首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Deep Crustal Electrical Signatures of Eastern Dharwar Craton, India   总被引:1,自引:0,他引:1  
Wide band magnetotelluric (MT) investigations were carried out along a profile from Kavali in the east to Anantapur towards west across the Eastern Ghat Granulite Terrain (EGGT), Eastern Dhanvar Craton (EDC) and a Proterozoic Cuddapah Basin. This 300 km long profile was covered with 20 stations at an interval of 12–18 km. The MT data is subjected to robust processing, decomposition and static shift correction before deriving a 2-D model. The model shows a resistive crust (−10,000–30,000 ohm-m) to a depth of 8–10 km towards west of the Cuddapah basin. The mid crust is less resistive (about 500 ohm-m) and the lower crust with a slight increase in resistivity (about 1,500 ohm-m) in the depth range of 20–22 km. The resistivity picture to the east of the Cuddapah basin also showed a different deep crustal structure. The resistivity of upper crust is about 5,000 ohm-m and about 200 ohm-m for mid and lower crust. The sediment resistivity of Cuddapah basin is of the order of 15–20 ohm-m. MT model has shown good correlation with results from other geophysical studies like deep seismic sounding (DSS), gravity and magnetics. The results indicate that the lower crustal layers are of intermediate type showing hydrous composition in Eastern Dhanvar Craton.  相似文献   

2.
A.P Singh  D.M Mall   《Tectonophysics》1998,290(3-4):285-297
In 1967 a major earthquake in the Koyna region attracted attention to the hitherto considered stable Indian shield. The region is covered by a thick pile of Deccan lava flows and characterized by several hidden tectonic features and complex geophysical signatures. Although deep seismic sounding studies have provided vital information regarding the crustal structure of the Koyna region, much remains unknown. The two available DSS profiles in the region have been combined along the trend of Bouguer gravity anomalies. Unified 2-D density modelling of the Koyna crust/mantle suggests a ca. 3 km thick and 40 km wide high velocity/high density anomalous layer at the base of the crust along the coastline. The thickness of this anomalous layer decreases gradually towards the east and ahead of the Koyna gravity low the layer ceases to be visible. Based on the seismic and gravity data interpretation in the geodynamical/rheological boundary conditions the anomalous layer is attributed to igneous crustal accretion at the base of the crust. It is suggested that the underplated layer is the imprint of the magmatism caused by the deep mantle plume when the northward migrating Indian plate passed over the Reunion hotspot.  相似文献   

3.
Magnetotelluric soundings (MTS) were conducted in a broad frequency range of 10 kHz to 0.001 Hz at a total of fifty-seven sounding sites of the profile spaced 5 km apart and intersecting the northern Sikhote-Alin across the strike. The analysis of the obtained magnetotelluric parameters has been made which shows three-dimensional geoelectric nonuniformities in the lower crust and upper mantle. The MTS curve interpretation was carried out in the framework of a three-dimensional model. As a result of the inverse problem solution, the geoelectric section has been constructed down to 150 km depth. The section distinguishes the crust with a resistivity higher than 1000 Ohm m and variable thickness between 30 and 40 km which is consistent with deep seismic sounding (DSS) data. The crust is subdivided into four blocks by deep faults, and each block is characterized by a set of parameters. The data support the existence of the Vostochny deep fault in the study area, whereas, on the contrary, the deep roots for the Central Sikhote-Alin fault have not been established. The upper mantle structure is nonuniform; three low-resistivity zones are identified that coincide with the boundaries of crustal blocks. In the revealed zones, an increase in the resistivity is noted from the continent to the Tatar Strait coast. A high-resistivity layer of 300–400 Ohm m was observed in the coastal area, which was steeply dipping from the crustal base down to 120 km depth and extended beneath the continent. Based on a set of geological and geophysical data, the ancient subducting plate is suggested in this area, and the evolutionary model of the region is proposed starting from the Late Cretaceous. The most probable mechanism of conductivity within the upper mantle is determined from petrological and petrophysical data. The low resistivity values are linked to dry peridotite mantle melting.  相似文献   

