首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Middle Paleozoic tectonothermal event in the eastern Siberian craton was especially active in the area of the Vilyui rift, where it produced a system of rift basins filled with Devonian–Early Carboniferous volcanics and sediments, as well as long swarms of mafic dikes on the rift shoulders. Basalts occur mostly among Middle Devonian sediments and are much less spread in Early Carboniferous formations. The dolerite dikes of the Vilyui–Markha swarm in the northwestern rift border coexist with the Mirnyi and Nakyn fields of diamond-bearing kimberlites. The voluminous dikes and sills intruded before the emplacement of kimberlites. The Mir kimberlite crosscuts a dolerite sill and a dike in the Mirnyi field, while a complex dolerite dike (monzonite porphyry) cuts through the Nyurba kimberlite in the Nakyn field. Thus, the kimberlites correspond to a longer span of Middle Paleozoic basaltic magmatism. The basalts in Middle Paleozoic sediments have faunal age constraints, but the age of dolerite dikes remains uncertain. The monzonite porphyry dike in the Nyurba kimberlite has been dated by the 40Ar/39Ar method, and the obtained age must be the upper bound of the dike emplacement. The space and time relations between basaltic and kimberlitic magmatism were controlled by Devonian plume–lithosphere interaction.  相似文献   

2.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant.  相似文献   

3.
金刚石及其寄主岩石是人类认识地球深部物质组成和性质、壳幔和核幔物质循环重要研究对象。本文总结了中国不同金刚石类型的分布,着重对比了博茨瓦纳和中国含金刚石金伯利岩的地质特征,取得如下认识:(1)博茨瓦纳含矿原生岩石仅为金伯利岩,而中国含矿岩石成分复杂,金伯利岩主要出露在华北克拉通,展布于郯庐、华北中央和华北北缘金伯利岩带,具有工业价值的蒙阴和瓦房店矿床分布于郯庐金伯利岩带中;钾镁煌斑岩主要出露在华南克拉通,重点分布在江南和华南北缘钾镁煌斑岩带中;(2)钙钛矿原位U-Pb年龄和Sr、Nd同位素显示,86~97 Ma奥拉帕金伯利岩群和456~470 Ma蒙阴和瓦房店金伯利岩均具有低87Sr/86Sr(0.703~0.705)和中等εNd(t)(-0.09~+5)特征,指示金伯利岩浆源自弱亏损地幔或初始地幔源区;(3)博茨瓦纳金伯利岩体绝大多数以岩筒产出,而中国以脉状为主岩筒次之;博茨瓦纳岩筒绝大部分为火山口相,中国均为根部相,岩筒地表面积普遍小于前者;(4)奥拉帕A/K1和朱瓦能金伯利岩体是世界上为数不多的主要产出榴辉岩捕虏体和E型金刚石的岩筒之一,而同位于奥拉帕岩群的莱特拉卡内、丹姆沙和卡罗韦岩体与我国郯庐带的金伯利岩体类似,均主要产出地幔橄榄岩捕虏体以及P型和E型金刚石;(5)寻找含矿金伯利岩重点注意以下几点:克拉通内部和周缘深大断裂带是重要的控岩构造;镁铝榴石、镁钛铁矿、铬透辉石、铬尖晶石和铬金红石等是寻找含金刚石金伯利岩重要的指示矿物;航磁等地球物理测量需与土壤取样找矿方法相结合才能取得更好效果;(6)郯庐金伯利岩带、江南钾镁煌斑岩带和塔里木地块是中国重要含矿岩石的找矿靶区,冲积型金刚石成矿潜力巨大。  相似文献   

4.
First data on the geologic and geochemical compositions of kimberlites from nine kimberlite pipes of southwestern Angola are presented. In the north of the study area, there are the Chikolongo and Chicuatite kimberlite pipes; in the south, a bunch of four Galange pipes (I–IV); and in the central part, the Ochinjau, Palue, and Viniaty pipes. By geochemical parameters, these rocks are referred to as classical kimberlites: They bear mantle inclusions of ultrabasites, eclogites, various barophilic minerals (including ones of diamond facies), and diamonds. The kimberlite pipes are composed of petrographically diverse rocks: tuffstones, tuff breccias, kimberlite breccias, autolithic kimberlite breccias, and massive porphyritic kimberlites. In mineralogical, petrographic, and geochemical compositions the studied kimberlites are most similar to group I kimberlites of South Africa and Fe-Ti-kimberlites of the Arkhangel’sk diamondiferous province. Comparison of the mineralogical compositions of kimberlites from southwestern Angola showed that the portion of mantle (including diamondiferous) material of depth facies in kimberlite pipes regularly increases in the S-N direction. The northern diamond-bearing kimberlite pipes are localized in large destructive zones of NE strike, and the central and southern diamond-free pipes, in faults of N-S strike.  相似文献   

