field. Our study suggests that the degree of magma differentiation and physicochemical conditions of the magmatic-hydrothermal system are the key factors that control the different U contents of these two granites. The mineralogical characteristics of uraninite and biotite can be used to distinguish between U-bearing and barren granites, and serve as a potential tool for prospecting granite-hosted uranium deposits.  相似文献   

6.
Appinites are commonly derived from a mantle source and are potentially significant in constraining the tectonic nature and evolution of ancient orogens, yet they have received little attention because of their limited outcrop. Here we investigate the newly identified appinitic rocks from the Laoniushan complex in the eastern Qinling Orogen. The appinites are composed of coarse-grained hornblendite, medium- and fine-grained hornblende-gabbro, and diorite porphyrite in the field occurrence. Winthin the appinitic rocks, the hornblendite displays features of cumulates. This study presents LA-ICP-MS zircon U-Pb data, mineral chemistry and whole rock geochemistry of the appinites. Zircons in the mafic to ultramafic rocks yield a U-Pb age of 152 ± 1Ma. The geochemistry of the rocks displays: lower SiO2, higher Fe2O3T and MgO contents, relatively flat chondrite normalized REE patterns with slight enrichment in light REE and a minor negative Eu anomaly; enrichment in large-ion lithophile elements(LILE, e.g. Rb, Ba, Sr and P), and depletion in high field strength elements(HFSE, e.g. Nb, Zr, Hf and Ti). Such geochemical features, together with crust-like bulk Sr-Nd isotopic compositions(initial 87Sr/86Sr ratios of 0.7057–0.7072, εNd(t) = −17.2 to −9), suggest that the Laoniushan appinites likely originated from an ancient metasomatised mantle, followed by fractional crystallization in the petrogenetic process. The studied appinites were most likely generated in an intracontinental extensional environment in the Late Mesozoic.  相似文献   

7.
The Khoynarood area is located in the northwest of Iran, lying at the northwestern end of the Urumieh–Dokhtar volcano-plutonic belt and being part of the Qaradagh–South Armenia domain. The main intrusive rocks outcropped in the area have compositions ranging from monzonite–quartz monzonite, through granodiorite, to diorite–hornblende diorite, accompanied by several dikes of diorite–quartz diorite and hornblende diorite compositions, which were geochemically studied in order to provide further data and evidence for the geodynamic setting of the region. The SiO2, Al2O3 and MgO contents of these rocks are about 58.32–68.12%, 14.13–18.65% and 0.68–4.27%, respectively. They are characterized by the K2O/Na2O ratio of 0.26–0.58, Fe2O3 + MnO + MgO + TiO2 content about 4.27–13.13%, low Y (8–17 ppm) and HREE (e.g., 1–2 ppm Yb) and high Sr contents (750–1330 ppm), as well as high ratios of Ba/La (13.51–50.96), (La/Yb)N (7–22), Sr/Y (57.56–166.25), Rb/La (1.13–2.96) and La/Yb (10–33.63), which may testify to the adakitic nature of these intrusions. Their chemical composition corresponds to high-silica adakites, displaying enrichments of LREEs and LILEs and preferential depletion of HFSEs, (e.g., Ti, Ta and Nb). The REE differentiation pattern and the low HREE and Y contents might be resulted from the presence of garnet and amphibole in the solid residue of the source rock, while the high Sr content and the negative anomalies of Ti, Ta and Nb may indicate the absence of plagioclase and presence of Fe and Ti oxides in it. As a general scenario, it may be concluded that the adakitic rocks in the Khoynarood were most likely resulted from detachment of the subducting Neo-Tethyan eclogitic slab after subduction cessation between Arabian and Central Iranian plates during the upper Cretaceous–early Cenozoic and partial melting of the detached slab, followed by interactions with metasomatized mantle wedge peridotite and contamination with continental crust.  相似文献   

