首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
In order to gain insight into the correlations between 29Si, 17O and 1H NMR properties (chemical shift and quadrupolar coupling parameters) and local structures in silicates, ab initio self-consistent field Hartree-Fock molecular orbital calculations have been carried out on silicate clusters of various polymerizations and intertetrahedral (Si-O-Si) angles. These include Si(OH)4 monomers (isolated as well as interacting), Si2O(OH)6 dimers (C2 symmetry) with the Si-O-Si angle fixed at 5° intervals from 120° to 180°, Si3O2(OH)8 linear trimers (C2 symmetry) with varying Si-O-Si angles, Si3O3(OH)6 three-membered rings (D3 and C1 symmetries), Si4O4(OH)8 four-membered ring (C4 symmetry) and Si8O12(OH)8 octamer (D4 symmetry). The calculated 29Si, 17O and 1H isotropic chemical shifts (δi Si, δi O and δi H) for these clusters are all close to experimental NMR data for similar local structures in crystalline silicates. The calculated 17O quadrupolar coupling constants (QCC) of the bridging oxygens (Si-O-Si) are also in good agreement with experimental data. The calculated 17O QCC of silanols (Si-O-H) are much larger than those of the bridging oxygens, but unfortunately there are no experimental data for similar groups in well-characterized crystalline phases for comparison. There is a good correlation between δi Si and the mean Si-O-Si angle for both Q 1 and Q 2, where Q n denotes Si with n other tetrahedral Si next-nearest neighbors. Both the δ i O and the 17O electric field gradient asymmetry parameter, η of the bridging oxygens have been found to depend strongly on the O site symmetry, in addition to the Si-O-Si angle. On the other hand, the 17O QCC seems to be influenced little by structural parameters other than the Si-O-Si angle, and is thus expected to be the most reliable 17O NMR parameter that can be used to decipher Si-O-Si angle distribution information. Both the 17O QCC and the 2H QCC of silanols decrease with decreasing length of hydrogen bond to a second O atom (Si-O-H···O), and the δ i H increase with the same parameter. Received: 18 July 1997 / Revised, accepted: 23 February 1998  相似文献   

3.
Dissolution of water in magmas significantly affects phase relations and physical properties. To shed new light on the this issue, we have applied 1H and 29Si nuclear magnetic resonance (NMR) spectroscopic techniques to hydrous silicate glasses (quenched melts) in the CaO-MgO-SiO2 (CMS), Na2O-SiO2, Na2O-CaO-SiO2 and Li2O-SiO2 systems. We have also carried out ab initio molecular orbital calculations on representative clusters to gain insight into the experimental results.The most prominent result is the identification of a major peak at ∼1.1 to 1.7 ppm in the 1H MAS NMR spectra for all the hydrous CMS glasses. On the basis of experimental NMR data for crystalline phases and ab initio calculation results, this peak can be unambiguously attributed to (Ca,Mg)OH groups. Such OH groups, like free oxygens, are only linked to metal cations, but not part of the silicate network, and are thus referred to as free hydroxyls in the paper. This represents the first direct evidence for a substantial proportion (∼13∼29%) of the dissolved water as free hydroxyl groups in quenched hydrous silicate melts. We have found that free hydroxyls are favored by (1) more depolymerized melts and (2) network-modifying cations of higher field strength (Z/R2: Z: charge, R: cation-oxygen bond length) in the order Mg > Ca > Na. Their formation is expected to cause an increase in the melt polymerization, contrary to the effect of SiOH formation. The 29Si MAS NMR results are consistent with such an interpretation. This water dissolution mechanism could be particularly important for ultramafic and mafic magmas.The 1H MAS NMR spectra for glasses of all the studied compositions contain peaks in the 4 to 17 ppm region, attributable to SiOH of a range of strength of hydrogen bonding and molecular H2O. The relative population of SiOH with strong hydrogen bonding grows with decreasing field strength of the network-modifying cations. Ab initio calculations confirmed that this trend largely reflects hydrogen bonding with nonbridging oxygens.  相似文献   

