首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
GRACE估算陆地水储量季节和年际变化   总被引:6,自引:2,他引:6       下载免费PDF全文
利用最新公布的GRACE GFZ RL04数据,分析了2003年1月~2007年12月全球27条流域和陆地水储量的季节性和年际变化.结果表明,相近流域季节性变化相位接近.2003年1月~2007年12月陆地水储量季节性变化为1572.4 km3,其中变化最大流域为亚马逊河,其次分别为鄂毕河、尼罗河和尼日尔河等流域.5年来 GRACE陆地水储量的年际变化为-75.4±40.3 km3/a,其中亚马逊河、勒拿河和马更些河等流域的年际变化呈现正增长,而刚果河、密西西比河、恒河、育空河和雅鲁藏布江等流域则相反.GRACE与GLDAS数据均表明2006年后陆地水储量年际变化存在明显增加.  相似文献   

3.
Soil moisture is a consideration for soil conservation, agricultural production and climate modelling. This article presents a simple method for estimating soil moisture storage under water stress and storage depletion conditions. The method is driven by the common agro‐hydrologic variables of precipitation (PPT), irrigation (IRR) and evapotranspiration (ET). The proposed method is successfully tested for the 152 000 km2 floodplain region of Hai River Basin using 48 consecutive months (2003–2006) of data. Soil moisture data from global land data assimilation system/Noah land surface model are validated with ground‐truth data from 102 soil moisture monitoring sites. The validated soil moisture is used in combination with in situ groundwater data to quantify total water storage change (TWSC) in the region. The estimated storage change is in turn compared with gravity recovery and climate experiment‐derived TWSC for the study area. The soil moisture and TWSC terms show favourable agreements, with discrepancies of < 10% on the average. While there is no consistent seasonal trend in soil moisture, TWSC shows a strong seasonality. It is low in spring and high in summer. This trend corresponds with the IRR–PPT season in the study area. Change in groundwater and total water storage indicates storage depletion in the basin. Storage depletion in the region is driven mainly by groundwater IRR and ET loss. Despite the low PPT and high ET, there is narrowing seasonal trend in soil moisture. This is achieved at the expense of groundwater storage. IRR pumping has induced extensive groundwater depletion in the basin. It is therefore vital to develop cultivation strategies that aim at limiting IRR pumping and ET loss. Water management practices that not only reduce waste but also ensure high productivity and ecological sustainability could also mitigate storage depletion in the region. These measures could reduce further not only the seasonal trend in soil moisture but also that in groundwater storage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.

在无真实观测值的情况下,本文利用广义三角帽方法评估了五种GRACE时变重力场模型(CSR、GFZ、GRGS、HUST发布的球谐系数解和JPL发布的Mascon解)反演中国大陆地区2003-2013年水储量变化的不确定性.研究结果表明,CSR、GFZ、JPL、HUST和GRGS反演月水储量变化不确定性的区域平均RMS分别为14.4 mm、26.3 mm、25.3 mm、26.6 mm和56.1 mm,其中GRGS的结果未恢复泄漏信号;在季和年尺度上,模型的不确定性均小于月尺度;扣除周期和趋势信号后,各模型反演结果更为一致.除长江流域外,CSR在13个流域的不确定性均小于其他模型,GRGS反演各流域水储量变化的不确定性通常较大,且可能高估了温带大陆性气候地区水储量的波动;CSR和JPL的不确定性受流域周边水文特征、气候类型、流域面积和形状的影响相对较小,不确定性变化范围分别为2.3~17.1 mm和5.6~22.5 mm,GFZ和HUST受影响较大,不确定性变化范围分别为5.5~35.1 mm和4.0~40.6 mm.本文的研究结果为GRACE产品不确定性评估提供了新的途径,为GRACE时变重力场模型的选取提供参考.