5.
The Sm-Nd systematics in a variety of mantle-derived samples including kimberlites, alnoite, carbonatite, pyroxene and amphibole inclusions in alkali basalts and xenolithic eclogites, granulites and a pyroxene megacryst in kimberlites are reported. The additional data on kimberlites strengthen our earlier conclusion that kimberlites are derived from a relatively undifferentiated chondritic mantle source. This conclusion is based on the observation that the Nd values of most of the kimberlites are near zero. In contrast with the kimberlites, their garnet lherzolite inclusions show both time-averaged Nd enrichment and depletion with respect to Sm. Separated clinopyroxenes in eclogite xenoliths from the Roberts Victor kimberlite pipe show both positive and negative Nd values suggesting different genetic history. A whole rock lower crustal scapolite granulite xenolith from the Matsoku kimberlite pipe shows a negative Nd value of -4.2, possibly representative of the base of the crust in Lesotho. It appears that all inclusions, mafic and ultramafic, in kimberlites are unrelated to their kimberlite host.The above data and additional Sm-Nd data on xenoliths in alkali basalts, alpine peridotite and alnoite-carbonatites are used to construct a model for the upper 200 km of the earth's mantle — both oceanic and continental. The essential feature of this model is the increasing degree of fertility of the mantle with depth. The kimberlite's source at depths below 200 km in the subcontinental mantle is the most primitive in this model, and this primitive layer is also extended to the suboceanic mantle. However, it is clear from the Nd-isotopic data in the xenoliths of the continental kimberlites that above 200 km the continental mantle is distinctly different from their suboceanic counterpart.  相似文献   

6.
New Rb–Sr age determinations using macrocrystal phlogopite are presented for 27 kimberlites from the Ekati property of the Lac de Gras region, Slave Province, Canada. These new data show that kimberlite magmatism at Ekati ranges in age from at least Late Paleocene (61 Ma) to Middle Eocene time (45 Ma). Older, perovskite-bearing kimberlites from Ekati extend this age range to Late Cretaceous time (74 Ma). Within this age range, emplacement episodes at 48, 51–53, 55–56 and 59–61 Ma can be recognized. Middle Eocene kimberlite magmatism of the previously dated Mark kimberlite (47.5 Ma) is shown to include four other pipes from the east-central Ekati property. A single kimberlite (Aaron) may be younger than the 47.5 Ma Mark kimberlite. The economically important Panda kimberlite is precisely dated in this study to be 53.3±0.6 Ma using the phlogopite isochron method, and up to six additional kimberlites from the central Ekati property have Early Eocene ages indistinguishable from that of Panda, including the Koala and Koala North occurrences. Late Paleocene 55–56 Ma kimberlite magmatism, represented by the Diavik kimberlite pipes adjacent to the southeastern Ekati property, is shown to extend onto the southeastern Ekati property and includes three, and possibly four, kimberlites. A precise eight-point phlogopite isochron for the Cobra South kimberlite yields an emplacement age of 59.7±0.4 Ma; eight other kimberlites from across the Ekati property have similar Late Paleocene Rb–Sr model ages. The addition of 27 new emplacement ages for kimberlites from the Ekati property confirms that kimberlite magmatism from the central Slave Province is geologically young, despite ages ranging back to Cambrian time from elsewhere in the Slave Province. With the available geochronologic database, Lac de Gras kimberlites with the highest diamond potential are currently restricted to the 51–53 and 55–56 Ma periods of kimberlite magmatism.  相似文献   

7.