8.
The Jiadanggen porphyry Cu–(Mo) deposit is newly discovered and located in the Eastern Kunlun metallogenic belt of Qinghai Province, China. Here, we present a detailed study of the petrogenesis, magma source, and tectonic setting of the mineralization causative granodiorite porphyry. The new data indicate that the granodiorite porphyry is characterized by high SiO2 (68.21–70.41 wt.%) and Al2O3, relatively high K2O, low Na2O, and low MgO and CaO concentrations, and is high-K calc-alkaline and peraluminous. The granodiorite porphyry has low Mg# (38–46) values that are indicative of no interaction between the magmas and the mantle. The samples that we have examined have low Nb/Ta (9.17–10.3) and Rb/Sr (0.28–0.39) ratios, which are indicative of crustal-derived magmas. Source region discrimination diagrams indicate that the magmas that formed the granodiorite porphyry were derived from melting of a mixed amphibolite source in the lower crust. The samples have ISr values of 0.70954–0.70979, εNd(t) values of − 8.3 to − 7.9, and t2DM ages ranging from 1644 to 1677 Ma. These indicate that the magmas that formed this intrusion were generated by melting of Mesoproterozoic lower crustal material. Higher K(Rb) contents of the samples indicate that the magma source is high potassium basaltic material in the lower crust, which could be derived from an enriched mantle source. LA-ICP-MS zircon U–Pb dating of the granodiorite porphyry yields a late Indosinian age (concordia age of 227 ± 1 Ma; MSWD = 0.31), which is close to the molybdenite Re–Os isochron age (227.2 ± 1.9 Ma), indicating further the close relationship between the granodiorite porphyry and the Cu–(Mo) mineralization. These samples are LREE and LILE (e.g., Rb, K, Ba, and Sr) enriched, and HFSE (e.g., Nb, Ta, P, and Ti) depleted, especially in P and Ti, similar to the characteristics of volcanic arc magmas. This intrusion most likely formed during the later stage of Indosinian deep subduction of oceanic slab. This was associated with underplating of mantle-derived magmas, which provided heat for crustal melting. Similar to the Jiadanggen granodiorite porphyry, Indosinian hypabyssal intermediate-felsic intrusive rocks, formed under subduction tectonism or a transitional regime from subduction to syn-collision, make up the most important targets for porphyry Cu(Mo) deposits in the Eastern Kunlun metallogenic belt.  相似文献   

9.
《Gondwana Research》2014,25(3-4):1108-1126
Detailed petrology and zircon U–Pb dating data indicate that the Wulong pluton is a zoned granitic intrusive, formed from successive increments of magmas. An age range of at least 30 Ma is recorded from the 225–235 Ma quartz diorite on the pluton margin, the ca. 218 Ma granodiorite in the intermediate zone, and the ca. 207 Ma monzogranite at the pluton center. All the granitoids display evolved Sr–Nd–Pb isotopic compositions, with 87Sr/86Sr(i) of 0.7044–0.7062, unradiogenic Nd (εNd(t) values of − 6.1 to − 3.0, Nd model ages of 1.1–1.3 Ga, and moderately radiogenic Pb compositions (206Pb/204Pb(i) = 17.500–17.872, 207Pb/204Pb(i) = 15.513–15.549, 208Pb/204Pb(i) = 37.743–38.001), in combination with variations in zircon Hf isotopic compositions (with εHf(t) values in each stage span 12 units) and the Hf isotopic model ages of 800–1600 Ma. These features suggest that the granitoids might have been derived from the reworking of an old lower crust, mixed with Paleozoic and Proterozoic materials. The rocks also display an adakitic affinity with Sr (479–973 ppm), high Sr/Y ratios (mostly > 60) and negligible Eu anomalies (Eu/Eu* = 0.78–0.97) but low Rb/Sr ratios, low Y (4.6–17 ppm), HREE (Yb = 0.95–1.7 ppm), Yb/Lu (6–7) and Dy/Yb (1.9–2.4) ratios, suggesting the absence of plagioclase and presence of garnet + amphibole in their residue. Considering a large gap among their crystallization ages, we propose that the geochemical evolution from pluton margin to center was controlled mainly by melting conditions and source compositions rather than fractional crystallization. Mafic enclaves that were hosted in the quartz diorite and granodiorite are mainly syenogabbroic to syenodioritic in composition, and are metaluminous and enriched in LREE and LILEs, but are depleted in HFSE, and display an evolved Sr–Nd–Pb isotopic composition, suggesting that they may have been derived from the partial melting of an enriched mantle lithosphere, which was metasomatized by adakitic melts and fluids from a subducted continental crust.In combination with the results of the Triassic ultra-high pressure metamorphic rocks in the Dabie orogenic belt, we apply a model involving the exhumation of subducted continental crust to explain the formation of the Wulong pluton. At the first stage, a dense and refractory mafic lower crust that was trapped at mantle depth by continental subduction witnessed melting under high temperature conditions to produce the quartz diorite magma, characterized by low SiO2 (60.65–63.98 wt.%) and high TiO2 (0.39–0.86 wt.%). The magma subsequently interacted with mantle peridotite, leading to high Mg# (57–67) and the metasomatism of the overriding mantle wedge. At the second stage, an asthenosphere upwelling that was probably caused by slab break-off at ca. 220 Ma melted the enriched sub-continental lithospheric mantle (SCLM) to produce mafic magmas, represented by the mafic enclaves that are hosted in the quartz and granodiorite, resulting in the partial melting of the shallower subducted crust, and generating the granodiorite that is distinguished by high SiO2 (69.16–70.82 wt.%), high Al2O3 (15.33–16.22 wt.%) and A/CNK values (mostly > 1.05). At the third stage, the final collapse of the Triassic Qinling–Dabie Orogenic Belt at ca. 215–205 Ma caused extensive partial melting of the thickened orogenic lower crust to produce the monzogranite, which is characterized by high SiO2 (67.68–70.29 wt.%), low TiO2 (mostly < 0.35 wt.%) and high Sr/Y ratios of 86–151.  相似文献   

