首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use proper motions and parallaxes from the new reduction of Hipparcos data and Geneva–Copenhagen radial velocities for a complete sample of  ∼15 000  main-sequence and subgiant stars, and new Padova isochrones to constrain the kinematics and star formation history of the solar neighbourhood. We rederive the solar motion and the structure of the local velocity ellipsoids. When the principal velocity dispersions are assumed to increase with time as   t β  , the index β is larger for  σ W W ≈ 0.45  ) than for  σ U U ≈ 0.31)  . For the three-dimensional velocity dispersion, we obtain  β= 0.35  . We exclude saturation of disc heating after  ∼3 Gyr  as proposed by Quillen & Garnett. Saturation after  ≳4 Gyr  combined with an abrupt increase in velocity dispersion for the oldest stars cannot be excluded. For all our models, the star formation rate (SFR) is declining, being a factor of 2–7 lower now than it was at the beginning. Models in which the SFR declines exponentially favour very high disc ages between 11.5 and 13 Gyr and exclude ages below  ∼10.5 Gyr  as they yield worse fits to the number density and velocity dispersion of red stars. Models in which the SFR is the sum of two declining exponentials representing the thin and thick discs favour ages between 10.5 and 12 Gyr with a lower limit of  ∼10.0 Gyr  . Although in our models the SFR peaked surprisingly early, the mean formation time of solar-neighbourhood stars is later than in ab initio models of galaxy formation, probably on account of weaknesses in such models.  相似文献   

2.
A detailed study of the star formation history of the Sagittarius dwarf spheroidal galaxy is performed through the analysis of data from the Sagittarius Dwarf Galaxy Survey (SDGS). Accurate statistical decontamination of the SDGS colour–magnitude diagrams (CMDs) allows us to obtain many useful constraints on the age and metal content of the Sgr stellar populations in three different regions of the galaxy.
A coarse metallicity distribution of Sgr stars is derived, ranging from [Fe/H]∼−2.0 to [Fe/H]∼−0.7, the upper limit being somewhat higher in the central region of the galaxy. A qualitative global fit to all the observed CMD features is attempted, and a general scheme for the star formation history of the Sgr dSph is derived. According to this scheme, star formation began at a very early time from a low metal content interstellar medium and lasted for several  Gyr, coupled with progressive chemical enrichment. The star formation rate (SFR) had a peak from 8 to 10  Gyr ago, when the mean metallicity was in the range −1.3≤[Fe/H]≤−0.7. After that maximum, the SFR rapidly decreased and a very low rate of star formation took place until ∼1–0.5  Gyr ago.  相似文献   

3.
Using galaxy samples drawn from the Sloan Digital Sky Survey and the DEEP2 Galaxy Redshift Survey, we study the relationship between star formation and environment at   z ∼ 0.1  and 1. We estimate the total star formation rate (SFR) and specific star formation rate (sSFR) for each galaxy according to the measured [O  ii ]λ 3727 Å nebular line luminosity, corrected using empirical calibrations to match more robust SFR indicators. Echoing previous results, we find that in the local Universe star formation depends on environment such that galaxies in regions of higher overdensity, on average, have lower SFRs and longer star formation time-scales than their counterparts in lower density regions. At   z ∼ 1  , we show that the relationship between sSFR and environment mirrors that found locally. However, we discover that the relationship between total SFR and overdensity at   z ∼ 1  is inverted relative to the local relation. This observed evolution in the SFR–density relation is driven, in part, by a population of bright, blue galaxies in dense environments at   z ∼ 1  . This population, which lacks a counterpart at   z ∼ 0  , is thought to evolve into members of the red sequence from   z ∼ 1  to ∼0. Finally, we conclude that environment does not play a dominant role in the cosmic star formation history at   z < 1  : the dependence of the mean galaxy SFR on local galaxy density at constant redshift is small compared to the decline in the global SFR space density over the last 7 Gyr.  相似文献   