4.
The early Cretaceous thermal perturbation beneath the eastern continental margin of the Indian shield resulted in the eruption of the Rajmahal Traps. To understand the impact of the magmatic process that originated in the deep mantle on the lower crustal level of the eastern Indian shield and adjoining Bengal basin the conspicuous gravity anomalies observed over the region have been modelled integrating with available geophysical information. The 3-D gravity modelling has delineated 10–15 km thick high-density (ρ = 3.02 g/cm3) accreted igneous layer at the base of the crust beneath the Rajmahal Traps. Thickness of this layer varies from 16 km to the west of the Rajmahal towards north to about 12 km near Kharagpur towards south and about 18 km to the east of the Raniganj in the central part of the region. The greater thickness of the magmatic body beneath the central part of the region presents itself as the locus of the potential feeder channel for the Rajmahal Traps. It is suggested that the crustal accretion is the imprint of the mantle thermal perturbation, over which the eastern margin of the eastern Indian shield opened around 117 Ma ago. The nosing of the crustal accretion in the down south suggests the possible imprint of the subsequent magmatic intrusion along the plume path.  相似文献   

5.
Understanding deep continental structure and the seismotectonics of Deccan trap covered region has attained greater importance in recent years. For imaging the deep crustal structure, magnetotelluric (MT) investigations have been carried out along three long profiles viz. Guhagarh–Sangole (GS), Sangole–Partur (SP), Edlabad–Khandwa (EK) and one short profile along Nanasi–Mokhad (NM). The results of GS, SP and NM profiles show that the traps lie directly over high resistive basement with thin inter-trappean sediments, where large thickness of sediments, of the order of 1.5–2.0 km, has been delineated along EK profile across Narmada–Son–Lineament zone. The basement is intersected by faults/fractures, which are clearly delineated as narrow steep conducting features at a few locations. The conducting features delineated along SP profile are also seen from the results of aeromagnetic anomalies. Towards the southern part of the profile, these features are spatially correlated with Kurduwadi rift proposed earlier from gravity studies. Apart from the Kurduwadi rift extending to deep crustal levels, the present study indicates additional conductive features in the basement. The variation in the resistivity along GS profile can be attributed to crustal block structure in Koyna region. Similar block structure is also seen along NM profile.Deccan trap thickness, based on various geophysical methods, varies gradually from 1.8 km towards west to 0.3 km towards the east. While this is the general trend, a sharp variation in the thickness of trap is observed near Koyna. The resistivity of the trap is more (150–200 Ω m) towards the west as compared to the east (50–60 Ω m) indicating more compact or denser nature for the basalt towards west. The upper crust is highly resistive (5000–10,000 Ω m), and the lower crust is moderately resistive (500–1000 Ω m). In the present study, seismotectonics of the region is discussed based on the regional geoelectrical structure with lateral variation in the resistivity of the basement and presence of anomalous conductors in the crust.  相似文献   

6.
Results of geologic and geophysical modeling are presented, based on detailed seismic studies along two profiles—Pechenga-Kostomuksha and Lieksa-Lovisa. Density, geothermal, magnetic, and geoelectric models were obtained from the interpretations of various geophysical fields and correlated with the reference seismic sections. All the models were combined in order to compile a geologic-geophysical crustal section. The crustal thickness along the Pechenga-Kostomuksha-Lovisa geotraverse varies from 38 to 65 km. Two anomalous structures have been observed that are referred to as the Belomorian-Karelian and Ladoga-Bothnian zones. These zones are characterized by enhanced values of magnetic fields, presence of seismic foci and wave attenuation, and variation of the depth and magnitude of modern crustal movements. These zones are distinguished by the discontinuity M reconstruction, an increase in transitional layer thickness (to 25 km) at the base of the crust, and an increase in depth down to the discontinuity M (50 to 65 km). On average, the crust is thinner (40 km) in the ancient part of the shield than in the younger Svecofennian province (45 km). The velocity differences also are important: for example, the crust of the ancient shield is characterized by lower velocities and the transitional high-velocity layer is absent or thinner. The Karelian granite-greenstone area (a fragment of the Archean craton) has the most simple and balanced deep structure. Within the Karelian area, the layers are nearly horizontal and their thickness is rather constant. The northeastern part of a fragment of the Murmansk block has similar crustal characteristics within the Kola area, where it has undergone Early Proterozoic deformation. Geological and geophysical data for the Pechenga-Varzuga zone suggests that there was intracontinental rifting and a subsequent construction regime during the Svecofennian orogeny that involved a considerable part of the shield. The deep-crustal structure is more complicated to the south. An increase in volume of material with the properties of granulites and basic rocks is observed in the upper crust. The rocks form an inclined alternation of high-density and high-velocity plates and lenses. The packet of tectonic clustering of supracrustal rocks is most conspicuous in the Lapland-Kolvitsa granulite belt. The packet thickness does not exceed 13 km.  相似文献   

