首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I explore the consequences of making the RR Lyrae and clump giant distance scales consistent in the solar neighbourhood, Galactic bulge and Large Magellanic Cloud (LMC). I employ two major assumptions: (i) that the absolute magnitude–metallicity, M V (RR)–[Fe/H], relation for RR Lyrae stars is universal, and (ii) that absolute I magnitudes of clump giants, M I (RC), in Baade's Window are known (e.g. can be inferred from the local Hipparcos -based calibration or theoretical modelling). A comparison between the solar neighbourhood and Baade's Window sets M V (RR) at [Fe/H]=−1.6 in the range (0.59±0.05, 0.70±0.05), somewhat brighter than the statistical parallax solution. More luminous RR Lyrae stars imply younger globular clusters, which would be in better agreement with the conclusions from the currently favoured stellar evolution and cosmological models. A comparison between Baade's Window and the LMC sets M LMC(RC) I in the range (−0.33±0.09,−0.53±0.09). The distance modulus to the LMC is μ LMC∈(18.24±0.08,18.44±0.07). Unlike M LMC(RC) I , this range in μ LMC does not depend on the adopted value of the dereddened LMC clump magnitude, I LMC(RC)0. I argue that the currently available information is insufficient to select the correct distance scale with high confidence.  相似文献   

2.
JHK s magnitudes corrected to mean intensity are estimated for Large Magellanic Cloud (LMC) type II Cepheids in the OGLE-III survey the third phase of the Optical Gravitational Lensing Experiment (OGLE). Period–luminosity (PL) relations are derived in JHK s as well as in a reddening-free VI parameter. Within the uncertainties, the BL Her stars  ( P < 4 d)  and the W Vir stars (   P = 4  to 20 d) are colinear in these PL relations. The slopes of the infrared relations agree with those found previously for type II Cepheids in globular clusters within the uncertainties. Using the pulsation parallaxes of V553 Cen and SW Tau, the data lead to an LMC modulus uncorrected for any metallicity effects of  18.46 ± 0.10  mag. The type II Cepheids in the second-parameter globular cluster, NGC 6441, show a PL( VI ) relation of the same slope as that in the LMC, and this leads to a cluster distance modulus of  15.46 ± 0.11  mag, confirming the hypothesis that the RR Lyrae variables in this cluster are overluminous for their metallicity. It is suggested that the Galactic variable κ Pavonis is a member of the peculiar W Vir class found by the OGLE-III group in the LMC. Low-resolution spectra of OGLE-III type II Cepheids with   P > 20  d (RV Tau stars) show that a high proportion have TiO bands; only one has been found showing C2. The LMC RV Tau stars, as a group, are not colinear with the shorter period type II Cepheids in the infrared PL relations in marked contrast to such stars in globular clusters. Other differences between LMC, globular cluster and Galactic field type II Cepheids are noted in period distribution and infrared colours.  相似文献   

3.
It is pointed out that a Cepheid period–luminosity relation with a zero-point from Hipparcos trigonometrical parallaxes and a consistent reddening system zero-point implies that some recent estimates of H 0 based on the Cepheid scale should be increased by ∼8 per cent. This result avoids using the distance to the Large Magellanic Cloud (LMC) as an intermediary point but is not significantly different from the result obtained by Feast & Catchpole via the LMC. A number of other issues are discussed, including metallicity effects on Cepheid distances and reddenings, and the age of metal-poor globular clusters.  相似文献   

4.
Hipparcos satellite parallaxes for 22 metal-poor field horizontal branch stars with V 0<9 are used to derive their absolute magnitude. The weighted mean value is MV =+0.69±0.10 for an average metallicity of [Fe/H]=−1.41; a somewhat brighter average magnitude of MV =+0.60±0.12 for an average metallicity of [Fe/H]=−1.51 is obtained by eliminating HD 17072, which might be on the first ascent of the giant branch rather than on the horizontal branch. The present values agree with the determinations based on proper motions and application of the Baade–Wesselink method to field RR Lyraes; they are 0.1–0.2 mag fainter than those based on calibration of cluster distances obtained by using local subdwarfs and on alternative distance calibrators for the Large Magellanic Cloud (LMC). The possibility that there is a real difference between the luminosity of the horizontal branch for clusters and the field is briefly commented on.  相似文献   

