首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A detailed study of the most significant seismic effects that took place in the city of Catania has been performed in order to build up a site catalogue, to assess seismic hazard directly from it and to provide the picture of damage scenarios which happened in the past. In the last 1000 years Catania was destroyed twice (1169 and 1693) and more or less severely damaged twelve times (e.g., 1542, 1818, 1848, etc.). Destruction or severe damage are mainly related to earthquakes occurring in the coastal sector of the Hyblean foreland, while slighter, moderate effects are usually due to earthquakes taking place in the seismogenic sources of the Messina Straits and in the inner Hyblean region. The analysis of the historical reports allowed to delineate the damage scenarios of the most relevant events. In particular, for the 1693 case-history it has also been possible to map the damage distribution with reference to the existing urban settlement of the city. The site catalogue was used for assessing seismic hazard; the obtained estimates show that the probability of occurrence for intensity 7 and 10 exceeds 99.9% for 150 and 500 years, respectively. These values, associated with the high vulnerability caused by the city growth which occurred mainly before the introduction of the seismic code (1981) and without ad-hoc planning policies, implies that the urban system is exposed to high seismic risk.  相似文献   

2.
A vulnerability analysis of some historical and monumental buildings in the city of Málaga is presented in this paper. More than twenty of these monuments were severely damaged or completely destroyed due to the large earthquake (I max = VIII–IX) occurred in the Málaga region in October 1680. The vulnerability index methodology has been used in this paper. This technique is based on statistical data from seismic damage caused to Italian monuments for the past 30?years. For each building, vulnerability curves have been obtained and damage grades have been estimated. A comparison has been carried out between the expected damage grades and the damage observed from past earthquakes, in order to check the feasibility of applying this methodology to Spanish monuments. This comparison has been possible due to the fact that detailed seismic damage information exists for monuments in the city of Málaga that still exist today, which is a very uncommon case in Spain. Results show a good consistency between expected and observed damage, especially for the churches type. Two seismic scenarios have been proposed for the city centre, one deterministic and one probabilistic, where 54 historical and modern buildings have been analyzed. Both scenarios show worrying results, especially for the types of churches, chapels and towers, where expected high probabilities of suffering very heavy damage or even collapse have been obtained. It is highly recommended to take the necessary measures, in the hope of trying to avoid the possible damage that can be expected from future earthquakes.  相似文献   

3.
A GIS-oriented procedure that may partially illuminate the consequences of a possible earthquake is presented in two main steps (seismic microzonation and vulnerability steps) along with its application in Tabriz (a city in NW Iran). First, the detailed geological, geodetical, geotechnical and geophysical parameters of the region are combined using an Analytic Hierarchy Process (AHP) and a deterministic near-field earthquake of magnitude 7 in the North Tabriz Fault is simulated. This simulation provides differing intensities of ground shaking in the different districts of Tabriz. Second, the vulnerability of buildings, human losses and basic resources for survivors is estimated in district two of the city based on damage functions and relational analyses. The results demonstrate that 69.5% of existing buildings are completely destroyed, and the rate of fatalities is approximately 33% after a nighttime scenario. Finally, the same procedure was applied to an actual earthquake (first event on the 11th of August, 2012 of the Ahar twin earthquakes) to validate the presented model based on two aspects: (1) building damages and (2) seismic intensity.  相似文献   

