首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
We study the statistical properties of the cosmological 21-cm signal from both the intergalactic medium (IGM) and minihaloes, using a reionization simulation that includes a self-consistent treatment of minihalo photoevaporation. We consider two models for minihalo formation and three typical thermal states of the IGM – heating purely by ionization, heating from both ionizing and Lyα photons and a maximal 'strong heating' model. We find that the signal from the IGM is almost always dominant over that from minihaloes. In our calculation, the differential brightness temperature,  δ T b,  of minihaloes is never larger than 2 mK. Although there are indeed some differences in the signals from the minihaloes and from the IGM, even with the planned generation of radio telescopes it will be unfeasible to detect them. However, minihaloes significantly affect the ionization state of the IGM and the corresponding 21-cm flux.  相似文献   

2.
Many models of early structure formation predict a period of heating immediately preceding reionization, when X-rays raise the gas temperature above that of the cosmic microwave background. These X-rays are often assumed to heat the intergalactic medium (IGM) uniformly, but in reality will heat the gas more strongly closer to the sources. We develop a framework for calculating fluctuations in the 21-cm brightness temperature that originate from this spatial variation in the heating rate. High-redshift sources are highly clustered, leading to significant gas temperature fluctuations (with fractional variations ∼40 per cent, peaking on   k ∼ 0.1 Mpc−1  scales). This induces a distinctive peak-trough structure in the angle-averaged 21-cm power spectrum, which may be accessible to the proposed Square Kilometre Array. This signal reaches the ∼10 mK level, and is stronger than that induced by Lyα flux fluctuations. As well as probing the thermal evolution of the IGM before reionization, this 21-cm signal contains information about the spectra of the first X-ray sources. Finally, we consider disentangling temperature, density and Lyα flux fluctuations as functions of redshift.  相似文献   

3.
Of the many probes of reionization, the 21-cm line and the cosmic microwave background (CMB) are among the most effective. We examine how the cross-correlation of the 21-cm brightness and the CMB Doppler fluctuations on large angular scales can be used to study this epoch. We employ a new model of the growth of large-scale fluctuations of the ionized fraction as reionization proceeds. We take into account the peculiar velocity field of baryons and show that its effect on the cross-correlation can be interpreted as a mixing of Fourier modes. We find that the cross-correlation signal is strongly peaked towards the end of reionization and that the sign of the correlation should be positive because of the inhomogeneity inherent to reionization. The signal peaks at degree scales (ℓ∼ 100) and comes almost entirely from large physical scales ( k ∼ 10−2 Mpc). Since many of the foregrounds and noise that plague low-frequency radio observations will not correlate with CMB measurements, the cross-correlation might appear to provide a robust diagnostic of the cosmological origin of the 21-cm radiation around the epoch of reionization. Unfortunately, we show that these signals are actually only weakly correlated and that cosmic variance dominates the error budget of any attempted detection. We conclude that the detection of a cross-correlation peak at degree-size angular scales is unlikely even with ideal experiments.  相似文献   

4.
We use three-dimensional smoothed particle hydrodynamics simulations together with a dynamical ray-tracing scheme to investigate the build-up of the first H  ii regions around massive Population III stars in minihaloes. We trace the highly anisotropic breakout of the ionizing radiation into the intergalactic medium, allowing us to predict the resulting recombination radiation with greatly increased realism. Our simulations, together with Press–Schechter type arguments, allow us to predict the Population III contribution to the radio background at  ∼100 MHz  via bremsstrahlung and 21-cm emission. We find a global bremsstrahlung signal of around  1 mK  , and a combined 21-cm signature which is an order of magnitude larger. Both might be within the reach of the planned Square Kilometer Array experiment, although detection of the free–free emission is only marginal. The imprint of the first stars on the cosmic radio background might provide us with one of the few diagnostics to test the otherwise elusive minihalo star formation site.  相似文献   