4.
卤族元素诸如氯和溴作为地球化学示踪剂,常用于指示岩浆、变质岩和热液的来源和演化过程。而认清溴在造岩矿物中的形态和结构有助于丰富和完善其在地质环境演变中的示踪作用。但是,溴在造岩矿物中的含量极低导致大多数结构分析方法都无法使用,因此造岩矿物中微量溴的结构研究极具挑战性。本文采用 81Br魔角旋转核磁共振(MAS NMR)光谱和同步辐射吸收光谱(XAS)技术,首次对富氯造岩矿物中的微量溴进行了结构分析。结果表明溴离子在方硼石中的微区结构不同于该矿物中三配位Cl原子的结构环境,而与Mg3B7O13Br中八面体配位的溴离子相似,表明即使在微量条件下也存在域偏析。而对其他富氯造岩矿物的Br K边X光吸收近边结构(XANES)光谱白线峰的位置和扩展X射线吸收精细结构(EXAFS)分析表明微量溴离子替代了这些矿物中氯的位置,导致局部结构扭曲膨胀。溴离子在造岩矿物中的这一微观结构研究结果可为探索氯和溴在地质演变过程的指示作用提供新的科学依据。  相似文献   

5.
Samples of enstatite and forsterite were crystallized in the presence of a hydrous fluid at 15 kbar and 1100 °C. Water contents in quenched samples were measured by 1H MAS NMR and by FTIR. If the samples were prepared in the same way, similar water concentrations were obtained by both methods. There is no evidence that one or the other method would severely over or underestimate water contents in nominally anhydrous minerals. However, measured water contents vary by orders of magnitude depending on sample preparation. The lowest water contents are measured by polarized FTIR spectroscopy on clear, inclusion-free single crystals. These water contents probably reflect the real point defect solubility in the crystals. Polycrystalline material shows much higher total water concentrations, presumably due to hydrous species on grain boundaries, growth defects, and in submicroscopic fluid inclusions. Grinding the sample in air further increases water concentration. This effect is even more pronounced if the sample is ground in water and subsequently dried at 150 °C. Polarized FTIR measurements on clear single crystals of enstatite saturated at 15 kbar and 1100 °C give 199 ± 25 ppm by weight of water. The spectra show sharp and strongly polarized bands. These bands are also present in spectra measured through turbid, polycrystalline aggregates of enstatite. However, in these spectra, they are superimposed on much broader, nearly isotropic bands resulting from hydrous species in grain boundaries, growth defects, and submicroscopic fluid or melt inclusions. Total water contents for these polycrystalline aggregates are between 2000 and 4000 ppm. Water contents measured by FTIR on enstatite powders are 5300 ppm after grinding in air and 12 600 ppm after grinding under water und subsequent drying at 150 °C. Received: 25 June 1999 / Revised, accepted: 4 October 1999  相似文献   

6.
NMR shieldings (σ) and electric field gradients (eq) are calculated using ab initio methods at the O and T nuclei (where T=P, Si) in two different types of molecules-TH3 dimers, i.e. H3SiOSiH3 and H3POPH 3 2+ , and TO4 trimeric rings, i.e., Si3O 9 6- and P3O 9 3- , which serve as models for assessing the effects of polymerization, bond length and bond angle variation on the NMR properties of polymerized silicates and phosphates. In agreement with earlier ab initio studies on H3SiOSiH3 we confirm that σ(29Si), σ(31P), σ(17O) and eq(17O) all decrease as θ(SiOSi) decreases in the range from 180° to 100°. However, correction for artifacts due to distant core electrons leads to a considerably reduced value for the anisotropy in σ O, bringing it into better agreement with estimated experimental values. The qualitative change in σ(29Si) with θ(SiOSi) can be understood on the basis of changes in the energies of the highest energy occupied MO's and consequent variations in their contributions to the paramagnetic part of the shielding. For H3POPH 3 2+ we calculate a larger value of eqO than for the analog Si compound but the same type of variation of σ(17O) with θ(TOT). The change in σ(31P) with θ(POP) is, however, calculated to be much smaller than in the Si case and a maximum is predicted for intermediate angles. For the trimeric rings we obtain energy optimized geometries in good agreement with x-ray structural data, with T-O terminal distances systematically shorter than the T-O bridging distances. Calculated σ(T) anisotropies are also in good agreement with experiment and can be simply related to the calculated structure. After correction for distant core effects we obtain a change in σ(31P) between PO 4 3- and P3O 9 3- in reasonable agreement with experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号