Olivine in kimberlites can provide unique insights into magma petrogenesis, because it is the most abundant xenocrystic phase and a stable magmatic product over most of the liquid line of descent. In this study we examined the petrography and chemistry of olivine in kimberlites from different tectonic settings, including the Slave craton, Canada (Ekati: Grizzly, Koala), the Brasilia mobile belt (Limpeza-18, Tres Ranchos-04), and the Kaapvaal craton, South Africa (Kaalvallei: Samada, New Robinson). Olivine cores display a wide range of compositions (e.g., Mg# = 78–95). The similarity in olivine composition, resorption of core zones and inclusions of mantle-derived phases, indicates that most olivine cores originated from the disaggregation of mantle peridotites, including kimberlite-metasomatised lithologies (i.e. sheared lherzolites and megacrysts). Olivine rims typically show a restricted range of Mg#, with decreasing Ni and increasing Mn and Ca contents, a characteristic of kimberlitic olivine worldwide. The rims host inclusions of groundmass minerals, which implies crystallisation just before and/or during emplacement. There is a direct correlation between olivine rim composition and groundmass mineralogy, whereby high Mg/Fe rims are associated with carbonate-rich kimberlites, and lower Mg/Fe rims are correlated with increased phlogopite and Fe-bearing oxide mineral abundances. There are no differences in olivine composition between explosive (Grizzly) and hypabyssal (Koala) kimberlites. Olivine in kimberlites also displays transitional zones and less common internal zones, between cores and rims. The diffuse transitional zones exhibit intermediate compositions between cores and rims, attributed to partial re-equilibration of xenocrystic cores with the ascending kimberlite melt. In contrast, internal zones form discrete layers with resorbed margins and restricted Mg# values, but variable Ni, Mn and Ca concentrations, which indicates a discrete crystallization event from precursor kimberlite melts at mantle depths. Overall, olivine exhibits broadly analogous zoning in kimberlites worldwide. Variable compositions for individual zones relate to different parental melt compositions rather than variations in tectonic setting or emplacement mechanism.

  相似文献   

8.
The pipe shapes, infill and emplacement processes of the Attawapiskat kimberlites, including Victor, contrast with most of the southern African kimberlite pipes. The Attawapiskat kimberlite pipes are formed by an overall two-stage process of (1) pipe excavation without the development of a diatreme (sensu stricto) and (2) subsequent pipe infilling. The Victor kimberlite comprises two adjacent but separate pipes, Victor South and Victor North. The pipes are infilled with two contrasting textural types of kimberlite: pyroclastic and hypabyssal-like kimberlite. Victor South and much of Victor North are composed of pyroclastic spinel carbonate kimberlites, the main features of which are similar: clast-supported, discrete macrocrystal and phenocrystal olivine grains, pyroclastic juvenile lapilli, mantle-derived xenocrysts and minor country rock xenoliths are set in serpentine and carbonate matrices. These partly bedded, juvenile lapilli-bearing olivine tuffs appear to have been formed by subaerial fire-fountaining airfall processes.

The Victor South pipe has a simple bowl-like shape that flares from just below the basal sandstone of the sediments that overlie the basement. The sandstone is a known aquifer, suggesting that the crater excavation process was possibly phreatomagmatic. In contrast, the pipe shape and internal geology of Victor North are more complex. The northwestern part of the pipe is dominated by dark competent rocks, which resemble fresh hypabyssal kimberlite, but have unusual textures and are closely associated with pyroclastic juvenile lapilli tuffs and country rock breccias±volcaniclastic kimberlite. Current evidence suggests that the hypabyssal-like kimberlite is, in fact, not intrusive and that the northwestern part of Victor North represents an early-formed crater infilled with contrasting extrusive kimberlites and associated breccias. The remaining, main part of Victor North consists of two macroscopically similar, but petrographically distinct, pyroclastic kimberlites that have contrasting macrodiamond sample grades. The juvenile lapilli of each pyroclastic kimberlite can be distinguished only microscopically. The nature and relative modal proportion of primary olivine phenocrysts in the juvenile lapilli are different, indicating that they derive from different magma pulses, or phases of kimberlite, and thus represent separate eruptions. The initial excavation of a crater cross-cutting the earlier northwestern crater was followed by emplacement of phase (i), a low-grade olivine phenocryst-rich pyroclastic kimberlite, and the subsequent eruption of phase (ii), a high-grade olivine phenocryst-poor pyroclastic kimberlite, as two separate vents nested within the original phase (i) crater. The second eruption was accompanied by the formation of an intermediate mixed zone with moderate grade. Thus, the final pyroclastic pipe infill of the main part of the Victor North pipe appears to consist of at least three geological/macrodiamond grade zones.

In conclusion, the Victor kimberlite was formed by several eruptive events resulting in adjacent and cross-cutting craters that were infilled with either pyroclastic kimberlite or hypabyssal-like kimberlite, which is now interpreted to be of probable extrusive origin. Within the pyroclastic kimberlites of Victor North, there are two nested vents, a feature seldom documented in kimberlites elsewhere. This study highlights the meaningful role of kimberlite petrography in the evaluation of diamond deposits and provides further insight into kimberlite emplacement and volcanism.  相似文献   