10.
《Precambrian Research》2007,152(1-2):27-47
Metasomatism above subduction zones is an important process that produces heterogeneous mantle and thus a diversity of igneous rocks. In the Panzhihua district, on the western margin of the Yangtze Block (SW China), two Neoproterozoic mafic intrusions, one olivine gabbro and one hornblende gabbro, have identical ages of 746 ± 10 and 738 ± 23 Ma. Both of the gabbros are tholeiitic in composition and have arc-like geochemical compositions. The hornblende gabbros have K2O concentrations ranging from 0.70 to 1.69 wt.% and show enrichment of Rb, Ba, U, Th and Pb and depletion of Nb,Ta and Ti. They have variable 87Sr/86Sr ratios (0.7045–0.7070) with constant ɛNd(t) values (−0.12 to −0.93). The olivine gabbros have relatively low K2O (0.19–0.43 wt.%), are depleted in Rb and Th relative to Ba and U, and have obvious negative Nb–Ta and Zr–Hf anomalies on primitive mantle-normalized trace element diagrams. Their ɛNd(t) values range from −0.64 to −1.73 and initial 87Sr/86Sr ratios from 0.7070 to 0.7075. Both types of gabbro experienced fractional crystallization of clinopyroxene, plagioclase, amphibole and minor Fe–Ti oxide. The parental magmas of the olivine and hornblende gabbros were formed by about 20% partial melting of garnet–spinel lherzolite and spinel lherzolite, respectively. According to trace elemental ratios, the hornblende gabbros were probably derived from a source strongly modified by subducted slab fluids, whereas the olivine gabbros came from a mantle source modified by subducted slab melts. The close association of the olivine gabbros and hornblende gabbros suggests that a steep subduction zone existed along the western margin of the Yangtze Block during Neoproterozoic time. Thus, the giant Neoproterozoic magmatic event in South China was subduction-related.  相似文献   