4.
In many countries such as Spain earthquake databases still mainly comprise macroseismic data from felt effects. The full exploit of this information is of basic importance for seismic risk assessment and emergency planning, given the strict link between macroseismic intensity and damage. A probabilistic procedure specifically developed to handle macroseismic data, mostly relying on site information and seismogenic-source free, has been applied to evaluate seismic hazard in SE-Spain (Alicante-Murcia region). Present seismicity is moderate-low with largest magnitudes slightly over Mw5.0. The historical record includes very destructive earthquakes, maximum EMS98 intensities reaching IX–X and X in the nineteenth century (e.g., Torrevieja 1829 earthquake). Very recently, two events in the area on 11 May 2011 (Mw4.5, Mw5.2) killed nine people, injured 300, and produced important damage in the city of Lorca. Regional hazard maps for the area together with specific hazard curves at selected localities are obtained. Results are compared with the maximum observed intensities in the period 1300–2012, and with the values in the seismic hazard map from the Spanish Building Code in force. In general, the maximum felt intensity values are closer to the hazard values calculated for 2 % probability of exceedance in 50 years, using felt and expected intensity. The intensity-based probabilistic hazard maps obtained through the applied approach reduce the inherent smoothing of those based on standard probabilistic seismic hazard assessment approaches for the region, allowing identifying possible over- or sub-estimates of site hazard values, providing very valuable information for risk reduction strategies or for future updates of the building code hazard maps.  相似文献   

5.
The city of Oran is exposed to a significant seismic hazard, as almost all the northern Algeria territory, where numerous casualties and severe damage occurred in the last decades due to several moderate to large earthquakes. A mitigation policy should include the establishment of priorities to reduce the vulnerability of existing buildings based on the knowledge of the actual urban fabrics. The complexity of vulnerability assessment requires a gradual approach from the urban scale to the building scale. The study reported in this paper corresponds to the first step of such an approach, i.e., a preliminary study of the seismic vulnerability and expected damage within an urban district of the city of Oran, based on a non-dedicated data base from a building survey previously performed for other purposes. The main goals of this study are twofold: (1) an assessment of the degree of uncertainty and robustness of such results through a comparison of the results derived from different urban vulnerability methods (GNDT 2; RISK-UE LM1; and VULNERALP 2.0) and (2) an assessment of the actual level of seismic risk in the city of Oran. Cross-method comparisons and correlations highlight a satisfactory agreement between mean damage estimates at the urban scale, despite significant scattering at the single building scale, and uncertainty levels which vary significantly from one method to the other. For a given scenario, the three methods provide damage estimates lying within half an EMS damage degree of one another, with some systematic positive bias for VULNERALP and negative bias for RISK-UE LM1, especially for masonry buildings. The expected mean damage is very important for intensities 9 and 10, with an average damage grade around 3–4 for intensity 9 and 4–5 for intensity 10. The spatial distribution of damage systematically exhibits larger values in the northern, older, commercial area, than in the southern, more recent and more residential area, in relation to the building typology and the existence of several aggravating factors. Some areas of higher vulnerability / damage can be distinguished, which should receive particular attention for retrofitting priorities or urban planning decisions, also taking into account their cultural heritage value.  相似文献   

6.
The 2009 Mw 6.3 L’Aquila event caused extensive damage in the city of L’Aquila and in some small towns in its vicinity. The most severe damage was recognized SE of L’Aquila town along the Aterno river valley. Although building vulnerability and near-source effects are strongly responsible for the high level of destruction, site effects have been invoked to explain the damage heterogeneities and the similarities between the 2009 macroseismic field with the intensities of historical earthquakes. The small village of Onna is settled on quaternary alluvium and suffered during the L’Aquila event an extremely heavy damage in the masonry structures with intensity IX–X on the Mercalli-Cancani-Sieberg (MCS) scale. The village of Monticchio, far less than 1.3 km from Onna, is mostly situated on Mesozoic limestone and suffered a smaller level of damaging (VI MCS). In the present paper, we analyze the aftershock recordings at seismic stations deployed in a small area of the middle-Aterno valley including Onna and Monticchio. The aim is to investigate local amplification effects caused by the near-surface geology. Because the seismological stations are close together, vulnerability and near-source effects are assumed to be constant. The waveform analysis shows that the ground motion at Onna is systematically characterized by large high-frequency content. The frequency resonance is varying from 2 to 3 Hz and it is related to alluvial sediments with a thickness of about 40 m that overlay a stiffer Pleistocene substrate. The ground motion recordings of Onna are well reproduced by the predictive equation for the Italian territory.  相似文献   