7.
Magnetotelluric investigations have been carried out in the Garhwal Himalayan corridor to delineate the electrical structure of the crust along a profile extending from Indo-Gangetic Plain to Higher Himalayan region in Uttarakhand, India. The profile passing through major Himalayan thrusts: Himalayan Frontal Thrust (HFF), Main Boundary Thrust (MBT) and Main Central Thrust (MCT), is nearly perpendicular to the regional geological strike. Data processing and impedance analysis indicate that out of 44 stations MT data recorded, only 27 stations data show in general, the validity of 2D assumption. The average geoelectric strike, N70°W, was estimated for the profile using tensor decomposition. 2D smooth geoelectrical model has been presented, which provides the electrical image of the shallow and deeper crustal structure. The major features of the model are (i) a low resistivity (<50Ωm), shallow feature interpreted as sediments of Siwalik and Indo-Gangetic Plain, (ii) highly resistive (> 1000Ωm) zone below the sediments at a depth of 6 km, interpreted as the top surface of the Indian plate, (iii) a low resistivity (< 10Ωm) below the depth of 6 km near MCT zone coincides with the intense micro-seismic activity in the region. The zone is interpreted as the partial melting or fluid phase at mid crustal depth. Sensitivity test indicates that the major features of the geoelectrical model are relevant and desired by the MT data.  相似文献   

8.
Magnetotelluric (MT) investigations were carried out along a profile in the greenschist–granulite transition zone within the south Indian shield region (SISR). The profile runs over a length of 110 km from Kuppam in the north to Bommidi in the south. It covers the transition zone with 12 MT stations using a wide-band (1 kHz–1 ks) data acquisition system. The Mettur shear zone (MTSZ) forms the NE extension of Moyar–Bhavani shear zone that traverses along the transition zone. The regional geoelectric strike direction of N40°E identified from the present study is consistent with the strike direction of the MTSZ in the center of the profile. The 2-D conductivity model derived from the data display distinct high electrical resistivity character (10,000 Ω m) below the Archaean Dharwar craton and less resistive (< 3000 Ω m) under the southern granulite terrain located south of the MTSZ. The MTSZ separating the two regions is characterized by steep anomalous high conductive feature at lower crustal depths. The deep seismic sounding (DSS) study carried out along the profile shows dipping signatures on either side of the shear zone. The variation of deep electrical resistivity together with the dipping signature of reflectors indicate two distinct terrains, namely, the Archaean Dharwar Craton in the north and the Proterozoic granulite terrain towards south. They got accreted along the MTSZ, which could represent a possible collision boundary.  相似文献   

9.
喜马拉雅东构造结岩石圈板片深俯冲的地球物理证据   总被引:4,自引:0,他引:4  
2009~2010年在南迦巴瓦地区进行了宽频带地震和大地电磁探测,分别处理获得东构造结及其邻区的地下300km以上的P波速度图像和两条大地电磁电阻率剖面。通过资料的对比和综合解释,发现电阻率分布与地震波速有较好的对应关系。研究结果表明:南迦巴瓦变质体的上地壳部分呈现明显高速高阻特征,为两侧的雅鲁藏布江缝合带所夹持;中下地壳具有不均匀性,且普遍呈低速低阻特征;印度板块在藏东南向欧亚板块的俯冲前缘越过嘉黎断裂,抵达班公湖-怒江缝合带;在拉萨地体的高速俯冲板片以下100km至200km深度范围内存在大规模的低速异常带,其上盘中下地壳也广泛发育低速高导体,指示青藏高原东南缘可能存在韧性易流动的物质向东、东南逃逸的通道,为印度板块在南迦巴瓦的深俯冲动力学模式提供了地球物理证据。  相似文献   