5.
Observations of fluctuations in the redshifted 21-cm radiation from neutral hydrogen (H  i ) are perceived to be an important future probe of the universe at high redshifts. Under the assumption that at redshifts   z ≤ 6  (post-reionization era) the H  i traces the underlying dark matter with a possible bias, we investigate the possibility of using observations of redshifted 21-cm radiation to detect the bispectrum arising from non-linear gravitational clustering and from non-linear bias. We find that the expected signal is ∼ 0.1  mJy at  325  MHz ( z = 3.4)  for the small baselines at the Giant Metrewave Radio Telescope, the strength being a few times larger at higher frequencies  (610 MHz, z = 1.3)  . Further, the magnitude of the signal from the bispectrum is predicted to be comparable to that from the power spectrum, allowing a detection of both in roughly the same integration time. The H  i signal is found to be uncorrelated beyond frequency separations of ∼1.3 MHz whereas the continuum sources of contamination are expected to be correlated across much larger frequencies. This signature can in principle be used to distinguish the H  i signal from the contamination. We also consider the possibility of using observations of the bispectrum to determine the linear and quadratic bias parameters of the H  i at high redshifts, this having possible implications for theories of galaxy formation.  相似文献   

6.
Redshifted 21-cm radiation originating from the cosmological distribution of neutral hydrogen (H  i ) appears as background radiation in low-frequency radio observations. The angular and frequency domain fluctuations in this radiation carry information concerning cosmological structure formation. We propose that correlations between visibilities measured at different baselines and frequencies in radio-interferometric observations be used to quantify the statistical properties of these fluctuations. This has an inherent advantage over other statistical estimators in that it deals directly with the visibilities which are the primary quantities measured in radio-interferometric observations. Also, the visibility correlation has a very simple relation with the power spectrum. We present estimates of the expected signal for nearly the entire post-recombination era, from the dark ages to the present epoch. The epoch of reionization, where H  i has a patchy distribution, has a distinct signature where the signal is determined by the size of the discrete ionized regions. The signal at other epochs, where H  i follows the dark matter, is determined largely by the power spectrum of dark matter fluctuations. The signal is strongest for baselines where the antenna separations are within a few hundred times the wavelength of observation, and an optimal strategy would preferentially sample these baselines. In the frequency domain, for most baselines the visibilities at two different frequencies are uncorrelated beyond  Δν∼ 1 MHz  , a signature which, in principle, would allow the H  i signal to be easily distinguished from the continuum sources of contamination.  相似文献   

7.
We study cosmic microwave background (CMB) secondary anisotropies produced by inhomogeneous reionization by means of cosmological simulations coupled with the radiative transfer code crash . The reionization history is consistent with the Wilkinson Microwave Anisotropy Probe Thomson optical depth determination. We find that the signal arising from this process dominates over the primary CMB component for   l ≳ 4000  and reaches a maximum amplitude of   l ( l + 1) Cl /2π≃ 1.6 × 10−13  on arcmin scales (i.e. l as large as several thousands). We then cross-correlate secondary CMB anisotropy maps with neutral hydrogen 21-cm line emission fluctuations obtained from the same simulations. The two signals are highly anticorrelated on angular scales corresponding to the typical size of H  ii regions (including overlapping) at the 21-cm map redshift. We show how the CMB/21-cm cross-correlation can be used: (i) to study the nature of the reionization sources; (ii) to reconstruct the cosmic reionization history; (iii) to infer the mean cosmic ionization level at any redshift. We discuss the feasibility of the proposed experiment with forthcoming facilities.  相似文献   

8.
Spatial dependence in the statistics of redshifted 21-cm fluctuations promises to provide the most powerful probe of the reionization epoch. In this paper we consider the second and third moments of the redshifted 21-cm intensity distribution using a simple model that accounts for galaxy bias during the reionization process. We demonstrate that skewness in redshifted 21-cm maps should be substantial throughout the reionization epoch and on all angular scales, owing to the effects of galaxy bias which leads to early reionization in overdense regions of the intergalactic medium (IGM). The variance (or power spectrum) of 21-cm fluctuations will exhibit a minimum in redshift part way through the reionization process, when the global ionization fraction is around 50 per cent. This minimum is generic, and is due to the transition from 21-cm intensity being dominated by overdense to underdense regions as reionization progresses. We show that the details of the reionization history, including the presence of radiative feedback are encoded in the evolution of the autocorrelation and skewness functions with redshift and mean IGM neutral fraction. The amplitudes of fluctuations are particularly sensitive to the masses of ionizing sources, and vary by an order of magnitude for astrophysically plausible models. We discuss the detection of skewness by first-generation instruments, and conclude that the Mileura Wide-field Array–Low-Frequency Demonstrator will have sufficient sensitivity to detect skewness on a range of angular scales at redshifts near the end of reionization, while a subsequent instrument of 10 times the collecting area could map out the evolution of skewness in detail. The observation of a minimum in variance during the reionization history, and the detection of skewness would both provide important confirmation of the cosmological origin of redshifted 21-cm intensity fluctuations.  相似文献   