5.
We present CCD photometry of red supergiant long-period variables (LPVs) in the Per OB1 association, the Large Magellanic Cloud (LMC) and M33. The photometry was obtained in the Kron–Cousins R and I bandpasses and in a narrow bandpass ( λ 0=8250 Å, FWHM=300 Å) chosen to avoid TiO bands in the spectral energy distribution of the LPVs. Because the strength of the TiO bands varies greatly with temperature, which varies with the phase of an LPV, avoiding TiO reduces the amplitude of the photometric variations seen in LPVs. The result is a lower dispersion and a well defined period–luminosity (PL) relation.
For the LMC sample we find an rms dispersion of 0.27 mag in the narrow-band PL relation and slightly larger dispersions for the LPVs in Per OB1 and M33. This dispersion is comparable to that of the Cepheid PL relation at similar wavelengths. Adopting a distance modulus of 18.5±0.1 mag for the LMC, we obtain distance moduli of 11.68±0.15 mag for Per OB1 and 24.85±0.13 mag for M33. These distances agree well with those based on main sequence fitting for Per OB1 and the Cepheid distance for M33. Since LPVs are ∼ 5 times more common than Cepheids and have a well defined PL relation, LPVs provide a promising method for estimating Galactic and extra galactic distances.  相似文献   

6.
In this, the second in a series of three papers concerning the SuperCOSMOS Sky Survey, we describe the methods for image detection, parametrization, classification and photometry. We demonstrate the internal and external accuracy of our object parameters. Using examples from the first release of data, the South Galactic Cap survey, we show that our image detection completeness is close to 100 per cent to within ∼1.5 mag of the nominal plate limits. We show that for the B J survey data, the image classification is externally > 99 per cent reliable to B J∼19.5 . Internally, the image classification is reliable at a level of > 90 per cent to B J∼21 , R ∼19 . The photometric accuracy of our data is typically ∼0.3 mag with respect to external data for m >15 . Internally, the relative photometric accuracy in restricted position and magnitude ranges can be as accurate as ∼5 per cent for well-exposed stellar images. Colours are externally accurate to σ B − R , R − I ∼0.07 at B J∼16.5 , rising to σ B − R , R − I ∼0.16 at B J∼20 .  相似文献   

7.
Cepheid parallaxes and the Hubble constant   总被引:1,自引:0,他引:1  
Revised Hipparcos parallaxes for classical Cepheids are analysed together with 10 Hubble Space Telescope ( HST )-based parallaxes. In a reddening-free V , I relation we find that the coefficient of log  P is the same within the uncertainties in our Galaxy as in the Large Magellanic Cloud (LMC), contrary to some previous suggestions. Cepheids in the inner region of NGC 4258 with near solar metallicities confirm this result. We obtain a zero-point for the reddening-free relation and apply it to the Cepheids in galaxies used by Sandage et al. to calibrate the absolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubble constant. We revise their result for H 0 from 62 to 70 ± 5 km s−1 Mpc−1. The Freedman et al. value is revised from 72 to 76 ± 8 km s−1 Mpc−1. These results are insensitive to Cepheid metallicity corrections. The Cepheids in the inner region of NGC 4258 yield a modulus of 29.22 ± 0.03 (int.) compared with a maser-based modulus of 29.29 ± 0.15. Distance moduli for the LMC, uncorrected for any metallicity effects, are 18.52 ± 0.03 from a reddening-free relation in V , I ; 18.47 ± 0.03 from a period–luminosity relation at K ; 18.45 ± 0.04 from a period–luminosity–colour relation in J , K . Adopting a metallicity correction in V , I from Macri et al. leads to a true LMC modulus of 18.39 ± 0.05.  相似文献   

8.
There is strong evidence that the period–luminosity (PL) relation for the Large Magellanic Cloud (LMC) Cepheids shows a break at a period around 10 d. Because the LMC PL relation is extensively used in distance scale studies, the non-linearity of the LMC PL relation may affect the results based on this LMC calibrated relation. In this paper we show that this problem can be remedied by using the Wesenheit function in obtaining Cepheid distances. This is because the Wesenheit function is linear, although recent data suggest that the PL and the period–colour (PC) relations that make up the Wesenheit function are not. We test the linearity of the Wesenheit function and find strong evidence that the LMC Wesenheit function is indeed linear. This is because the non-linearity of the PL and PC relations cancel out when the Wesenheit function is constructed. We discuss this result in the context of distance scale applications. We also compare the distance moduli obtained from  μ0 V − R (μ V −μ I )  (equivalent to Wesenheit functions) constructed with the linear and the broken LMC PL relations, and we find that the typical difference in distance moduli is  ∼ ±0.03 mag  . Hence, the broken LMC PL relation does not seriously affect current distance scale applications. We also discuss the random error calculated with equation  μ0 V − R (μ V −μ I )  , and show that there is a correlation term that exists from the calculation of the random error. The calculated random error will be larger if this correlation term is ignored.  相似文献   