7.
The tectonic system of the eastern flank of Mt. Etna volcano (Sicily, Italy) is the source of most of the strongest earthquakes occurring in the area over the last 205 years. A total of 12 events with epicentre intensities ≥VIII EMS have occurred at Mt. Etna, 10 of which were located on the eastern flank. This indicates a mean recurrence time of about 20 years. This area is highly urbanised, with many villages around the volcano at altitudes up to 700 m a.s.l. The southern and eastern flanks are particularly highly populated areas, with numerous villages very close to each other. The probabilistic seismic hazard due to local faults for Mt. Etna was calculated by adopting a site approach to seismic hazard assessment. Only the site histories of local volcano-tectonic earthquakes were considered, leaving out the effects due to strong regional earthquakes that occurred in north-eastern and south-eastern Sicily. The inventory used in this application refers to residential buildings. These data were extracted from the 1991 census of the Italian National Institute of Statistics, and are grouped according to the census sections. The seismic vulnerability of the elements at risk belonging to a given building typology is described by a vulnerability index, in accordance with a damage model based on macroseismic intensities. For the estimation of economic losses due to physical damage to buildings, an integrated impact indicator was used, which is equivalent to the lost building volume. The expected annualised economic earthquake losses were evaluated both in absolute and in relative terms, and were compared with the geographical distribution of seismic hazard and with similar evaluations of losses for other regions.  相似文献   

8.
李文俊    曲哲    孙海林  熊政辉   《世界地震工程》2021,(4):109-121
房屋建筑的地震易损性是地震损失评估和地震巨灾风险模型的基础。作为房屋建筑的重要组成部分,各类非结构构件的损失在现有的易损性模型中并未得到足够重视。本文以一栋典型钢筋混凝土框架结构教学楼为对象,通过将房屋建筑中的各类构件划分为具有不同地震损伤特性和损失后果的易损性组,考察建筑内的损失分布和非结构损失对房屋建筑地震易损性的影响。分析结果表明:由于许多非结构构件在中小地震作用下即可能发生较严重的破坏,房屋建筑在中小地震下的易损性主要受非结构损失控制;随着地震动强度等级的不断提高,结构损伤渐趋严重,结构损失对整体建筑易损性的影响不断增大;在结构进入震后不可修状态之前,建筑不同楼层的损失分布是评估建筑地震损失时不可忽略的因素。  相似文献   

9.
王盛泽 《华南地震》2010,30(1):82-91
从历史最大地震烈度分布图分析,可知揭阳、汕头、潮州三市位于Ⅶ~Ⅷ度高地震烈度区。该城市群地震灾害有以下特点:市区发生破坏性地震的潜在危险性大;地震时市区地震烈度高,地震灾害大,损失严重。采用宏观经济易损性的地震损失分析方法,重演该区的历史破坏性地震。分析表明:抓好该区的防震减灾工作是保持社会和经济建设持续发展的一项重要工作。  相似文献   

10.
中国历史地震烈度表研究   总被引:10,自引:1,他引:9       下载免费PDF全文
在比较分析以往烈度表的基础上,着重增加了社会反响标志;对Ⅹ-Ⅻ度的房屋建筑物和地表现象标志进行了调整与补充,完善了作为12阶烈度表相应的《中国历史地震烈度表》.文中对烈度表的各项标志作了简要说明,并列举了国内外10次历史地震事件的评定实例.本文提出的历史地震烈度表,保持了以往烈度表的适用性与一致性.  相似文献   

11.
搜集自开展地震灾害直接损失评估以来,四川境内破坏性地震震害资料,统计省内藏式房屋在不同烈度不同破坏等级下的破坏比,给出易损性矩阵;采用房屋结构整体易损性分析方法,依据藏式房屋易损性矩阵,通过烈度与地震动参数的对应关系,以对数正态分布函数为模型,对藏式房屋在不同地震动参数(峰值速度)下超越毁坏、破坏、基本完好的概率曲线进行拟合,给出易损性曲线,为其他结构类型房屋的易损性研究、灾害损失评估工作及震害预测提供参考。  相似文献   