4.
Observations in the submillimetre (submm) waveband have recently revealed a new population of luminous sources. These are proposed to lie at high redshift and to be optically faint because of their high intrinsic dust obscuration. The presence of dust has been previously invoked in optical galaxy count models which use the Bruzual & Charlot evolution models with an exponential τ =9 Gyr star formation rate (SFR) for spirals, and these fit the count data well from U to K . We now show that by using either a 1/ λ or Calzetti absorption law for the dust and re-distributing the evolved spiral galaxy ultraviolet (UV) radiation into the far-infrared (FIR), these models can account for all of the 'faint' ( 1 mJy) 850-μm galaxy counts, but fail to fit 'bright' ( 2 mJy) sources, indicating that another explanation for the submm counts may apply at brighter fluxes, e.g., quasi-stellar objects (QSOs) or ultraluminous infrared galaxies (ULIRGs). We find that the main contribution to the faint, submm number counts is in the redshift range 0.5< z <3, peaking at z ≈1.8. The above model, using either dust law, can also explain a significant proportion of the extragalactic background at 850 μm, as well as producing a reasonable fit to the bright 60-μm IRAS counts.  相似文献   

5.
The initial mass function (IMF) in the solar neighbourhood is determined on the basis of a recently derived history of the star formation rate (SFR) which shows the presence of a star formation burst about 8 Gyr ago. The observed present-day mass function (PDMF) is considered, and the average past distribution of stars of a given mass is estimated. Two cases are considered, namely (i) constant SFR, and (ii) variable SFR as derived from the new metallicity distribution of G dwarfs. The resulting IMF is compared with previous determinations by Scalo and Kroupa et al., and the variation with stellar mass of the slope of the IMF is compared with reference determinations in the literature.  相似文献   

6.
We have combined multiwavelength observations of a selected sample of star-forming galaxies with galaxy evolution models in order to compare the results obtained for different star formation rate (SFR) tracers and to study the effect that the evolution of the star-forming regions has on them. We also aimed at obtaining a better understanding of the corrections due to extinction and nuclear activity on the derivation of the SFR. We selected the sample from Chandra data for the well studied region Chandra Deep Field -South (CDFS) and chose the objects that also have ultraviolet (UV) and infrared (IR) data from Galaxy Evolution Explorer ( GALEX ) and Great Observatories Origins Deep Survey (GOODS) Spitzer , respectively.
Our main finding is that there is good agreement between the extinction corrected SFR(UV) and the SFR(X), and we confirm the use of X-ray luminosities as a trustful tracer of recent star formation activity. Nevertheless, at SFR(UV) larger than about  5 M yr−1  there are several galaxies with an excess of SFR(X) suggesting the presence of an obscured active galactic nucleus (AGN) not detected in the optical spectra. We conclude that the IR luminosity is driven by recent star formation even in those galaxies where the SFR(X) is an order of magnitude higher than the SFR(UV) and therefore may harbour an AGN. One object shows SFR(X) much lower than expected based on the SFR(UV); this SFR(X) 'deficit' may be due to an early transient phase before most of the massive X-ray binaries were formed. An X-ray deficit could be used to select extremely young bursts in an early phase just after the explosion of the first supernovae associated with massive stars and before the onset of massive X-ray binaries.  相似文献   

7.
We probe the relationship between star formation rate (SFR) and radio synchrotron luminosity in galaxies at  0 < z < 2  within the northern Spitzer Wide-area Infrared Extragalactic survey (SWIRE) fields, in order to investigate some of the assumptions that go into calculating the star formation history of the Universe from deep radio observations. We present new 610-MHz Giant Metrewave Radio Telescope (GMRT) observations of the European Large-Area ISO Survey-North 2 (ELAIS-N2) field, and using this data, along with previous GMRT surveys carried out in the ELAIS-N1 (North 1) and Lockman Hole regions, we construct a sample of galaxies which have redshift and SFR information available from the SWIRE survey. We test whether the local relationship between SFR and radio luminosity is applicable to   z = 2  galaxies, and look for evolution in this relationship with both redshift and SFR in order to examine whether the physical processes which lead to synchrotron radiation have remained the same since the peak of star formation in the Universe. We find that the local calibration between radio luminosity and star formation can be successfully applied to radio-selected high-redshift, high-SFR galaxies, although we identify a small number of sources where this may not be the case; these sources show evidence for inaccurate estimations of their SFR, but there may also be some contribution from physical effects such as the recent onset of starburst activity, or suppression of the radio luminosity within these galaxies.  相似文献   