10.
A correlative study of two mutually independent geophysical properties like magnetic susceptibility variations and shear wave velocity structure of the crust has been carried out in a part of the Eastern Dharwar Craton of Indian peninsular shield. Analysis of the aeromagnetic anomaly field over an area of 35,000 km2 comprising the peninsular gneissic basement complex and a part of Cuddapah Basin has resulted in identification of two distinct magnetic horizons: one at a depth of 2 km and the other at a depth of 12 km. Correlation of these results with the inferences made by the inversion of Rayleigh wave phase velocity and other geophysical studies has confirmed the presence of a crustal layer at a depth of 12 km. This horizon has been inferred to be the depth to the lower boundary of the upper crust in this region.  相似文献   

11.
Lower crustal earthquake occurrence in the Central Indian Tectonic Zone(CITZ) of the Indian sub-continent was investigated using magnetotelluric(MT) data. MT models across the CITZ, including the new resistivity model across the 1938 Satpura lower crustal earthquake epicenter, show low resistive(80 ?m) mid-lower crust and infer small volume(1 vol%) of aqueous fluids existing in most part of lower crust. This in conjunction with xenoliths and other geophysical data supports a predominant brittle/semi-brittle lower crustal rheology. However, the local deep crustal zones with higher fluid content of 2.2%–6.5% which have been mapped imply high pore pressure conditions. The observation above and the significant strain rate in the region provide favorable conditions(strong/moderate rock strength, moderate temperature, high pore pressure and high strain rate) for brittle failure in the lower crust. It can be inferred that the fluid-rich pockets in the mid-lower crust might have catalyzed earthquake generation by acting as the source of local stress(fluid pressure), which together with the regional stress produced critical seismogenic stress conditions. Alternatively, fluids reduce the shear strength of the rocks to favor tectonic stress concentration that can be transferred to seismogenic faults to trigger earthquakes.  相似文献   

12.
The nature of crustal and lithospheric mantle evolution of the Archean shields as well as their subsequent deformation due to recent plate motions and sustained intraplate geodynamic activity, has been a subject of considerable interest. In view of this, about three decades ago, a new idea was put forward suggesting that out of all shield terrains, the Indian shield has an extremely thin lithosphere(w100 km,compared to 250e350 km, elsewhere), apart from being warm, non-rigid, sheared and deformed. As expected, it met with scepticism by heat flow and the emerging seismic tomographic study groups, who on the contrary suggested that the Indian shield has a cool crust, besides a coherent and thick lithosphere(as much as 300e400 km) like any other shield. However, recently obtained integrated geological and geophysical findings from deep scientific drillings in 1993 Killari(M w: 6.3) and 1967 Koyna(M w: 6.3)earthquake zones, as well as newly acquired geophysical data over other parts of Indian shield terrain,have provided a totally new insight to this debate. Beneath Killari, the basement was found consisting of high density, high velocity mid crustal amphibolite to granulite facies rocks due to exhumation of the deeper crustal layers and sustained granitic upper crustal erosion. Similar type of basement appears to be present in Koyna region too, which is characterized by considerably high upper crustal temperatures.Since, such type of crust is depleted in radiogenic elements, it resulted into lowering of heat flow at the surface, increase in heat flow contribution from the mantle, and upwarping of the lithosphereasthenosphere boundary. Consequently, the Indian shield lithosphere has become unusually thin and warm. This study highlights the need of an integrated geological, geochemical and geophysical approach in order to accurately determine deep crust-mantle thermal regime in continental areas.  相似文献   