9.
E.M.W. Skinner  J.S. Marsh 《Lithos》2004,76(1-4):183-200
Field and Scott Smith [Field, M., Scott Smith, B.H., 1999. Contrasting geology and near-surface emplacement of kimberlite pipes in southern Africa and Canada. Proc. 7th Int. Kimb. Conf. (Eds. Gurney et al.) 1, 214–237.] propose that kimberlite pipes can be grouped into three types or classes. Classical or Class 1 pipes are the only class with characteristic low temperature, diatreme-facies kimberlite in addition to hypabyssal- and crater-facies kimberlite. Class 2 and 3 pipes are characterized only by hypabyssal-and crater-facies kimberlite. In an increasing number of Class 1 pipes a new kimberlite facies, transitional-facies kimberlite, is being found. In most cases this facies forms a zone several metres wide at the interface between the hypabyssal- and diatreme-facies. The transitional-facies exhibits textural and mineralogical features, which are continuously gradational between the hypabyssal and the diatreme types. The textural gradations are from a coherent magmatic texture to one where the rock becomes increasingly magmaclastic and this is accompanied by concomitant mineralogical gradations involving the decline and eventual elimination of primary calcite at the expense of microlitic diopside. Both transitional- and diatreme-facies kimberlites are considered to have formed in situ from intruding hypabyssal kimberlite magma as a consequence of exsolution of initially CO2-rich volatiles from the volatile-rich kimberlite magma. The transitional-facies is initiated by volatile exsolution at depths of about 3 km below the original surface. With subsequent cracking through to the surface and resultant rapid decompression, the further catastrophic exsolution of volatiles and their expansion leads to the formation of the diatreme facies. Thus diatreme-facies kimberlite and Class 1 pipes are emplaced by essentially magmatic processes rather than by phreatomagmatism.

Distinctly different petrographic features characterize crater-facies kimberlite in each of the three pipe classes. In crater-facies kimberlites of Class 1 pipes, small pelletal magmaclasts and abundant microlitic diopside are characteristic. These features appear to reflect the derivation of the crater-facies material from the underlying diatreme zone. Most Class 2 pipes have shallow craters and the crater-facies rocks are predominantly pyroclastic kimberlites with diagnostic amoeboid lapilli, which are sometimes welded and have vesicles as well as glass. Possible kimberlite lava also occurs at two Class 2 pipes in N Angola. The possible presence of lava as well as the features of the pyroclastic kimberlite is indicative of hot kimberlite magma being able to rise to levels close to the surface to form Class 2 pipes. Most Class 3 kimberlites have very steep craters and crater-facies rocks are predominantly resedimented volcaniclastic kimberlites, in some cases characterized by the presence of abundant angular magmaclasts, which are petrographically very similar to typical hypabyssal-facies kimberlite found in Class 1 pipes. The differences in crater-facies kimberlite of the three classes of pipe reflect different formation and depositional processes as well as differences in kimberlite composition, specifically volatile composition. Kimberlite forming pipe Classes 1 and 3 is thought to be relatively water-rich and is emplaced by processes involving magmatic exsolution of volatiles. The kimberlite magma forming Class 2 pipes is CO2-rich, can rise to shallow levels, and can initiate phreatomagmatic emplacement processes.  相似文献   


10.
Based on a compilation of more than 100 kimberlite age determinations, four broad kimberlite emplacement patterns can be recognized in North America: (1) a northeast Eocambrian/Cambrian Labrador Sea province (Labrador, Québec), (2) an eastern Jurassic province (Ontario, Québec, New York, Pennsylvania), (3) a Cretaceous central corridor (Nunavut, Saskatchewan, central USA), and (4) a western mixed (Cambrian-Eocene) Type 3 kimberlite province (Alberta, Nunavut, Northwest Territories, Colorado/Wyoming). Ten new U–Pb perovskite/mantle zircon and Rb–Sr phlogopite age determinations are reported here for kimberlites from the Slave and Wyoming cratons of western North America. Within the Type 3 Slave craton, at least four kimberlite age domains exist: I-a southwestern Siluro-Ordovician domain (450 Ma), II-a SE Cambrian domain (540 Ma), III-a central Tertiary/Cretaceous domain (48–74 Ma) and IV-a northern mixed domain consisting of Jurassic and Permian kimberlite fields. New U–Pb perovskite results for the 614.5±2.1 Ma Chicken Park and 408.4±2.6 Ma Iron Mountain kimberlites in the State Line field in Colorado and Wyoming confirm the existence of at least two periods of pre-Mesozoic kimberlite magmatism in the Wyoming craton.