  相似文献   

5.
Growing demand on groundwater resources and the semi‐arid climate in the North China Plain (NCP) highlight the need for improved understanding of connections between regional climate change and groundwater recharge. Hydrologic time series of precipitation and groundwater levels were analyzed in three representative geographical zones throughout the NCP for the period of 1960–2008 using trend analysis and spectral analysis methods. A significant change point around 1975 is followed by a long‐term decline trend in precipitation time series, which coincides with the Pacific Decadal Oscillation positive phase. However, the magnitudes of groundwater level variability due to heavy pumping overwhelm the low‐frequency signal of groundwater levels. Nonlinear trends that related to long‐term climatic variability and anthropogenic activities are removed by using the Singular Spectrum Analysis method. Spectral analyses of the detrended residuals demonstrate significant short‐term oscillations at the frequencies of 2–7 years, which have strong correlations with the El Niño–Southern Oscillation modes. This study contributes to improved understanding of dynamic relationship between groundwater and climate variability modes in the NCP and demonstrates the importance of reliable detrending methods for groundwater levels that are affected greatly by pumping. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
The interaction between surface water and groundwater is an important aspect of hydrological processes. Despite its importance, groundwater is not well represented in many land surface models. In this study, a groundwater module with consideration of surface water and groundwater dynamic interactions is incorporated into the distributed biosphere hydrological (DBH) model in the upstream of the Yellow River basin, China. Two numerical experiments are conducted using the DBH model: one with groundwater module active, namely, DBH_GW and the other without, namely, DBH_NGW. Simulations by two experiments are compared with observed river discharge and terrestrial water storage (TWS) variation from the Gravity Recovery and Climate Experiment (GRACE). The results show that river discharge during the low flow season that is underestimated in the DBH_NGW has been improved by incorporating the groundwater scheme. As for the TWS, simulation in DBH_GW shows better agreement with GRACE data in terms of interannual and intraseasonal variations and annual changing trend. Furthermore, compared with DBH_GW, TWS simulated in DBH_NGW shows smaller decreases during autumn and smaller increases in spring. These results suggest that consideration of groundwater dynamics enables a more reasonable representation of TWS change by increasing TWS amplitudes and signals and as a consequence, improves river discharge simulation in the low flow seasons when groundwater is a major component in runoff. Additionally, incorporation of groundwater module also leads to wetter soil moisture and higher evapotranspiration, especially in the wet seasons.  相似文献   

7.
GRACE(Gravity Recovery And Climate Experiment)卫星计划为监测陆地水储量变化提供了有效技术手段.本文采用2003至2010年共计8年的GRACE月重力场模型反演中国西南区域陆地水储量变化,与GLDAS(Global Land Data Assimilation System)全球水文模型进行对比分析,其结果在时空分布上均符合较好,同时在2009年秋至2010年春该区域陆地水储量均呈现明显减少,与该时段云贵川三省的干旱事件相一致;比较分析了2009年秋至2010年春GRACE反演陆地水储量变化与TRMM(Tropical Rainfall Measuring Mission)合成数据计算的月降雨量的时空分布,两组结果均与西南干旱事件对应时段与区域十分吻合;对近8年的陆地水储量变化与月降雨量数据进行相关性分析,其结果表明陆地水储量变化与降雨量强相关,即降雨量是导致陆地水储量变化的主要因素;分析该区域地表温度变化,结果显示2009年9月至2010年3月地表温度均比历史同期高,地表温度的升高加剧了陆地水储量的减少.  相似文献   

8.
华北地区现今地壳运动动力学初步研究   总被引:10,自引:4,他引:6       下载免费PDF全文
本文基于GPS、断层形变等观测资料,实现华北地区构造运动有限元数值模拟,研究其现今地壳运动及形变动力学机理.结果表明,鄂尔多斯地块、华南地块、东北亚地块等周边构造块体的相对运动基本决定了华北地区现今表面运动及应力场格局.而另一方面,当考虑区域下部岩石层较快速的“拖动”作用时,表面速度场可以得到更好模拟,并同时形成共轭分布的剪应力梯度带.可见太平洋板块的俯冲作用、印-欧板块的碰撞挤压作用等可能造成岩石层深部、浅部运动差异,从而对研究区现今地壳运动产生深刻影响.此外,地形重力作用、断层分布及区域流变结构非均匀性也对现今地壳运动具有一定影响作用,但处于次要地位.  相似文献   

9.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.