9.
We use the results from recent computations of updated non-linear convective pulsating models to constrain the distance modulus of Galactic globular clusters through the observed periods of first-overtone (RR c ) pulsators. The resulting relation between the mean absolute magnitude of RR Lyrae stars 〈 M V (RR)〉 and the heavy element content [Fe/H] appears well in the range of several previous empirical calibrations, but with a non-linear dependence on [Fe/H] so that the slope of the relation increases when moving towards larger metallicities. On this ground, our results suggest that metal-poor ([Fe/H]<−1.5) and metal-rich ([Fe/H]>−1.5) variables follow two different linear 〈 M V (RR)〉−[Fe/H] relations. Application to RR Lyrae stars in the metal-poor globular clusters of the Large Magellanic Cloud (LMC) provides an LMC distance modulus of the order of 18.6 mag, thus supporting the 'long' distance scale. The comparison with recent predictions based on updated stellar evolution theory is briefly presented and discussed.  相似文献   

10.
Our CCD photometry of Nova Scuti 2005 N.1 shows it to be a fast nova, characterized by   t 2= 15  and   t 3= 28d  , affected by an   E ( B − V ) ∼ 1.9  mag reddening, appearing at a position     (±0.04 arcsec)     (±0.09 arcsec, J2000) and peaking at   V ∼ 11.1  mag on ∼September 28.1 ut . Absolute spectrophotometry places it within the Fe  ii class. The profile of emission lines is characterized by a double peak with a velocity separation of 690 km s−1 and a width at half intensity of 1200 km s−1. The distance to the nova is  4 ± 1 kpc  , and its height above the Galactic plane is   z = 80 ± 20  pc. The highly crowded field affects a possible identification of the progenitor, whose pre-outburst magnitude should, however, have been  22 < V < 25  mag, thus below the limit of photographic surveys. A deep   B V R C I C  photometric sequence is provided to support continued observations of the advanced decline phases.  相似文献   

11.
A method based on Lucy's iterative algorithm is developed to invert the equation of stellar statistics for the Galactic bulge and is then applied to the K -band star counts from the Two-Micron Galactic Survey in a number of off-plane regions (10°>| b |>2°, | l |<15°). The top end of the K -band luminosity function is derived and the morphology of the stellar density function is fitted to triaxial ellipsoids, assuming a non-variable luminosity function within the bulge. The results, which have already been outlined by López-Corredoira et al., are shown in this paper with a full explanation of the steps of the inversion: the luminosity function shows a sharp decrease brighter than M K =−8.0  mag when compared with the disc population; the bulge fits triaxial ellipsoids with the major axis in the Galactic plane at an angle with the line of sight to the Galactic centre of 12° in the first quadrant; the axial ratios are 1:0.54:0.33, and the distance of the Sun from the centre of the triaxial ellipsoid is 7860 pc. The major–minor axial ratio of the ellipsoids is found not to be constant, the best fit to the gradient being K z =(8.4±1.7)×exp(− t /(2000±920) pc), where t is the distance along the major axis of the ellipsoid in parsecs. However, the interpretation of this is controversial. An eccentricity of the true density-ellipsoid gradient and a population gradient are two possible explanations. The best fit for the stellar density, for 1300 pc< t <3000 pc, is calculated for both cases, assuming an ellipsoidal distribution with constant axial ratios, and when K z is allowed to vary. From these, the total number of bulge stars is ∼3×1010 or ∼4×1010, respectively.  相似文献   