13.
The Zeya-Bureya Basin is a part of the East Asian intracontinental riftogenic belt, which includes oil-and-gas bearing and Mesozoic-Cenozoic sedimentary basins perspective for oil and gas (Upper Zeya, Songliao, Liaohe, North Chinese). The basins are characterized by certain geophysical features: reduced thickness of the Earth’s crust and lithosphere, a higher thermal flow and a raised roof of the asthenosphere. The Zeya-Bureya Basin is composed of Mesozoic-Cenozoic sedimentary-volcanic units, with respect to which the deep structure data are absent. In 2010, geoelectric studies were carried out in this territory using the method of magnetotelluric sounding along the profile Blagoveshchensk-Birokan. These works yielded geoelectric sections down to 2 and 200 km depth. The sedimentary cover is characterized by electric resistivity of 20–50 Ohm m and by thickness of 1700 m. In the section, the Khingan-Olonoi volcanogenic trough is distinct for resistivity of 200–300 Ohm m at a background of 500–1000 Ohm m of the basement rocks. The Zeya-Bureya Basin, in terms of its geophysical characteristics, differs from oil-and-gas bearing basins of the riftogenic belt (thickness of the lithosphere is increased up to 120 km, thermal flow is low, 40–47 mW/m2). The structure of mantle underplating is explicitly seen in the section. The geophysical characteristics close to those of the Zeya-Bureya Depression are typical for gold-bearing structures of the Lower Amur ore district. Nevertheless, manifestations of oil-and-gas bearing potential in particular grabens are possible.  相似文献   

14.
The Cauvery–Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India–Sri Lanka–East Antarctica). In the present study, we carry out an integrated analysis of the potential field data across the basin to understand the crustal structure and the associated rift tectonics. The composite-magnetic anomaly map of the basin clearly shows the onshore-to-offshore structural continuity, and presence of several high-low trends related to either intrusive rocks or the faults. The Curie depth estimated from the spectral analysis of offshore magnetic anomaly data gave rise to 23 km in the offshore Cauvery–Palar basin. The 2D gravity and magnetic crustal models indicate several crustal blocks separated by major structures or faults, and the rift-related volcanic intrusive rocks that characterize the basin. The crustal models further reveal that the crust below southeast Indian shield margin is ~36 km thick and thins down to as much as 13–16 km in the Ocean Continent Transition (OCT) region and increases to around 19–21 km towards deep oceanic areas of the basin. The faulted Moho geometry with maximum stretching in the Cauvery basin indicates shearing or low angle rifting at the time of breakup between India–Sri Lanka and the East Antarctica. However, the additional stretching observed in the Cauvery basin region could be ascribed to the subsequent rifting of Sri Lanka from India. The abnormal thinning of crust at the OCT is interpreted as the probable zone of emplaced Proto-Oceanic Crust (POC) rocks during the breakup. The derived crustal structure along with other geophysical data further reiterates sheared nature of the southern part of the ECMI.  相似文献   

15.
The magnetotelluric (MT) profile traverses the southeastern edge of the Siberian craton and the adjacent Paleozoic Olkhon collision zone, both being within the influence area of the Baikal rifting. The processed MT data have been integrated with data on the crust structure and composition, as well as with magnetic, gravity, and seismic patterns. Large resistivity lows are interpreted with reference to new geothermal models of rifted crust in the Baikal region. The northwestern and southeastern flanks of the profile corresponding, respectively, to the craton and the collision zone differ markedly in the crust structure and composition and in the intensity of rifting-related processes, the difference showing up in the resistivity pattern. The high-grade metamorphic and granitic crust of the craton basement in the northwestern profile flank is highly resistive but it includes a conductor (less than 50 ohm · m) below 16–20 km and a nearly vertical conductive layer in the upper crust. The crust in the southeastern part, within the collision zone, is lithologically heterogeneous and heavily faulted. High resistivities are measured mainly in the upper crust composed of collisional plutonic and metamorphic complexes. Large and deep resistivity lows over the greatest part of the section are due to Cenozoic activity and rift-related transcrustal faults that vent mantle fluids constantly recharged from deeper mantle.  相似文献   