华北平原作为我国重要的工农业基地和政治经济中心,面临着严重的水资源危机.因此,开展对华北平原地下水储量变化的监测工作具有重要现实意义与科学价值.本文基于GRACE重力卫星的空间约束方法,研究了华北平原地下水储量变化的时空分布规律,并与地面水井实测与地下水模型结果进行了综合比较和分析.结果表明:2002—2014年,华北平原地下水存在明显的长期亏损,GRACE估计的亏损速率为-7.4±0.9 km3·a-1,而地面水井资料估计的浅层地下水亏损速率为-1.2 km3·a-1.对比两者之间的差异可以发现,华北平原的地下水亏损以深层地下水为主.2002—2008年,GRACE估计的华北平原地下水亏损速率为-5.3±2.2 km3·a-1,这与华北平原两个地下水模型得到的平均亏损速率-5.4 km3·a-1十分吻合.通过华北平原区域地下水模型的独立验证,说明GRACE可以有效评估华北平原的地下水储量变化趋势.除了长期亏损的趋势项之外,华北平原地下水还存在明显的年际变化特征,并与该地区年降雨量变化特征一致.在降雨偏少的2002年、2005—2009年和2014年,华北平原地下水储量显著减少.在空间分布上,GRACE结果表明,华北平原的地下水储量减少主要发生在山前平原和中部平原区,这也与水井实测资料和区域地下水模型结果较为吻合.与GRACE和区域地下水模型相比,目前的全球水文模型仍无法准确估计华北平原地下水变化的空间分布和亏损速率.上述研究表明,GRACE提供了评估华北平原地下水储量变化的重要监测手段.

  相似文献   

11.
Rapidly depleting unconfined aquifers are the primary source of water for irrigation on the North China Plain. Yet, despite its critical importance, groundwater recharge to the Plain remains an enigma. We introduce a one‐dimensional soil‐water‐balance model to estimate precipitation‐ and irrigation‐generated areal recharge from commonly available crop and soil characteristics and climate data. To limit input data needs and to simplify calculations, the model assumes that water flows vertically downward under a unit gradient; infiltration and evapotranspiration are separate, sequential processes; evapotranspiration is allocated to evaporation and transpiration as a function of leaf‐area index and is limited by soil‐moisture content; and evaporation and transpiration are distributed through the soil profile as exponential functions of soil and root depth, respectively. For calibration, model‐calculated water contents of 11 soil‐depth intervals from 0 to 200 cm were compared with measured water contents of loam soil at four sites in Luancheng County, Hebei Province, over 3 years (1998–2001). Each 50‐m2 site was identically cropped with winter wheat and summer maize, but received a different irrigation treatment. Average root mean‐squared error between measured and model‐calculated water content of the top 180 cm was 4·2 cm, or 9·3% of average total water content. In addition, model‐calculated evapotranspiration compared well with that measured by a large‐scale lysimeter. To test the model, 12 additional sites were simulated successfully. Model results demonstrate that drainage from the soil profile is not a constant fraction of precipitation and irrigation inputs, but rather the fraction increases as the inputs increase. Because this drainage recharges the underlying aquifer, improving irrigation efficiency by reducing seepage will not reverse water‐table declines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
IntroductionEarthquakeisanoutcomeoftectonicactivity.Itisoneofthemainstudytargetsofseismologiststounderstandthedeepgeologicse...  相似文献   

13.
Monitoring of the fluctuations of groundwater storage is particularly important in arid and semi-arid regions where water scarcity brings about various challenges. Remote sensing data and techniques play a preponderant role in developing solutions to environmental problems. The launch of Gravity Recovery and Climate Experiment (GRACE) satellites has eased the remote monitoring and evaluation of groundwater resources with an unprecedented precision over large scales. Within the scope of the current study, the latest release (RL06) of GRACE mass concentrations (Mascons) from Jet Propulsion Laboratory (JPL) dataset as well as Global Land Data Assimilation System (GLDAS) models of Noah and Catchment Land Surface Model (CLSM) were used to provide Groundwater Storage Anomalies (GWSA) over Turkey. The temporal interactions of the estimated GWSA with the climatic variables of precipitation and temperature (derived from the reanalysis datasets of CHELSA [Climatologies at High resolution for the Earth's Land Surface Areas] and FLDAS [the Famine Early Warning Systems Network Land Data Assimilation System], respectively) were investigated statistically. The results suggest that there is a descending trend (from 2003 to 2016) for Terrestrial Water Storage Anomalies (TWSA) and GWSA over Turkey with a total loss of 11 and 6 cm of water, respectively. The statistical analysis results also indicate that the monthly variations of GWSA over Turkey are highly correlated with precipitation and temperature at 2-month lag. The analysis of the climatology (long-term) values of monthly GWSA, precipitation and temperature also revealed high agreement between the variables.  相似文献   

14.
In this study, the Precipitation‐Runoff Modelling System (PRMS) was used to simulate changes in surface‐water depression storage in the 1,126‐km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface‐water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface‐water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application‐ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface‐water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface‐water depression storage in the calibration procedure resulted in accurate changes in surface‐water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface‐storage to accurately parameterize surface‐water depression storage within the USGS NHM.  相似文献   