9.
Observations of the redshifted 21-cm HI fluctuations promise to be an important probe of the post-reionization era (z≤ 6). In this paper we calculate the expected signal and foregrounds for the upgraded Ooty Radio Telescope (ORT) which operates at frequency ν o = 326.5 MHz which corresponds to redshift z = 3.35. Assuming that the visibilities contain only the HI signal and system noise, we show that a 3 σ detection of the HI signal (~1 mK) is possible at angular scales 11 to 3° with ≈1000 h of observation. Foreground removal is one of the major challenges for a statistical detection of the redshifted 21 cm HI signal. We assess the contribution of different foregrounds and find that the 326.5 MHz sky is dominated by the extragalactic point sources at the angular scales of our interest. The expected total foregrounds are 104?105 times higher than the HI signal.  相似文献   

10.
11.
Gases locked in hydrates or trapped beneath a gas hydrate cap within the earth are potential contributors to the greenhouse effect, and therefore both thermal conditions of and occurrences of the methane hydrates should be considered in the study of past climate change and of future global warming. The decomposition of methane hydrates triggered by an increase in near surface temperatures and the subsequent upward migration of released gases is occurring at present in the Beauffort-Mackenzie area of northern Canada. In addition to surface warming, the warming effect of the upward flow of the deep fluids, recharged in high elevation areas bordering the Alaska and Yukon coastal plain, may also be a factor in the release of methane directly from deeper buried hydrates in the fluid discharge zones. Any assessment of the total methane contribution to the atmosphere and the rate of the release requires a knowledge of the distribution, spatially and with depth, the temperature and composition of the gas hydrates. In this study the zones of methane hydrate stability are predicted by a thermal method and compared with the distribution of hydrates detected on well logs. An extensive hydrate prone layer extending to as deep as 1400±200 m over an area of 50,000 km2 is predicted by the thermal data and hydrate stability field. Comparison of the predicted maximum depths of methane hydrate stability with the maximum depths of hydrate occurrences in 52 wells shows general agreement in the areas of thick offshore and onshore permafrost. Differences in several areas of up to 400 m between the thermally predicted hydrate base and the deepest detected hydrates (detected hydrates are deeper than the predicted ones) can be explained by changes in gas composition. Otherwise low near-surface thermal gradients of approximately 15 mK/m to 20 mK/m (in comparison with observed deep thermal gradients of 25–40 mK/m) would be needed to explain the existence of deep hydrates in the area of the southern Mackenzie Delta trough and offshore north of 71° N latitude. Unfortunately there is no reliable industrial temperature observation from wells to support the latter. Such regional studies of the distribution of gas hydrates, including the stability of those deposits, form a crucial component of an assessment of the influence of gas hydrate formation and decomposition on the proportion of methane present in the earth's atmosphere. Current estimates suggest that between 10.E18 and 10.E21 tonnes of methane may be presently locked in gas hydrate deposits. To fully assess the total amount and the potential contribution to global warming, similar regional assessments are needed for each of the major areas of occurrence, especially in the circumpolar regions which are subject to the greatest increase in temperature conditions.  相似文献   

12.
Detecting redshifted 21-cm emission from neutral hydrogen in the early Universe promises to give direct constraints on the epoch of reionization (EoR). It will, though, be very challenging to extract the cosmological signal (CS) from foregrounds and noise which are orders of magnitude larger. Fortunately, the signal has some characteristics which differentiate it from the foregrounds and noise, and we suggest that using the correct statistics may tease out signatures of reionization. We generate mock data cubes simulating the output of the Low Frequency Array (LOFAR) EoR experiment. These cubes combine realistic models for Galactic and extragalactic foregrounds and the noise with three different simulations of the CS. We fit out the foregrounds, which are smooth in the frequency direction, to produce residual images in each frequency band. We denoise these images and study the skewness of the one-point distribution in the images as a function of frequency. We find that, under sufficiently optimistic assumptions, we can recover the main features of the redshift evolution of the skewness in the 21-cm signal. We argue that some of these features – such as a dip at the onset of reionization, followed by a rise towards its later stages – may be generic, and give us a promising route to a statistical detection of reionization.  相似文献   