8.
We explore the role of active galactic nuclei (AGN) in establishing and/or maintaining the bimodal colour distribution of galaxies by quenching their star formation and hence, causing their transition from the blue to the red cloud. Important tests for this scenario include (i) the X-ray properties of galaxies in the transition zone between the two clouds and (ii) the incidence of AGN in post-starbursts, i.e. systems observed shortly after (<1 Gyr) the termination of their star formation. We perform these tests by combining deep Chandra observations with multiwavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). Stacking the X-ray photons at the positions of galaxies  (0.4 < z < 0.9)  not individually detected at X-ray wavelengths suggests a population of obscured AGN among sources in the transition zone and in the red cloud. Their mean X-ray and mid-infrared (IR) properties are consistent with moderately obscured low-luminosity AGN, Compton thick sources or a mix of both. Morphologies show that major mergers are unlikely to drive the evolution of this population but minor interactions may play a role. The incidence of obscured AGN in the red cloud (both direct detections and stacking results) suggests that black hole (BH) accretion outlives the termination of the star formation. This is also supported by our finding that post-starburst galaxies at z ≈ 0.8 and AGN are associated, in agreement with recent results at low z . A large fraction of post-starbursts and red cloud galaxies show evidence for at least moderate levels of AGN obscuration. This implies that if AGN outflows cause the colour transformation of galaxies, then some nuclear gas and dust clouds either remain unaffected or relax to the central galaxy regions after quenching their star formation.  相似文献   

9.
We study the globular cluster (GC) system of the dust-lane elliptical galaxy NGC 6702, using B -, V - and I -band imaging observations carried out at the Keck telescope. This galaxy has a spectroscopic age of ≈2 Gyr suggesting recent star formation. We find strong evidence for a bimodal GC colour distribution, with the blue peak having a colour similar to that of the Galactic halo GCs. Assuming that the blue GCs are indeed old and metal-poor, we estimate an age of 2–5 Gyr and supersolar metallicity for the red GC subpopulation. Despite the large uncertainties, this is in reasonable agreement with the spectroscopic galaxy age. Additionally, we estimate a specific frequency of S N =2.3±1.1 for NGC 6702. We predict that passive evolution of NGC 6702 will further increase its specific frequency to S N ≈2.7 within 10 Gyr, in closer agreement to that of typical present-day ellipticals. We also discuss evidence that the merger/accretion event that took place a few Gyr ago involved a high gas fraction.  相似文献   

10.
Ground-based UBV photometry of two fields in the northern disc of the Large Magellanic Cloud (LMC) is presented. A distance modulus of ( m − M )0=18.41±0.04 and an extinction of A V =0.30±0.05 have been calculated for these fields. The measurable star formation history of the LMC began no more than 12 Gyr ago with a strong star‐forming episode with [Fe/H]=−1.63±0.10 that accounted for approximately half (by mass) of the total star formation of the LMC in the first 3 Gyr. The data do not give accurate star formation rates during intermediate ages, but there appears to have been a recent increase in the star formation rate in these fields, beginning approximately 2.5 Gyr ago, with the current metallicity in the region being [Fe/H]=−0.38±0.10. The two fields have had very similar star formation rates until 200 Myr ago, at which point one shows a large increase.  相似文献   

11.
We investigate in detail the hypothesis that low-surface-brightness galaxies (LSBs) differ from ordinary galaxies simply because they form in haloes with large spin parameters. We compute star formation rates using the Schmidt law, assuming the same gas infall dependence on surface density as used in models of the Milky Way. We build stellar population models, predicting colours, spectra and chemical abundances. We compare our predictions with observed values of metallicity and colours for LSBs, and find excellent agreement with all observables. In particular, integrated colours, colour gradients, surface brightness and metallicity match very well to the observed values of LSBs for models with ages larger than 7 Gyr and high values (λ > 0.05) for the spin parameter of the haloes. We also compute the global star formation rate (SFR) in the Universe due to LSBs, and show that it has a flatter evolution with redshift than the corresponding SFR for normal discs. We furthermore compare the evolution in redshift of [ Zn / H ] for our models to those observed in damped Lyman α systems by Pettini et al. and show that damped Lyman α system abundances are consistent with the predicted abundances at different radii for LSBs. Finally, we show how the required late redshift of collapse of the halo may constrain the power spectrum of fluctuations.  相似文献   