16.
The magnetotelluric (MT) method was used to image the crust and upper mantle beneath the Delamerian and Lachlan orogens in western Victoria, Australia. During the Cambrian time period, this region changed from being the extended passive margin of Proterozoic Australia into an Andean-style convergent margin that progressively began to accrete younger oceanic terranes. Several broadband MT transects, which were collected in stages along coincident deep (full crust imaging) seismic reflection lines, have now been combined to create a continuous 500 km east–west transect over the Delamerian–Lachlan transition region in the Stawell Zone. We present the electrical resistivity structure of the lithosphere using both 3D and 2D inversion methods. Additionally, 1D inversions of long-period AusLAMP (Australian Lithospheric Architecture Magnetotelluric Project) MT data on a 55 km regionally spaced grid were used to provide starting constraints for the 3D inversion of the 2D profile. The Delamerian to Lachlan Orogen transition region coincides with the Mortlake Discontinuity, which marks an isotopic discontinuity in Cenozoic basalts, with higher strontium isotope enrichment ratios in the Lachlan Orogen relative to the Delamerian Orogen. Phase tensor ellipses of the MT data reveal a distinct change in electrical resistivity structure near the location of the Mortlake Discontinuity, and results of 3D and 2D inversions along the MT profile image a more conductive lower crust and upper mantle beneath the Lachlan Orogen than the Delamerian Orogen. Increased conductivity is commonly ascribed to mantle enrichment and thus supports the notion that the isotope enrichment of the Cenozoic basalts at least partially reflects an enriched mantle source rather than crustal contamination. Fault slivers of the lower crust from the more conductive Lachlan region expose Cambrian boninites and island arc andesites indicative of subduction, a process that can enrich the mantle isotopically, and also electrically, by introducing carbon (graphite) and water (hydrogen).  相似文献   

17.
Magnetotelluric soundings have been carried out across the archaean terrain of Singhbhum granite batholith from Bangriposhi to Keonjhar for a distance of about 100 km. One-dimensional inversion models reveal that the depth of the moho varied between 23 and 40 km. The depth of the lithosphere asthenosphere boundary varied from 58 to 76 km. A zone of higher electrical conductivity detected at the base of the lower crust just above the moho is present along the entire profile. Signals within the range of 0.25 to 600 seconds, which crossed the coherency threshold of 0.8 to 0.9, could be stacked. Resistivity ranges of the crust mantle silicates below Singhbhum granite batholith vary over a wide range. Resistivity ranges are (i) 30,000–80,000 ohm for Singhbhum granite phase II, (ii) 2,000 to 9,000 ohm-m for Singhbhum granite phase III, (iii) 250 to 2,200 ohm-m for lower crust (iv) 3,000 to 47,000 ohm for the upper mantle and (v) 200 to 2300 ohm-m for the asthenosphere. Sharp break in electrical resistivity at the (i) upper crust-lower crust (ii) lower crust upper mantle and (iii) lithosphere-asthenosphere boundary is obtained along the entire profile. Signals could see up to 100 km below the granite batholith. Singhbhum granite phase II and III could be demarcated on the basis of resistivity. Low resistive zones in the lower crust and upper mantle might have formed due to (i) water (ii) combined effect of water and carbon and (iii) high temperature and partial melt.  相似文献   

18.
Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling–Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian–Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.  相似文献   

19.
The temperature field within the crust is closely related to tectonic history as well as many other geological processes inside the earth. Therefore, knowledge of the crustal thermal structure of a region is of great importance for its tectonophysical studies. This work deals with the two-dimensional thermal modelling to delineate the crustal thermal structure along a 230 km long Deep Seismic Sounding (DSS) profile in the north Cambay basin. In this work P-wave velocities obtained from the DSS studies have been converted into heat generation values for the computation of temperature distribution. The model result reveals the Curie isotherm at a depth of ≈22 km and Moho temperature at around 900‡C.  相似文献   

20.
川滇交界地区地壳结构及现代地壳活动模式   总被引:6,自引:0,他引:6  
根据地球物理异常及大地测深资料探讨川滇交界地区的地壳深部构造背影及地壳结构特征,并综合多方面的研究资料,以两板块碰撞、青藏高原窿升为构造背景,以川滇菱形断块运动为基本模式,全面系统地揭示川滇交界面区的现代地壳活动性。从地壳运动图象中可以清楚地看到断块差异性活动是现代地壳活动主要形式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号