13.
A simple analytical model is used to calculate the X-ray heating of the intergalactic medium (IGM) for a range of black hole masses. This process is efficient enough to decouple the spin temperature of the IGM from the cosmic microwave background (CMB) temperature and produce a differential brightness temperature of the order of ∼ 5–20 mK out to distances as large as a few comoving Mpc, depending on the redshift, black hole mass and lifetime. We explore the influence of two types of black holes, those with and without ionizing ultraviolet radiation. The results of the simple analytical model are compared to those of a full spherically symmetric radiative transfer code. Two simple scenarios are proposed for the formation and evolution of black hole mass density in the Universe. The first considers an intermediate mass black hole that form as an end-product of pop III stars, whereas the second considers supermassive black holes that form directly through the collapse of massive haloes with low spin parameter. These scenarios are shown not to violate any of the observational constraints, yet produce enough X-ray photons to decouple the spin temperature from that of the CMB. This is an important issue for future high-redshift 21-cm observations.  相似文献   

14.
正宇宙再电离是宇宙从黑暗时期到完全电离过渡的重要阶段,也是宇宙学研究的一个非常重要的课题,但是目前为止人们对宇宙再电离仍然缺乏足够精确的观测,其中最大的问题是微弱的有效信号往往淹没于巨大的前景噪声中因而很难提取出来.本工作中研究了宇宙再电离时代的动力学苏尼阿耶夫-泽尔多维奇效应(Kinetic Sunyaev-Zel’dovich, k SZ)、X射线背景以及与中性氢的21 cm信息的互相  相似文献   

15.
The line-of-sight direction in the redshifted 21-cm signal coming from the cosmic dawn and the epoch of reionization is quite unique in many ways compared to any other cosmological signal. Different unique effects, such as the evolution history of the signal, non-linear peculiar velocities of the matter etc. will imprint their signature along the line-of-sight axis of the observed signal. One of the major goals of the future SKA-LOW radio interferometer is to observe the cosmic dawn and the epoch of reionization through this 21-cm signal. It is thus important to understand how these various effects affect the signal for its actual detection and proper interpretation. For more than one and half decades, various groups in India have been actively trying to understand and quantify the different line-of-sight effects that are present in this signal through analytical models and simulations. In many ways the importance of this sub-field under 21-cm cosmology have been identified, highlighted and pushed forward by the Indian community. In this article, we briefly describe their contribution and implication of these effects in the context of the future surveys of the cosmic dawn and the epoch of reionization that will be conducted by the SKA-LOW.  相似文献   

16.
The 21 centimeter (21 cm) line emission from neutral hydrogen in the inter-galactic medium (IGM) at high redshifts is strongly contaminated by foreground sources such as the diffuse Galactic synchrotron emission and free-free emission from the Galaxy, as well as emission from extragalactic radio sources, thus making its observation very complicated. However, the 21 cm signal can be recovered through its structure in fre-quency space, as the power spectrum of the foreground contamination is expected to be smooth over a wide band in frequency space while the 21 cm fluctuations vary signifi-cantly. We use a simple polynomial fitting to reconstruct the 21 cm signal around four frequencies 50, 100, 150 and 200 MHz with an especially small channel width of 20 kHz. Our calculations show that this multifrequency fitting approach can effectively recover the 21 cm signal in the frequency range 100 ~ 200 MHz. However, this method doesn't work well around 50 MHz because of the low intensity of the 21 cm signal at this frequency. We also show that the fluctuation of detector noise can be suppressed to a very low level by taking long integration times, which means that we can reach a sensitivity of ≈ 10 mK at 150 MHz with 40 antennas in 120 hours of observations.  相似文献   