12.
We analyse star formation rates (SFRs) derived from photometric and spectroscopic data of galaxies in pairs in different environments using the 2-degree field galaxy redshift survey (2dFGRS) and the Sloan digital sky survey (SDSS). The two samples comprise several thousand pairs, suitable to explore into detail the dependence of star formation activity in pairs on orbital parameters and global environment. We use the projected galaxy density derived from the fifth brightest neighbour of each galaxy, with a convenient luminosity threshold to characterize environment in both surveys in a consistent way. Star formation activity is derived through the η parameter in 2dFGRS and through the SFR normalized to the total mass in stars,  SFR/ M *  , given by Brinchmann et al. in the SDSS-second data release (SDSS-DR2). For both galaxy pair catalogs, the star formation birth rate parameter is a strong function of the global environment and orbital parameters. Our analysis on SDSS pairs confirms previous results found with the 2dFGRS where suitable thresholds for the star formation activity induced by interactions are estimated at a projected distance   r p= 100  h −1 kpc  and a relative velocity  Δ V = 350 km s−1  . We observe that galaxy interactions are more effective at triggering important star formation activity in low- and moderate-density environments with respect to the control sample of galaxies without a close companion. Although close pairs have a larger fraction of actively star-forming galaxies, they also exhibit a greater fraction of red galaxies with respect to those systems without a close companion, an effect that may indicate that dust stirred up during encounters could affect colours and, partially, obscure tidally induced star formation.  相似文献   

13.
We have used far-infrared data from IRAS , Infrared Space Observatory ( ISO ), Spitzer Wide-Area Infrared Extragalactic (SWIRE), Submillimetre Common User Bolometer Array (SCUBA) and Max-Planck Millimetre Bolometer (MAMBO) to constrain statistically the mean far-infrared luminosities of quasars. Our quasar compilation at redshifts  0 < z < 6.5  and I -band luminosities  −20 < I AB < −32  is the first to distinguish evolution from quasar luminosity dependence in such a study. We carefully cross-calibrate IRAS against Spitzer and ISO , finding evidence that IRAS 100-μm fluxes at <1 Jy are overestimated by ∼30 per cent. We find evidence for a correlation between star formation in quasar hosts and the quasar optical luminosities, varying as star formation rate (SFR)  ∝ L 0.44±0.07opt  at any fixed redshift below   z = 2  . We also find evidence for evolution of the mean SFR in quasar host galaxies, scaling as  (1 + z )1.6±0.3  at   z < 2  for any fixed quasar I -band absolute magnitude fainter than −28. We find no evidence for any correlation between SFR and black hole mass at  0.5 < z < 4  . Our data are consistent with feedback from black hole accretion regulating stellar mass assembly at all redshifts.  相似文献   

14.
A comprehensive study of the measurement of star formation histories from colour–magnitude diagrams (CMDs) is presented, with an emphasis on a variety of subtle issues involved in the generation of model CMDs and maximum likelihood solution. Among these are the need for a complete sampling of the synthetic CMD, the use of proper statistics for dealing with Poisson-distributed data (and a demonstration of why χ 2 must not be used), measuring full uncertainties in all reported parameters, quantifying the goodness-of-fit, and questions of binning the CMD and incorporating outside information. Several example star formation history measurements are given. Two examples involve synthetic data, in which the input and recovered parameters can be compared to locate possible flaws in the methodology (none were apparent) and measure the accuracy with which ages, metallicities and star formation rates can be recovered. Solutions of the histories of seven Galactic dwarf spheroidal companions (Carina, Draco, Leo I, Leo II, Sagittarius, Sculptor and Ursa Minor) illustrate the ability to measure star formation histories given a variety of conditions – numbers of stars, complexity of star formation history and amount of foreground contamination. Significant measurements of ancient >8 Gyr star formation are made in all seven galaxies. Sculptor, Draco and Ursa Minor appear entirely ancient, while the other systems show varying amounts of younger stars.  相似文献   