A compilation of robust kimberlite emplacement ages from North America, southern Africa and Russia indicates that a high proportion of known kimberlites are Cenozoic/Mesozoic. We conclude that a majority of these kimberlites were generated during enhanced mantle plume activity associated with the rifting and eventual breakup of the supercontinent Gondwanaland. Within this prolific period of kimberlite activity, there is a good correlation between North America and Yakutia for three distinct short-duration (10 my) periods of kimberlite magmatism at 48–60, 95–105 and 150–160 Ma. In contrast, Cenozoic/Mesozoic kimberlite magmatism in southern Africa is dominated by a continuum of activity between 70–95 and 105–120 Ma with additional less-prolific periods of magmatism in the Eocene (50–53 Ma), Jurassic (150–190) and Triassic (235 Ma). Several discrete episodes of pre-Mesozoic kimberlite magmatism variably occur in North America, southern Africa and Yakutia at 590–615, 520–540, 435–450, 400–410 and 345–360 Ma. One of the surprises in the timing of kimberlite magmatism worldwide is the common absence of activity between about 250 and 360 Ma; this period is even longer in southern Africa. This >110 my period of quiescence in kimberlite magmatism is likely linked to relative crustal and mantle stability during the lifetime of the supercontinent Gondwanaland.

Economic diamond deposits in kimberlite occur throughout the Phanerozoic from the Cambrian (Venetia, South Africa; Snap Lake and Kennady Lake, Canada) to the Tertiary (Mwadui, Tanzania; Ekati and Diavik in Lac de Gras, Canada). There are clearly some discrete periods when economic kimberlite-hosted diamond deposits formed globally. In contrast, the Devonian event, which is such an important source of diamonds in Yakutia, is notably absent in the kimberlite record from both southern Africa and North America.  相似文献   


11.
《International Geology Review》2012,54(10):1142-1152
On the basis of a study of a large quantity of deep-seated xenoliths from the kimberlites of the Malo-Botuobuya, Daldyn-Alakit, Upper Muna, and Lower Olenek regions of Yakutia, we have discussed the distribution of the ultrabasic rocks and eclogites in the kimberlite pipes both on the basis of petrographic composition, and also on depth facies, and a comparison is presented of the mineral composition of the deep-seated inclusions and of the amounts of defined types of xenoliths with the diamond capacity of the kimberlites. The conclusion has been reached that: 1. the amounts of inclusions of deep-seated rocks vary significantly not only in kimberlites from the various diamond fields, but also in the pipes of a single diamond-bearing region; 2. the composition of the ultrabasic rocks and eclogites of the diamond-bearing pipes is distinguished from that of the inclusions of the non-diamond kimberlites in these rocks; and 3. the diamond capacity of the kimberlites has been determined by the depth of occurrence of the magmatic focus and the velocity of uprise (intrusion) of the melt during the formation of the kimberlitic diatremes —Authors.  相似文献   

12.

Kimberlites are rare volatile-rich ultramafic magmas thought to erupt in short periods of time (<1 Myr) but there is a growing body of evidence that the emplacement history of a kimberlite can be significantly more protracted. In this study we report a detailed geochronology investigation of a single kimberlite pipe from the Renard cluster in north-central Québec. Ten new high precision ID-TIMS (isotope dilution – thermal ionization mass spectrometry) U-Pb groundmass perovskite dates from the main pipe-infilling kimberlites and several small hypabyssal kimberlites from the Renard 2 pipe indicate kimberlite magmatism lasted at least ~20 Myr. Two samples of the main pipe-infilling kimberlites yield identical weighted mean 206Pb/238U perovskite dates with a composite date of 643.8 ± 1.0 Myr, interpreted to be the best estimate for main pipe emplacement. In contrast, six hypabyssal kimberlite samples yielded a range of weighted mean 206Pb/238U perovskite dates between ~652-632 Myr. Multiple dates determined from these early-, syn- and late-stage small hypabyssal kimberlites in the Renard 2 pipe demonstrate this rock type (commonly used to date kimberlites) help to constrain the duration of kimberlite intrusion history within a pipe but do not necessarily reliably record the emplacement age of the main diatreme in the Renard cluster. Our results provide the first robust geochronological data on a single kimberlite that confirms the field relationships initially observed by Wagner (1914) and Clement (1982); the presence of antecedent (diatreme precursor) intrusions, contemporaneous (syn-diatreme) intrusions, and consequent (post-diatreme) cross-cutting intrusions. The results of this detailed U-Pb geochronology study indicate a single kimberlite pipe can record millions of years of magmatism, much longer than previously thought from the classical viewpoint of a rapid and short-duration emplacement history.