11.
Continental subduction and its interaction with overlying mantle wedge are recognized as fundamental solid earth processes, yet the dynamics of this system remains ambiguous. In order to get an insight into crust–mantle interaction triggered by partial melting of subudcted continental crust during its exhumation, we carried out a combined study of the Shidao alkaline complex from the Sulu ultrahigh pressure (UHP) terrane. The alkaline complex is composed of shoshonitic to ultrapotassic (K2O: 3.4–9.3 wt.%) gabbro, pyroxene syenite, amphibole syenite, quartz syenite, and granite. Field studies suggest that the mafic rocks are earlier than the felsic ones in sequence. LA-ICPMS zircon U–Pb dating on them gives Late Triassic ages of 214 ± 2 to 200 ± 3 Ma from mafic to felsic rocks. These ages are slightly younger than the Late Triassic ages (225–210 Ma) of the felsic melts from partial melting of the Sulu UHP terrane during exhumation. The alkaline rocks have wide ranges of SiO2 (49.7–76.7 wt.%), MgO (8.25–0.03 wt.%), Ni (126.0–0.07 ppm), and Cr (182.0–0.45 ppm) contents. The contents of MgO, total Fe2O3, CaO, TiO2 and P2O5 decrease with increasing SiO2 contents. The contents of Na2O, K2O, and Al2O3 increase from gabbro to amphibole syenite, and decrease from amphibole syenite to granite, respectively. The alkaline rocks have characteristics of an arc-like pattern in trace element distribution, e.g., enrichment of LREE, LILE (Rb and Ba), Th and U, depletion of HFSE (Nb, Ta, P and Ti), and positive Pb anomalies. From the mafic rocks to the felsic rocks, the (La/Yb)N ratios and the contents of the total REE, Sr and Ba decrease but the Rb contents increase. The alkaline rocks with high SiO2 contents also display features of an A2-type granitoids, e.g., high contents of total alkalis, Zr and Nb and high ratios of Fe2O3T/MgO, Ga/Al, Yb/Ta and Y/Nb, suggesting a post-collisional magmatism during exhumation of the Sulu UHP terrane. The alkaline rocks have homogeneous initial 87Sr/86Sr ratios (0.7058–0.7093) and negative εNd(t) values (− 18.6 to − 15.0) for whole-rock. The Sr–Nd isotopic data remain almost unchanged with varying SiO2 and MgO contents, suggesting a fractional crystallization (FC) process from the same parental magma. Our studies suggest a crust–mantle interaction in continental subduction interface as follows: (1) hydrous felsic melts from partial melting of subducted continental crust during its exhumation metasomatized the overlying mantle wedge to form a K-rich and amphibole-bearing mantle; (2) partial melting of the enriched lithospheric mantle generated the Late Triassic alkaline complex under a post-collisional setting; and (3) the alkaline magma experienced subsequent fractionational crystallization mainly dominated by olivine, clinopyroxene, plagioclase and alkali feldspar.  相似文献   

12.
This work describes the in situ analysis of loparite [(Na,REE)Ti2O6], a perovskite group mineral with extremely low Rb/Sr ratios and high rare earth contents, by LA-(MC)-ICP-MS for the determination of U–Pb ages together with Sr and Nd isotopic composition. The reliability of these data were validated by analysis of a loparite standard by TIMS solution methods. Data are given for loparite from the Lovozero and Khibiny peralkaline complexes of the Kola Alkaline Province (Russia). For Lovozero loparite the Tera–Wasserburg intercept age for 15 loparites analysed is 373 ± 11 Ma, and the weighted 207Pb corrected 206Pb/238U age is 373 ± 2 Ma. For Khibiny loparite, the intercept age for 5 loparites analysed is 375 ± 10 Ma, and the weighted 207Pb corrected 206Pb/238U age is 374 ± 3 Ma. The common Pb compositions for Lovozero and Khibiny loparites are identical i.e. 207Pb/206Pb = 0.898 ± 0.009 and 0.898 ± 0.007, respectively. The 87Sr/86Sr initial ratios of Lovozero loparite range from 0.703552 to 0.703682 (av. 0.703611), and εNd (t370) from + 3.8 to + 4.4 (av. + 4.0). The 87Sr/86Sr initial ratios of Khibiny loparite range from 0.703560 to 0.703871, and εNd (t730) from + 4.0 to + 4.8. Our data indicate that in situ LA-(MC)-ICP-MS analysis of loparite provides accurate and precise estimates of the intrusion ages and isotopic composition of peralkaline rocks.  相似文献   