15.
华北地区震前断层异常活动方式   总被引:6,自引:0,他引:6  
车兆宏  范燕  马牧军 《地震》2004,24(2):109-118
分析了华北地区跨断层形变资料, 研究了唐山、 大同及张北地震前断层异常活动方式。 结果表明, 震前存在显著的断层异常活动; 断层异常活动方式具有构造控制特征,并与孕震机理有关; 地震孕育过程中有可能出现多次应力集中; 从断层不可逆异常活动地区的分布推测, 唐山地震缓解了延怀地区的地震危险性, 大同地震缓解了紫荆关-狼山断层一线的地震危险性; 张北地震断层异常活动呈松弛变化, 首都圈及邻近地区地震活动将趋于缓解。  相似文献   

16.
华北地区的背景地震活动及区域未来强震危险性   总被引:3,自引:0,他引:3  
王辉  曹建玲  申旭辉 《地震》2011,31(2):11-23
华北地区的历史强震活动非常频繁。 然而, 自1998年张北MS6.2地震以来, 该地区已经经历了10多年的地震平静期, 中强震平静现象比较突出。 本文利用1970年至2009年的小震资料, 对华北地区的背景地震活动进行分析, 给出了地震活动性参数b值、 最大震级以及强震复发间隔和强震年平均发生概率的空间分布。 b值空间分布表明, 山西构造带的运城地区, 郯庐断裂带的宿迁地区以及太行山块体内部的石家庄地区的b值较低。 地震活动性参数的综合空间图像表明华北地区的地震活动主要受区域深部动力因素所控制。  相似文献   

17.
The historical earthquake activity is intense in the North China region. However, no middle-sized earthquakes have occurred in the last decades in the region since the MS6.2 earthquake in the Zhangbei region in 1998. The quiescence of moderate and strong earthquakes is quite prominent in North China. In this paper, we use small earthquake records in 1970~2009 to study background seismic activity in the North China region. The spatial distributions of seismic parameters are presented, including b-value, the maximum magnitude and annual occurrence probability of earthquakes of M≥6.0. Our results show regions with low b-value that include the Yuncheng region in the Shanxi rift, the Suqian region located in the Tancheng-Lujiang fault zone and the Shijiazhuang region in the Taihangshan block. Our analysis on the synthetic spatial pattern of seismicity indicate that seismicity in the North China region is mainly affected by the regional dynamic factors of deep structures.  相似文献   

18.
The migration of strong earthquakes is an important research topic because the migration phenomena reflect partly the seismic mechanism and involve the prediction of tendency of seismic activity. Research on migration of strong earthquakes has mostly focused on finding the phenomena. Some attempts on getting regularity were comparatively subjective. This paper suggests that there should be indices of migration in earthquake dataset and the indexes should have statistical meaning if there is regularity in the migration of strong earthquakes. In this study, three derivative attributes of migration, i.e., migration orientation, migration distance and migration time interval, were statistically analyzed. Results in the North China region show that the migration of strong earthquakes has statistical meaning. There is a dominant migration orientation (W by S to E by N), a dominant distance (≤100km and on the confines of 300~700km), and a dominant time interval (≤1a and on the confines of 3~4a). The results also show that the migration will differ slightly with different magnitude range or earthquake activity phase.  相似文献   

19.
王霞  宋美琴  陈慧 《地震》2019,39(3):187-195
对华北地区1970—2017年出现的地震空区采用统一的识别标准进行全时空清理研究, 结果表明, 华北地区M≥5地震前出现空区的比例为36.7%, 且华北地区ML≥3.0地震空区的持续时间与主震震级存在一定的线性正相关关系, 但长轴尺度、 起始震级与主震震级的线性关系不明显; 报准率为0.76, 虚报率为0.24, 漏报率为0.60, R值为0.32, 高于具有97.5%置信水平的R0值, 表明地震空区这种预测方法在华北地区具有较好的预报效果。  相似文献   

20.
大华北地区二种不同空间分布类型的地震活动性分析   总被引:2,自引:0,他引:2  
对大华北地区地震资料相对可靠的20世纪以来第三、第四活动期的地震活动做了分析,发现前后二地震活动期有着不同的空间分布类型, 但彼此联系密切又相对完整。通过对比研究发现, 二个活动期地震活动的主体区域基本上互不重复, 地震活动有等间距发生的特征, 认为这一现象对于分析今后地震活动的地点具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号