  相似文献   

13.
Kimberlitic zircons from 16 intrusions in Lesotho, the Republic of South Africa, and Tanzania have been investigated. The following characteristics distinguish the kimberlitic zircons from the zircons derived from most other sources: 1. Rounded to subrounded grains predominate; euhedral zircons are very rare. 2. Perfect parting in several directions, mainly (100) and (111). 3. Lattice distortions occur (decreasing molar volume). 4. High abundancy of fluid inclusions, occupying healed fractures. 5. Uranium contents less than 30 ppm U. Low contents of Th, Y, P, REE. 6. Whitish alteration rims composed of monoclinic and tetragonal zirconia in varying proportions are common. — The use of zircons in order to identify and trace kimberlite intrusives is discussed, as there may be a possible connection between some properties of the kimberlitic zircons and the diamond grade of their host rocks.  相似文献   

14.

Here we present new data from a systematic Sr, Nd, O, C isotope and geochemical study of kimberlites of Devonian age Mirny field that are located in the southernmost part of the Siberian diamondiferous province. Major and trace element compositions of the Mirny field kimberlites show a significant compositional variability both between pipes and within one diatreme. They are enriched in incompatible trace elements with La/Yb ratios in the range of (65–300). Initial Nd isotope ratios calculated back to the time of the Mirny field kimberlite emplacement (t = 360 ma) are depleted relative to the chondritic uniform reservoir (CHUR) model being 4 up to 6 ɛNd(t) units, suggesting an asthenospheric source for incompatible elements in kimberlites. Initial Sr isotope ratios are significantly variable, being in the range 0.70387–0.70845, indicating a complex source history and a strong influence of post-magmatic alteration. Four samples have almost identical initial Nd and Sr isotope compositions that are similar to the prevalent mantle (PREMA) reservoir. We propose that the source of the proto-kimberlite melt of the Mirny field kimberlites is the same as that for the majority of ocean island basalts (OIB). The source of the Mirny field kimberlites must possess three main features: It should be enriched with incompatible elements, be depleted in the major elements (Si, Al, Fe and Ti) and heavy rare earth elements (REE) and it should retain the asthenospheric Nd isotope composition. A two-stage model of kimberlite melt formation can fulfil those requirements. The intrusion of small bodies of this proto-kimberlite melt into lithospheric mantle forms a veined heterogeneously enriched source through fractional crystallization and metasomatism of adjacent peridotites. Re-melting of this source shortly after it was metasomatically enriched produced the kimberlite melt. The chemistry, mineralogy and diamond grade of each particular kimberlite are strongly dependent on the character of the heterogeneous source part from which they melted and ascended.

  相似文献   

15.

The Letšeng Diamond Mine comprises two ~91 Ma kimberlite pipes. An update of the geology is presented based on the 2012–2017 detailed investigation of open pit exposures and all available drillcores which included mapping, logging and petrography. Each of the steep-sided volcanic pipes comprises a number of phases of kimberlite with contrasting diamond contents which were formed by the emplacement of at least four batches of mantle-derived magma. The resulting range of textures includes resedimented volcaniclastic kimberlite (RVK), Kimberley-type pyroclastic kimberlite (KPK), coherent kimberlite (CK) and minor amounts of hypabyssal kimberlite (HK). The pipes are compared with KPK occurrences from southern Africa and worldwide. Many features of the Letšeng pipes are similar to KPK infilled pipes particularly those of the widespread Cretaceous kimberlite province of southern Africa. The differences displayed at Letšeng compared to other large KPK pipe infills described from around the world are attributed to the marginal or melnoitic nature of the magma and the upper diatreme to crater setting of the Letšeng pipes, where processes become extrusive. It is concluded that the pipes comprise a variant of Kimberley-type pyroclastic kimberlite emplacement. The classification of many of the Letšeng rocks as KPK is important for developing the internal geology of the pipes as well as for predicting the distribution of diamonds within the bodies.

  相似文献   

16.
The Cambrian Gahcho Kué kimberlite cluster includes four main pipes that have been emplaced into the Archaean basement granitoids of the Slave Craton. Each of the steep-sided pipes were formed by the intrusion of several distinct phases of kimberlite in which the textures vary from hypabyssal kimberlite (HK) to diatreme-facies tuffisitic kimberlite breccia (TKB). The TKB displays many diagnostic features including abundant unaltered country rock xenoliths, pelletal lapilli, serpentinised olivines and a matrix composed of microlitic phlogopite and serpentine without carbonate. The HK contains common fresh olivine set in a groundmass composed of monticellite, phlogopite, perovskite, serpentine and carbonate. A number of separate phases of kimberlite display a magmatic textural gradation from TKB to HK, which is characterised by a decrease in the proportion of pelletal lapilli and country rock xenoliths and an increase in groundmass crystallinity, proportion of fresh olivine and the degree of xenolith digestion.