15.
We investigate pure luminosity evolution models for early-type (elliptical and S0) galaxies (i.e. no number density change or morphological transition), and examine whether these models are consistent with observed number counts in the B , I and K bands, and redshift distributions of two samples of faint galaxies selected in the I and K bands. The models are characterized by the star formation time-scale τ SF and the time t gw when the galactic wind starts to blow, in addition to several other conventional parameters. We find that the single-burst model ( τ SF=0.1 Gyr and t gw=0.353 Gyr), which is known to reproduce the photometric properties of early-type galaxies in clusters, is inconsistent with the redshift distributions of early-type galaxies in the field environment, owing to overpredictions of the number of galaxies at z ≳1.4 even with strong extinction which is at work until t gw. In order for dust extinction to be more effective, we treat τ SF and t gw as free parameters, and find that models with τ SF≳0.5 Gyr and t gw>1.0 Gyr can be made consistent with both the observed redshift distributions and the number counts, if we introduce strong extinction [ E ( B − V )≥1 as a peak value]. These results suggest that early-type galaxies in the field environment do not have the same evolutionary history as described by the single-burst model.  相似文献   

16.
We present integrated JHK S Two-Micron All-Sky Survey photometry and a compilation of integrated-light optical photoelectric measurements for 84 star clusters in the Magellanic Clouds. These clusters range in age from ≈200 Myr to >10 Gyr, and have [Fe/H] values from −2.2 to −0.1 dex. We find a spread in the intrinsic colours of clusters with similar ages and metallicities, at least some of which is due to stochastic fluctuations in the number of bright stars residing in low-mass clusters. We use 54 clusters with the most-reliable age and metallicity estimates as test particles to evaluate the performance of four widely used simple stellar population models in the optical/near-infrared (near-IR) colour–colour space. All models reproduce the reddening-corrected colours of the old (≥10 Gyr) globular clusters quite well, but model performance varies at younger ages. In order to account for the effects of stochastic fluctuations in individual clusters, we provide composite   B − V , B − J , V − J , V − K S  and   J − K S  colours for Magellanic Cloud clusters in several different age intervals. The accumulated masses for most composite clusters are higher than that needed to keep luminosity variations due to stochastic fluctuations below the 10 per cent level. The colours of the composite clusters are clearly distinct in optical–near-IR colour–colour space for the following intervals of age: >10 Gyr, 2–9 Gyr, 1–2 Gyr, and 200 Myr−1 Gyr. This suggests that a combination of optical plus near-IR colours can be used to differentiate clusters of different age and metallicity.  相似文献   

17.
We present a Chandra study of 38 X-ray-luminous clusters of galaxies in the ROSAT Brightest Cluster Sample (BCS) that lie at moderate redshifts  ( z ≈ 0.15–0.4)  . Based primarily on power ratios and temperature maps, we find that the majority of clusters at moderate redshift generally have smooth, relaxed morphologies with some evidence for mild substructure perhaps indicative of recent minor merger activity. Using spatially resolved spectral analyses, we find that cool cores appear still to be common at moderate redshift. At a radius of 50 kpc, we find that at least 55 per cent of the clusters in our sample exhibit signs of mild cooling  ( t cool < 10 Gyr)  , while in the central bin at least 34 per cent demonstrate signs of strong cooling  ( t cool < 2 Gyr)  . These percentages are nearly identical to those found for luminous, low-redshift clusters of galaxies, indicating that there appears to be little evolution in cluster cores since   z ≈ 0.4  and suggesting that heating and cooling mechanisms may already have stabilized by this epoch. Comparing the central cooling times to catalogues of central Hα emission in BCS clusters, we find a strong correspondence between the detection of Hα and central cooling time. We also confirm a strong correlation between the central cooling time and cluster power ratios, indicating that crude morphological measures can be used as a proxy for more rigorous analysis in the face of limited signal-to-noise ratio data. Finally, we find that the central temperatures for our sample typically drop by no more than a factor of ∼3–4 from the peak cluster temperatures, similar to those of many nearby clusters.  相似文献   