13.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

14.
《Chemical Geology》2007,236(1-2):112-133
The Cida A-type granitic stock (∼ 4 km2) and Ailanghe I-type granite batholith (∼ 100 km2) in the Pan-Xi (Panzhihua-Xichang) area, SW China, are two important examples of granites formed during an episode of magmatism associated with the Permian Emeishan mantle plume activity. This is a classic setting of plume-related, anorogenic magmatism exhibiting the typical association of mantle-derived mafic and alkaline rocks along with silicic units. SHRIMP zircon U–Pb data reveal that the Cida granitic pluton (261 ± 4 Ma) was emplaced shortly before the Ailanghe granites (251 ± 6 Ma). The Cida granitoids display mineralogical and geochemical characteristics of A-type granites including high FeO/MgO ratios, elevated high-field-strength elements (HFSE) contents and high Ga/Al ratios, which are much higher than those of the Ailanghe granites. All the granitic rocks show significant negative Eu anomalies and demonstrate the characteristic negative anomalies in Ba, Sr, and Ti in the spidergrams. It can be concluded that the Cida granitic rocks are highly fractionated A-type granitoids whereas the Ailanghe granitic rocks belong to highly evolved I-type granites.The Cida granitoids and enclaves have Nd and Sr isotopic initial ratios (εNd(t) =  0.25 to + 1.35 and (87Sr/86Sr)i = 0.7023 to 0.7053) close to those of the associated mafic intrusions and Emeishan basalts, indicating the involvement of a major mantle plume component. The Ailanghe granites exhibit prominent negative Nb and Ta anomalies and weakly positive Pb anomalies in the spidergram and have nonradiogenic εNd(t) ratios (− 6.34 to − 6.26) and high (87Sr/86Sr)i values (0.7102 to 0.7111), which indicate a significant contribution from crustal material. These observations combined with geochemical modeling suggest that the Cida A-type granitoids were produced by extensive fractional crystallization from basaltic parental magmas. In contrast, the Ailanghe I-type granites most probably originated by partial melting of the mid-upper crustal, metasedimentary–metavolcanic rocks from the Paleo-Mesoproterozoic Huili group and newly underplated basaltic rocks.In the present study, it is proposed that petrogenetic distinctions between A-type and I-type granites may not be as clear-cut as previously supposed, and that many compositional and genetically different granites of the A- and I-types can be produced in the plume-related setting. Their ultimate nature depends more importantly on the type and proportion of mantle and crustal material involved and melting conditions. Significant melt production and possible underplating and/or intrusion into the lower crust, may play an important role in generating the juvenile mafic lower crust (average 20 km) in the central part of the Emeishan mantle plume.  相似文献   

15.
The Xincheng deposit is the only large gold deposit with a proven reserve of >200 t gold hosted by the Early Cretaceous granitoids in northwest Jiaodong Peninsula, East China. The granitoids hosting this ore deposit comprise an inner medium- to fine-grained quartz monzonite and an outer medium- to coarse-grained monzogranite with distinctive K-feldspar megacrysts. LA–ICP–MS zircon dating yields U–Pb ages of 128 ± 1 to 132 ± 1 Ma and 127 ± 2 to 129 ± 1 Ma, for the quartz monzonite and the monzogranite, respectively. The Early Cretaceous ages obtained in our study are comparable with the 126–130 Ma age range reported for the Guojialing granitic suite. The monzogranites, typical high Ba–Sr granites, possess high SiO2 (70.89–73.35%), K2O (3.85–4.32%), total alkalis (K2O + Na2O = 8.08–8.68%), Sr (634–888 ppm), Ba (1395–2111 ppm) and LREE (59.43–145.88), with low HREE and HFSE contents and insignificant Eu anomalies. The rocks display markedly high Sr/Y (114–297) and (La/Yb)N (20–79) ratios. They have low MgO (0.23–0.62%), Cr (0.4–8.33 ppm) and Ni (0.47–2.92 ppm) contents. The typical high Ba–Sr signatures of the outer acidic monzogranites are also shared by the inner intermediate-acidic quartz monzonites, with a relatively higher abundance of these elements. The plagioclases in the quartz monzonites and monzogranites are oligoclase–andesine with An contents of 11.7–44.5%, and oligoclase with An contents of 12.9–29.3%, respectively, which both show the reverse zoning texture. The quartz monzonites have zircon εHf(t) values of −21.3 to −13.9 (average −18.7), which are less negative and show larger variations than those of the monzogranites (εHf(t) = −24.7 to −18.1, average −19.5). Detailed elemental, mineralogical and isotopic data suggest that the high Ba–Sr quartz monzonites and monzogranites were most likely generated by partial melting of the basement rocks of the Jiaobei terrane accompanied by crustal assimilation, with minor addition of the intermediate magma derived from the partial melting of juvenile mafic lower crust formed by the earlier underplating of mantle magma, and the quartz monzonites may represent the path of intermediate magma inputting into felsic magma. In combination with previous investigations, we suggest subduction of the paleo-Pacific slab beneath the North China Craton (NCC) and associated asthenosphere upwelling were most likely the mechanism associated with the generation of the high Ba–Sr granites.  相似文献   