The pipe shapes and infills of the Gahcho Kué kimberlites are similar to those of the classic South African pipes, particularly those of the Kimberley area. Similar intrusive magmatic emplacement processes are proposed in which the diatreme-zone results from the degassing, after breakthrough, of the intruding magma column. The transition zones represent ‘frozen’ degassing fronts. The style of emplacement of the Gahcho Kué kimberlites is very different from that of many other pipes in Canada such as at Lac de Gras, Fort à la Corne or Attawapiskat.  相似文献   


17.
In Venezuela, kimberlites have so far only been found in the Guaniamo region, where they occur as high diamond grade sheets in massive to steeply foliated Paleoproterozoic granitoid rocks. The emplacement age of the Guaniamo kimberlites is 712±6 Ma, i.e., Neoproterozoic. The Guaniamo kimberlites contain a high abundance of mantle minerals, with greater than 30% olivine macrocrysts. The principal kimberlite indicator minerals found are pyrope garnet and chromian spinel, with the overwhelming majority of the garnets being of the peridotite association. Chrome-diopside is rare, and picroilmenite is uncommon. Chemically, the Guaniamo kimberlites are characterized by high MgO contents, with low Al2O3 and TiO2 contents and higher than average FeO and K2O contents. These rocks have above average Ni, Cr, Co, Th, Nb, Ta, Sr and LREE concentrations and very low P, Y and, particularly, Zr and Hf contents. The Nb/Zr ratio is very distinctive and is similar to that of the Aries, Australia kimberlite. The Guaniamo kimberlites are similar in petrography, mineralogy and mantle mineral content to ilmenite-free Group 2 mica kimberlites of South Africa. The Nd-Sr isotopic characteristics of Guaniamo kimberlites are distinct from both kimberlite Group 1 and Group 2, being more similar to transitional type kimberlites, and in particular to diamondiferous kimberlites of the Arkhangelsk Diamond Province, Russia. The Guaniamo kimberlites form part of a compositional spectrum between other standard kimberlite reference groups. They formed from metasomatised subcontinental lithospheric mantle and it is likely that subduction of oceanic crust was the source of this metasomatised material, and also of the eclogitic component, which is dominant in Guaniamo diamonds.  相似文献   

18.
At present, 48 Late Cretaceous (ca. 70–88 Ma) kimberlitic pipes have been discovered in three separate areas of the northern Alberta: the Mountain Lake cluster, the Buffalo Head Hills field and the Birch Mountains field. The regions can be distinguished from one another by their non-archetypal kimberlite signature (Mountain Lake) or, in the case of kimberlite fields, primitive (Buffalo Head Hills) to evolved (Birch Mountains) magmatic signatures.

The dominant process of magmatic differentiation is crystal fractionation and accumulation of olivine, which acts as the main criteria to distinguish between primitive and evolved Group I-type kimberlite fields in the northern Alberta. This is important from the viewpoint of diamond exploration because the majority (about 80%) of the more primitive Buffalo Head Hills kimberlites are diamondiferous, whereas the more evolved Birch Mountains pipes are barren of diamonds for the most part. Petrographically, the Buffalo Head Hills samples are distinct from the Birch Mountains samples in that they contain less carbonate, have a smaller modal abundance of late-stage minerals such as phlogopite and ilmenite, and have a higher amount of fresh, coarse macrocrystal (>0.5 mm) olivine. Consequently, samples from the Buffalo Head Hills have the highest values of MgO, Cr and Ni, and have chemistries similar to those of primitive hypabyssal kimberlite in the Northwest Territories. Based on whole-rock isotopic data, the Buffalo Head Hills K6 kimberlite has 87Sr/86Sr and Nd values similar to those of South African Group I kimberlites, whereas the Birch Mountains Legend and Phoenix kimberlites have similar Nd values (between 0 and +1.9), but distinctly higher 87Sr/86Sr values (0.7051–0.7063).

The lack of whole-rock geochemical overlap between kimberlite and the freshest, least contaminated Mountain Lake South pipe rocks reflects significant mineralogical differences and Mountain Lake is similar geochemically to olivine alkali basalt and/or basanite. Intra-field geochemical variations are also evident. The K4 pipe (Buffalo Head Hills), and Xena and Kendu pipes (Birch Mountains) are characterized by anomalous concentrations of incompatible elements relative to other northern Alberta kimberlite pipes, including chondrite-normalized rare-earth element distribution patterns that are less fractionated than the other kimberlite samples from the Buffalo Head Hills and Birch Mountains. The Xena pipe has similar major element chemical signatures and high-Al clinopyroxene similar to, or trending towards, the Mountain Lake pipes. In addition, K4 and Kendu have higher 87Sr/86Sr and lower Nd than Bulk Earth and plot in the bottom right quadrant of the Nd–Sr diagram. We suggest, therefore, that the K4 and Kendu pipes contain a contribution from old, LREE-enriched (low Sm/Nd) lithosphere that is absent from the other kimberlites, are affected by crustal contamination, or both.