18.
A new photometric and spectroscopic survey of the star formation region (SFR) CMa R1 is described. In a sample of 165 stars brighter than 13th mag, 88 stars were found to be probable members of the SFR. They are defined as early-type stars with E ( B − V )0.16 mag, which corresponds to a distance of about 1 kpc. 74 of the probable members are B stars. 19 stars are possibly associated with an IRAS point source. We derive a most probable distance of 1050±150 pc to the association. It appears that about 80 candidate members are pre-main-sequence stars with ages lower than 6 million years, while the main sequence extends over 6.0–7.6 mag, which is consistent with star formation starting about 8 million years ago and continuing until at least half a million years ago. Two bright B stars in the association (GU CMa and FZ CMa) seem to be much older and probably do not originate from the same star formation episode. The star formation efficiency appears to increase roughly monotonically with time up to half a million years ago. From our data, we conclude that only a minor fraction of the stars has been created through the scenario suggested by Herbst & Assousa, in which the members of CMa R1 form by compression of ambient material by a supernova shock wave. An extensive search for candidate members with H α emission did not reveal new Herbig Ae/Be candidates, so that the number of stars in this class seems to be limited to four: Z CMa, LkH α 218, LkH α 220 and possibly HD 53367.  相似文献   

19.
This paper estimates the relative frequency of different types of core-collapse supernovae, in terms of the ratio between the number of Type Ib–Ic and of Type II supernovae. We estimate independently for all normal and Seyfert galaxies whose radial velocity is ≤14 000 km s−1, and which had at least one supernova event recorded in the Asiago catalogue from 1986 January to 2000 August. We find that the ratio is  ≈0.23±0.05  in normal galaxies. This value is consistent with constant star formation rate and with a Salpeter initial mass function and an average binary rate ≈50 per cent. On the contrary, Seyfert galaxies exceed the ratio in normal galaxies by a factor ≈4 at a confidence level ≳2 σ . A caveat is that the numbers for Seyferts are still small (six of Type Ib–Ic and six of Type II supernovae discovered as yet). Assumed to be real, this excess of Type Ib/c supernovae may indicate a burst of low-age star formation  ( τ ≲20 Myr)  , a high incidence of binary systems in the inner regions  ( r ≲0.4 R 25)  of Seyfert galaxies, or a top-loaded mass function.  相似文献   

20.
We investigate the properties of optically passive spirals and dusty red galaxies in the A901/2 cluster complex at redshift ∼0.17 using rest-frame near-ultraviolet–optical spectral energy distributions, 24-μm infrared data and Hubble Space Telescope morphologies from the STAGES data set. The cluster sample is based on COMBO-17 redshifts with an rms precision of  σ cz ≈ 2000 km s−1  . We find that 'dusty red galaxies' and 'optically passive spirals' in A901/2 are largely the same phenomenon, and that they form stars at a substantial rate, which is only four times lower than that in blue spirals at fixed mass. This star formation is more obscured than in blue galaxies and its optical signatures are weak. They appear predominantly in the stellar mass range of  log  M */M=[10, 11]  where they constitute over half of the star-forming galaxies in the cluster; they are thus a vital ingredient for understanding the overall picture of star formation quenching in clusters. We find that the mean specific star formation rate (SFR) of star-forming galaxies in the cluster is clearly lower than in the field, in contrast to the specific SFR properties of blue galaxies alone, which appear similar in cluster and field. Such a rich red spiral population is best explained if quenching is a slow process and morphological transformation is delayed even more. At  log  M */M < 10  , such galaxies are rare, suggesting that their quenching is fast and accompanied by morphological change. We note that edge-on spirals play a minor role; despite being dust reddened they form only a small fraction of spirals independent of environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号