17.
Studying the cosmic dawn and the epoch of reionization through the redshifted 21-cm line are among the major science goals of the SKA1. Their significance lies in the fact that they are closely related to the very first stars in the Universe. Interpreting the upcoming data would require detailed modelling of the relevant physical processes. In this article, we focus on the theoretical models of reionization that have been worked out by various groups working in India with the upcoming SKA in mind. These models include purely analytical and semi-numerical calculations as well as fully numerical radiative transfer simulations. The predictions of the 21-cm signal from these models would be useful in constraining the properties of the early galaxies using the SKA data.  相似文献   

18.
In this paper we present an interference detection toolbox consisting of a high dynamic range Digital Fast‐Fourier‐Transform spectrometer (DFFT, based on FPGA‐technology) and data analysis software for automated radio frequency interference (RFI) detection. The DFFT spectrometer allows high speed data storage of spectra on time scales of less than a second. The high dynamic range of the device assures constant calibration even during extremely powerful RFI events. The software uses an algorithm which performs a two‐dimensional baseline fit in the time‐frequency domain, searching automatically for RFI signals superposed on the spectral data. We demonstrate, that the software operates successfully on computer‐generated RFI data as well as on real DFFT data recorded at the Effelsberg 100‐m telescope. At 21‐cm wavelength RFI signals can be identified down to the 4σ rms level. A statistical analysis of all RFI events detected in our observational data revealed that: (1) mean signal strength is comparable to the astronomical line emission of the Milky Way, (2) interferences are polarised, (3) electronic devices in the neighbourhood of the telescope contribute significantly to the RFI radiation. We also show that the radiometer equation is no longer fulfilled in presence of RFI signals. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The brightness temperature fluctuations in the 21-cm background related to the neutral hydrogen distribution provide a probe of the physics related to the era of reionization, when the intergalactic medium changed from being completely neutral to partially ionized. We formulate statistics of 21-cm brightness temperature anisotropies in terms of the angular power spectrum, the bispectrum, and the trispectrum. Using the trispectrum, we estimate the covariance related to the power spectrum measurements and show that correlations resulting from non-Gaussianities are below a per cent, at most. While all-sky observations of the 21-cm background at arcminute-scale resolution can be used to measure the bispectrum with a cumulative signal-to-noise ratio of the order of a few tens, in the presence of foregrounds and instrumental noise related to first-generation interferometers, the measurement is unlikely to be feasible. For most purposes, non-Gaussianities in 21-cm fluctuations can be ignored and the distribution can be described with Gaussian statistics. Because 21-cm fluctuations are significantly contaminated by foregrounds, such as galactic synchrotron or low-frequency radio point sources, the lack of significant non-Gaussianity in the signal suggests that any significant detection of non-Gaussianity could be the result of foregrounds. Similarly, in addition to the frequency information that is now proposed to separate 21-cm fluctuations from foregrounds, if the non-Gaussian structure of foregrounds is known a priori, this additional information could potentially be used to reduce the confusion further.  相似文献   

20.
We report some of the results of the search for narrow-band spatial and spectral fluctuations of cosmic microwave background at the wavelength of 6.2 cmperformed with the RATAN-600 radio telescope in 2001–2006 in two 35′ × 7′ strips on the sky in the vicinity of the North Celestial Pole. We find the spectra of spatial fluctuations in the 12 MHz radio-frequency band and in the interval of spatial periods from 4′ to 16′ to exhibit power-law rises with exponents reaching ?2.0±0.5, with a periodicity of 2–3 MHz. We also find two narrow-band (in terms of angular frequency) features at 4870.4 and 4871.5 MHz with the corresponding fluctuation amplitudes of 5±0.5 mK in terms of antenna temperature in the vicinity of angular periods of about 5′ with the frequency bandwidths of about 600 kHz. Standard tests performed using the spectra of the half-sum and half-difference of two groups of observations randomly drawn from a total sample of 23 records of the March 2002 observing set confirm the reality of the features of the angular spectrumof fluctuations mentioned above and so does the comparison with the spectra of cold matched load connected to the receiver input instead of the antenna. However, the nature of the features found remains unclear. Our attempt to link this radiation to rotational transitions 2Π1/2, J = 5/2 of the CH molecule, which has one of the components of its multiplet located inside the frequency interval of interest considered failed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号