12.
The Hipparcos Catalogue contains members of nearby OB associations brighter than 12th magnitude in V . However, membership lists are complete only to magnitude V =7.3. In this paper we discuss whether proper motions listed in the 'Astrographic Catalogue+Tycho' reference catalogue (ACT) and the Tycho Reference Catalogue (TRC), which are complete to V ∼10.5 mag, can be used to find additional association members. Proper motions in the ACT/TRC have an average accuracy of ∼3 mas yr−1. We search for ACT/TRC stars which have proper motions consistent with the spatial velocity of the Hipparcos members of the nearby OB associations already identified by de Zeeuw et al. These stars are first selected using a convergent-point method, and then subjected to further constraints on the proper-motion distribution, magnitude and colour to narrow down the final number of candidate members. Monte Carlo simulations show that the proper-motion distribution, magnitude, and colour constraints remove ∼97 per cent of the field stars, while at the same time retain more than 90 per cent of the cluster stars.
The procedure has been applied to five nearby associations: the three subgroups of Sco OB2, plus Per OB3 and Cep OB6. In all cases except Cep OB6, we find evidence for new association members fainter than the completeness limit of the Hipparcos Catalogue. However, narrow-band photometry and/or radial velocities are needed to pinpoint the cluster members, and to study their physical characteristics.  相似文献   

13.
We have determined the absolute magnitude at maximum light of SN 1992A by using the turnover magnitude of the globular cluster luminosity function of its parent galaxy, NGC 1380. A recalibration of the peak of the turnover magnitude of the Milky Way clusters using the latest Hipparcos results has been made with an assessment of the complete random and systematic error budget. The following results emerge: a distance to NGC 1380 of 18.6 ± 1.4 Mpc, corresponding to ( m  −  M )  31.35 ± 0.16, and an absolute magnitude of SN 1992A at maximum of M B (max)  −18.79 ± 0.16. Taken at face value, SN 1992A seems to be more than half a magnitude fainter than the other SNe Ia for which accurate distances exist. We discuss the implications of this result and present possible explanations. We also discuss the Phillips relationship between rate of decline and the absolute magnitude at maximum, on the basis of nine SNe Ia, the individual distances of which have been obtained with Cepheids and the globular cluster luminosity function. The new calibration of this relationship, applied to the most distant SNe of the Calan–Tololo survey, yields H 0 = 62 ± 6 km s−1 Mpc−1.  相似文献   

14.
We present a measurement of the K -band luminosity function (LF) of field galaxies obtained from near-infrared imaging of a sample of 345 galaxies selected from the Stromlo-APM Redshift Survey. The LF is reasonably well fitted over the 10-mag range −26 M K −16 by a Schechter function with parameters α =−1.16±0.19, M *=−23.58±0.42 and φ *=0.012±0.008 Mpc−3, assuming a Hubble constant of H 0=100 km s−1 Mpc−1. We have also estimated the LF for two subsets of galaxies subdivided by the equivalent width of the H α emission line at EW(H α )=10 Å. There is no significant difference in LF shape between the two samples, although there is a hint (∼1 σ significance) that emission-line galaxies (ELGs) have M * roughly 1 mag fainter than non-ELGs. Contrary to the optical LF, there is no difference in faint-end slope α between the two samples.  相似文献   

15.
We use the Hubble Ultra Deep Field to study the galaxy luminosity–size  ( M – R e )  distribution. With a careful analysis of selection effects due to both detection completeness and measurement reliability, we identify bias-free regions in the   M – R e   plane for a series of volume-limited samples. By comparison to a nearby survey also having well-defined selection limits, namely the Millennium Galaxy Catalogue, we present clear evidence for evolution in surface brightness since   z ∼ 0.7  . Specifically, we demonstrate that the mean, rest-frame B -band  〈μ〉 e   for galaxies in a sample spanning 8 mag in luminosity between   M B =−22  and −14 mag increases by ∼1.0 mag arcsec−2 from   z ∼ 0.1  to 0.7. We also highlight the importance of considering surface brightness-dependent measurement biases in addition to incompleteness biases. In particular, the increasing, systematic underestimation of Kron fluxes towards low surface brightnesses may cause diffuse, yet luminous, systems to be mistaken for faint, compact objects.  相似文献   