Based on xenocryst populations, the northern Alberta kimberlite province mantle is dominated by carbonate-saturated lherzolitic mantle. Higher levels of melt depletion characterize the Buffalo Head Hills mantle sample. Despite high diamondiferous to barren pipe ratios in the Buffalo Head Hills pipes, mineral indicators of high diamond potential, such as G10 garnet, diamond inclusion composition chrome spinels and high-sodium eclogitic garnet, are rare.  相似文献   


19.
Mica kimberlite and alkali picrite were identified in the northwestern Urik-Iya Graben of the eastern Sayan region. Typomorphism of Cr-diopside and high-Cr (up to 55.22 wt % Cr2O3) spinel from kimberlite of the Bushkanai dike indicate that the melt was generated in the mantle, composed of spinel peridotite. The high content of Cr-spinel (45–55 wt % Cr2O3) microlites in the groundmass of kimberlite and small amounts of ulvospinel and titanomagnetite in the absence of perovskite testifies to the diamond potential of this kimberlite. Picroilmenite, manganoilmenite with an anomalously high MnO content (11.37–17.78 wt %), and barium titanate with (wt %) 62.21 TiO2, 0.61 Cr2O3, 15.89 FeO, 4.05 MnO, 1.71 CaO, and 11.13 BaO close in composition to a new mineral species from the Murun pluton were identified in the groundmass for the first time. Kimberlite from the Bushkanai dike belongs to the Zolotitsa low-Ti geochemical type of kimberlites derived from the slightly enriched lithospheric mantle EM1. The distribution of trace elements, including REE, in picrite from the same dike corresponds to the slightly depleted asthenospheric mantle. Different mantle sources of kimberlite and picrite from the same dike indicate that these rocks are related to independent melts rather than to products of fractionation of a common parental alkaline ultramafic magma.  相似文献   

20.
Kimberlite-hosted diamond deposits of southern Africa: A review   总被引:4,自引:0,他引:4  
Following the discovery of diamonds in river deposits in central South Africa in the mid nineteenth century, it was at Kimberley where the volcanic origin of diamonds was first recognized. These volcanic rocks, that were named “kimberlite”, were to become the corner stone of the economic and industrial development of southern Africa. Following the discoveries at Kimberley, even more valuable deposits were discovered in South Africa and Botswana in particular, but also in Lesotho, Swaziland and Zimbabwe.A century of study of kimberlites, and the diamonds and other mantle-derived rocks they contain, has furthered the understanding of the processes that occurred within the sub-continental lithosphere and in particular the formation of diamonds. The formation of kimberlite-hosted diamond deposits is a long-lived and complex series of processes that first involved the growth of diamonds in the mantle, and later their removal and transport to the earth's surface by kimberlite magmas. Dating of inclusions in diamonds showed that diamond growth occurred several times over geological time. Many diamonds are of Archaean age and many of these are peridotitic in character, but suites of younger Proterozoic diamonds have also been recognized in various southern African mines. These younger ages correspond with ages of major tectono-thermal events that are recognized in crustal rocks of the sub-continent. Most of these diamonds had eclogitic, websteritic or lherzolitic protoliths.In southern Africa, kimberlite eruptions occurred as discrete events several times during the geological record, including the Early and Middle Proterozoic, the Cambrian, the Permian, the Jurassic and the Cretaceous. Apart from the Early Proterozoic (Kuruman) kimberlites, all of the other events have produced deposits that have been mined. It should however be noted that only about 1% of the kimberlites that have been discovered have been successfully exploited.In this paper, 34 kimberlite mines are reviewed with regard to their geology, mantle xenolith, xenocryst and diamond characteristics and production statistics. These mines vary greatly in size, grade and diamond-value, as well as in the proportions and types of mantle mineral suites that they contain. They include some of the world's richest mines, such as Jwaneng in Botswana, to mines that are both small and marginal, such as the Frank Smith Mine in South Africa. They include large diatremes such as Orapa and small dykes such as those mined at Bellsbank, Swartruggens and near Theunissen. These mines are all located on the Archaean Kalahari Craton, and it is apparent that the craton and its associated sub-continental lithosphere played an important role in providing the right environment for diamond growth and for the formation of the kimberlite magmas that were to transport them to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号