16.
It is generally accepted that the low-Mg adakitic rocks were derived from the partial melting of metabasalts/eclogites. In this study, we demonstrate that the early Cretaceous low-Mg adakitic granites in the North Dabie Complex (NDC) were generated by the partial melting of the NDC orthogneisses. Here we present in-situ U–Pb and Lu–Hf isotopes in zircon with whole-rock geochemical and Sr–Nd isotopic compositions were carried out for the Tiantangzhai porphyritic monzogranites from the Dabie orogen, eastern China. The monzogranites are characterized by high Sr (576–988 ppm), low Y (7.3–19.0 ppm), and depletion in HREE (Yb: 0.50–1.78 ppm) (thus resulting in high Sr/Y (34.3–135.2) and (La/Yb)N (17.0–105.2) ratios) without a negative Eu anomaly. They also exhibit high SiO2 (66.5–73.5 wt.%) and K2O (2.7–4.7 wt.%), and low MgO (0.4–1.6 wt.%) or Mg# (28.2–45.3, mostly < 40) values. Whole-rock geochemical compositions suggest that the monzogranites represent low-Mg adakitic rock with high-Si and rich-K features equilibrated with residues rich in garnet. Sr–Nd isotopic compositions (εNd (t) = ? 16.2 to ? 20.3, (87Sr/86Sr)i = 0.707798–0.708804, tDM2(Nd) = 2.3–2.6 Ga) of the monzogranites are distinct from that of the eclogites and amphibolites in the Dabie orogen, but similar to that of the Neoproterozoic (700–800 Ma) gneisses in the NDC. U–Pb dating of zircons gives a consistent age of 130.0 ± 3.4 Ma with discordia upper intercept age of 716 ± 34 Ma for inherited cores identified by CL imaging. Correspondingly, in-situ Lu–Hf analyses of early Cretaceous young age-spots from zircons yield initial 176Hf/177Hf ratios from 0.281898 to 0.282361, εHf(t) values from ? 28.1 to ? 17.6 and two-stage “crust” Hf model ages (tDM2) from 2293 ± 89 to 2949 ± 108 Ma, which are generally in agreement with values of 0.281891 to 0.282218, ? 28.2 to ? 11.7 and 1927 ± 87 to 2963 ± 92 Ma for the pre-Mesozoic inherited cores, respectively. As for individual core-rim pairs in zircon, Th/U ratios increase from the inherited cores to the young growth rims possibly due to variable degrees of partial melting, whereas 176Lu/177Hf ratios greatly decrease because of the garnet effect in residues. Thus, we suggest that the early Cretaceous low-Mg adakitic granites were derived from the partial melting of the NDC Neoproterozoic (700–800 Ma) gneisses, and the foundering of the garnet-bearing residues could have caused the destruction of the over-thickened lower continental crust.  相似文献   