16.
New photometry of RRab and RRc stars in ω Centauri is used to calibrate their absolute magnitudes MV as a function of (a) metallicity and (b) the Fourier parameters of light curves in the V band. The zero point of both calibrations relies on the distance modulus to the cluster derived earlier by the Cluster AgeS Experiment (CASE) project based on observations of the detached eclipsing binary OGLE GC17. For RRab variables, we obtained a relation of   MV = (0.26 ± 0.08)[ Fe/H ] + (0.91 ± 0.13)  . A dereddened distance modulus to the Large Magellanic Cloud (LMC) based on that formula is  μ0= 18.56 ± 0.14 mag  . The second calibration of MV , which is based on Fourier coefficients of decomposed light curves, results in the LMC distance of  μ0= 18.51 ± 0.07 mag  .  相似文献   

17.
The superb phase resolution and quality of the Optical Gravitational Lensing Experiment (OGLE) data on the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) Cepheids, together with existing data on Galactic Cepheids, are combined to study the period–colour (PC) and amplitude–colour (AC) relations as a function of pulsation phase. Our results confirm earlier work that the LMC PC relation (at mean light) is more consistent with two lines of differing slopes, separated at a period of 10 d. However, our multiphase PC relations reveal much new structure which can potentially increase our understanding of Cepheid variables. These multiphase PC relations provide insight into why the Galactic PC relation is linear but the LMC PC relation is non-linear. This is because the LMC PC relation is shallower for short  (log  P < 1)  and steeper for long  (log  P > 1)  period Cepheids than the corresponding Galactic PC relation. Both of the short- and long-period Cepheids in all three galaxies exhibit the steepest and shallowest slopes at phases around 0.75–0.85, respectively. A consequence is that the PC relation at phase ∼ 0.8 is highly non-linear. Further, the Galactic and LMC Cepheids with  log  P > 1  display a flat slope in the PC plane at phases close to the maximum light. When the LMC period–luminosity (PL) relation is studied as a function of phase, we confirm that it changes with the PC relation. The LMC PL relation in V and I band near the phase of 0.8 provides compelling evidence that this relation is also consistent with two lines of differing slopes joined at a period close to 10 d.  相似文献   

18.
We present a new analysis of the deepest pure-ultraviolet (UV) observations with the highest angular resolution ever performed. A set of 12 exposures with the Hubble Space Telescope ( HST ) WFPC2 and F160BW filter obtained in parallel observing mode, which cover ∼12 arcmin2 in the Large Magellanic Cloud (LMC), north of the bar and in the 'general field' region of the LMC, contain stars with far-UV monochromatic magnitudes as faint as 22 mag. The 198 detected UV sources represent an accumulated exposure of  ≥ 2 × 104 s  and reveal stars as faint as   m UV≃ 20 mag  . We combine these observations with deep UBVI charge-coupled device (CCD) imaging of the same region reaching as faint as   V ≃ 26 mag  , and reselect probable optical counterparts for the UV sources. After a two-stage search-and-analysis process, we detect robust counterparts for 129 stars. These are mostly upper main-sequence stars, from early B to early A spectral classes, with several F stars. We point out the lack of blue supergiants, which could have been easily detected in our survey. We measure a foreground extinction   E ( B − V ) ≃ 0.08 mag  by Galactic dust and a surface density of star formation rate twice the average Galactic value. These observations indicate that relatively recent star formation took place even off the bar of the LMC.  相似文献   

19.
Low-resolution spectra, taken at La Silla (ESO), identify the old nova RS Car (1895) as a ∼18 mag star located 7 arcsec southwest from the previous published position. This suggests a much brighter absolute magnitude of the old nova, M v ∼5.4, than previously suspected. The spectrum reveals a continuum energy distribution typical of optically thick accretion discs and quite a high excitation state of the gas. The possible detection of the AlO λ 4843 emission band is discussed.  相似文献   

20.
Parallaxes for 581 bright K giants have been determined using the Hipparcos satellite. We combine the trigonometric parallaxes with ground-based photometric data to determine the K giant absolute magnitudes. For all these giants, absolute magnitude estimates can also be made using the intermediate-band photometric David Dunlop Observatory (DDO) system. We compare the DDO absolute magnitudes with the very accurate Hipparcos absolute magnitudes, finding various systematic offsets in the DDO system. These systematic effects can be corrected, and we provide a new calibration of the DDO system allowing absolute magnitude to be determined with an accuracy of 0.35 mag in the range 2 >  M v  > −1. The new calibration performs well when tested on K giants with DDO photometry in a selection of low-reddening open clusters with well-measured distance moduli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号