17.
The Central Eastern Desert (CED) of Egypt, a part of Neoproterozoic Arabian Nubian Shield (ANS), embraces a multiplicity of rare metal bearing granitoids. Gabal El-Ineigi represents one of these granitic plutons and is a good example of the fluorite-bearing rare metal granites in the ANS. It is a composite pluton consisting of a porphyritic syenogranite (SG; normal granite) and coarse- to medium-grained highly evolved alkali-feldspar granite (AFG; fluorite and rare metal bearing granite) intruded into older granodiorite and metagabbro-diorite rocks. The rock-forming minerals are quartz, K-feldspar (Or94-99), plagioclase (An0-6) and biotite (protolithonite-siderophyllite) in both granitic types, with subordinate muscovite (Li-phengite) and fluorite in the AFG. Columbite-(Fe), fergusonite-(Y), rutile, zircon and thorite are the main accessory phases in the AFG while allanite-(Ce) and epidote are exclusively encountered in the SG. Texture and chemistry of minerals, especially fluorite, columbite and fergusonite, support their magmatic origin. Both granitic types are metaluminous to weakly peraluminous (A/CNK = 0.95–1.01) and belong to the post-collisional A2-type granites, indicating melting of underplated mafic lower crust. The late phase AFG has distinctive geochemical features typical of rare metal bearing granites; it is highly fractionated calc-alkaline characterized by high Rb, Nb, Y, U and many other HFSE and HREE contents, and by extremely low Sr and Ba. Moreover, the REE patterns show pronounced negative Eu anomalies (Eu/Eu1 = 0.03 and 0.06) and tetrad effect (TE1,3 = 1.13 and 1.27), implying extensive open system fractionation via fluid–rock interactions that characterize the late magmatic stage differentiation. The SG is remarkably enriched in Sr, Ba and invariably shows a relative enrichment in light rare-earth elements (LREEs). The SG rocks (569 ± 15 Ma) are characterized by relatively low initial 87Sr/86Sr ratios (0.7034–0.7035) that suggest their derivation from the mantle, with little contamination from the older continental crust. By contrast, the AFG has very high 87Rb/86Sr and 87Sr/86Sr ratios that reflect the disturbance of the Rb-Sr isotopic system and may give an indication for the high temperature magma-fluid interaction. The positive εNd(t) values of AFG (+7.40) and SG (+5.17), corresponding to young Nd-TDM2 ages ranging from 707 to 893 Ma, clearly reflect the juvenile crustal nature of Gabal El-Ineigi granitoids and preclude the occurrence of pre-Neoproterozoic continental crust in the ANS. The field relationships, chemical, petrological and isotopic characteristics of El-Ineigi SG and AFG prove that they are genetically not associated to each other and indicate a complex origin involving two compositionally distinct parental magmas that were both modified during magmatic fractionation processes. We argue that the SG was formed by partial melting of a mid-crustal source with subsequent fractional crystallization. In contrast, the AFG was generated by partial melting and fractionation of Nb- and Ta-rich amphibole (or biotite) of the lower crust. The appreciable amounts of fluorine in the magma appears to be responsible for the formation of rare metal element complexes (e.g., Nb, Ta, Sn and REEs), and could account for the rare metal mineralization in the El-Ineigi AFG.  相似文献   

18.
The Cretaceous granites of Mianning, located in the northern Panxi region, were emplaced after collision of the Tibetan Plateau and Yangtze Block. These granites have very high K2O + Na2O, Ga, Zr, Nb, Y, REE (except Eu), and very low MgO, CaO, P2O5, and Sr contents relative to M-, I- or S-type granites. Based on the chemical discrimination criteria of Whalen et al . [Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics, distribution and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–419], most of them are A-type granites. Moreover, the granites plot in the range of post-collision granites and belong to the A2 type. Elevated initial Sr isotopic ratios (>0.72) suggest their derivation dominantly from a crustal source. These features are consistent with granite formation in a post-orogenic setting, such as after subduction or collision between of the Tibetan Plateau and Yangtze Block. In addition, the granites are characterized by low abundances of Ba, Sr, P, Ti, and Eu, positive correlation between Ba and Eu anomalies, and negative correlation between Rb and K/Rb. Plots of Rb vs. Sr suggest that fractional crystallization affected the final compositions of these granites after melting from a dominantly crustal source. From the late Proterozoic to late Mesozoic, the crustal composition, compared to that of the mantle, appears to have increased in the Panxi region. While the mantle component played an important part in the generation of Cretaceous granites in southeastern China, its influence was relatively minor in the Panxi region. Thus, there was a significant difference in mantle evolution between southeastern China and the Panxi region, which led to different metallogenic processes.  相似文献   

19.
Calcite fossils from New Zealand and New Caledonia provide insight into the Permian to Jurassic climatic history of Southern High Latitudes (southern HL) and Triassic Southern Intermediate Latitudes (southern IL). These results permit comparison with widely studied, coeval sections in Low Latitudes (LL) and IL. Oxygen isotope ratios of well-preserved shell materials indicate a partially pronounced Sea Surface Temperature (SST) gradient in the Permian, whereas for the Triassic no indication of cold climates in the southern HL is found. The Late Jurassic of New Zealand is characterized by a slight warming in the Oxfordian–Kimmeridgian and a subsequent cooling trend in the Tithonian. Systematic variations in the δ13C values of southern HL samples are in concert with those from LL sections and confirm the global nature of the carbon isotope signature and changes in the long-term carbon cycle reported earlier.Systematic changes of Sr/Ca ratios in Late Triassic brachiopods, falling from 1.19 mmol/mol in the Oretian (early Norian) to 0.67 mmol/mol in the Warepan (late Norian) and subsequently increasing to 1.10 mmol/mol in the Otapirian (~ Rhaetian), are observed. Also Sr/Ca ratios of Late Jurassic belemnite genera Belemnopsis and Hibolithes show synchronous changes in composition that may be attributed to secular variations in the seawater Sr/Ca ratio. For the two belemnite genera an increase from 1.17 mmol/mol in the Middle Heterian (~ Oxfordian) to 1.78 mmol/mol in the Mangaoran (~ late Middle Tithonian) and a subsequent decrease to 1.51 mmol/mol in the Waikatoan (~ Late Tithonian) is documented.  相似文献   

20.
The Shangjiazhuang Mo deposit is located on the Jiaodong Peninsula in eastern China, which is famous for the ca. 120 Ma “Jiaodong-type” Au deposits with total Au endowment of over 3000 t. In this paper, we discuss the deposit geology, mineralization age, and geochemical features of the host granodiorite of the Shangjiazhuang Mo orebody. Using this information, we aim to clarify the time and geodynamic mechanism for the Mo deposit, which is another constraint to understand the genesis of Au deposits. The Mo mineralization generally occurs as quartz–sulfide veins within the medium-grained Yashan granodiorite. The alteration consists of potassic alteration, silicification, sericitization, chloritization, and carbonatization with a weak unclear zonation. The ore minerals mainly include molybdenite, chalcopyrite, and pyrite. We measured Re–Os isotopes of molybdenite grains, which yielded a weighted mean model age of 116.9 ± 0.81 (MSWD = 1.03) and a well-constrained 187Re–187Os isochron age of 117.1 ± 1.4 Ma (MSWD = 1.6). These ages are slightly younger than the age of Au mineralization on the Jiaodong Peninsula. Rhenium contents of 5.84–29.99 ppm with an average of 16.4 ppm in molybdenites indicate a crustal source. Whole-rock geochemical compositions show that the granodiorite is high-K calc-alkaline and metaluminous to peraluminous. The samples show low Y contents from 8.2 to 10.5 ppm and Sr/Y ratios from 48.2 to 58.8, displaying an adakitic affinity. The Yashan granodiorite has high initial 87Sr/86Sr ratios of 0.7101 to 0.7104, low εNd(t) values of − 17.6 to − 16.7, and zircon εHf(t) values from − 24.8 to − 17.1, with corresponding Hf model ages of 2.7 to 2.2 Ga. These isotopic data, together with the adakitic affinity of the granodiorite, indicate that the parental magma was derived from ancient crust. Mafic microgranular enclaves (MME) that are contemporaneous with the host granodiorite show SiO2 contents of 57.98–58.41 wt% and depletion in Nb–Ta. The MMEs show enriched initial 87Sr/86Sr ratios of 0.7102 to 0.7106 and low εNd(t) values of − 17.3 to − 16.3. The MMEs are the products of mixing between the metasomatized lithospheric mantle-derived mafic magma and the ancient crust-derived felsic magma. The Early Cretaceous Mo mineralization (120–110 Ma) is slightly younger than the peak time of Au mineralization (126–120 Ma) on the Jiaodong Peninsula, but have a different spatial distribution which suggests different sources of Au and Mo. The “Jiaodong-type” Au deposits were probably related to the upwelling of metasomatized lithospheric mantle, while the Mo mineralization on the Jiaodong Peninsula may delineate a 120–110 Ma Mo metallogenic belt along the southern margin of the North China Craton with the East Qinling, which is related to the melting of ancient crustal sources. The subduction of the Paleo-Pacific slab and accompanying asthenospheric upwelling triggered upwelling of metasomatized lithospheric mantle, forming “Jiaodong-type” Au deposits. Subsequently, the ponding of mantle-derived magmas resulted in partial melting of ancient crust and associated Mo deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号