12.
The seismic vulnerability index(Kg) is a parameter that depends on the dynamic properties of soil. With this parameter, it is possible to evaluate the vulnerability of a point-based site under strong ground motion. Since it is related to the natural vibration period and amplification factor, the parameter can be calculated for both soil and structure. In this study, HVSR microtremor measurements are recorded at more than 200 points in the Van region to generate a seismic vulnerability index map. After generating the map, it is determined that the hazard potential and seismic vulnerability index is high at the sites close to Van Lake and at the densely populated city center. Damage information of the buildings investigated after the 2011 Van earthquakes(Mw = 7.1) are placed on the seismic vulnerability index map and it is realized that there may be a correlation between the damage and the seismic vulnerability index. There is a high correlation, approximately 80 percent, between the damage rate map based on the damaged building data and the K_g values. In addition, vulnerability indexes of buildings are calculated and the effect of local soil conditions and building properties on the damage levels are determined. From the results of this study and the site observations after the 2011 Van earthquakes, it is found that structural damage is not only structure-dependent but is also related to the dynamic behavior of soil layers and local soil conditions.  相似文献   

13.
2013年四川芦山7.0级地震烈度遥感评估   总被引:10,自引:0,他引:10       下载免费PDF全文
2013年4月20日四川芦山MS7.0级地震发生后,在灾区应急获取了多种高分辨率航空和无人机遥感影像,并快速解译提取了灾区建筑物震害信息.采用地震烈度遥感定量评估方法,利用2008年汶川8.0级地震等震后震害遥感解译和现场调查研究确定的经验震害遥感定量评估模型,获得了芦山地震灾区126个主要居民点的地震烈度遥感评估结果,并据此圈画了地震烈度分布遥感评估图.结果显示,本次地震Ⅸ度区面积约150km2,Ⅷ度区面积约900km2.该结果在第一时间(4月21日晚)提供给了中国地震局地震现场应急指挥部.对比分析显示,地震烈度遥感快速评估结果与中国地震局4月25日公布的地震烈度图,以及与笔者在现场实地进行的建筑物震害详细调查结果基础上评定的地震烈度具有较高的一致性.表明强烈地震发生后,借助于快速获取的灾区高分辨率遥感影像,可以快速估计地震烈度分布,对地震灾区灾情估计和抗震救灾工作具有十分重要的参考意义.  相似文献   

14.
In this paper we present a site effects analysis carried out in Málaga city’s historical centre (Southern Spain). Two different methodologies have been used: an experimental technique using ambient noise measurements and a 1D numerical method. Soil fundamental frequencies have been obtained from the first technique, and soil transfer functions have been calculated from the numerical methodology. In order to use these results in vulnerability studies, intensity increments for each type of soil have also been estimated. From this information, a seismic microzonation has been proposed for the city centre, classified in six types of soils. Soil fundamental frequencies vary between above 5.0Hz at the hills of the city (where rock arises on the surface), and 1.0Hz near Guadalmedina river. The results show regions with high intensity increments (ΔI = +1.5) corresponding to areas which suffered heavy damage in the 1680 earthquake (Imax = VIII–IX). Moreover, most of the monuments and historical buildings in the city are located in these high risk areas. Results underline the importance of this kind of studies for seismic risk mitigation, historical preservation and emergency planning in the main cities’ historical centres.  相似文献   

15.
Introduction The estimation of damage probability distribution among different damage states of rein-forced concrete buildings is a key component of earthquake loss estimation for modern city or a group of cities. With the development of city, the reinforced concrete buildings are major compo-nent parts of modern cities. Vulnerability estimates for these kinds of buildings are of importance to those responsible for civil protection, relief, and emergency services to enable adequate contin-genc…  相似文献   

16.
This study analyses the performance of residential buildings in the town of Hveragerði in South Iceland during the 29 May 2008 Mw 6.3 Ölfus Earthquake. The earthquake occurred very close to the town, approximately 3–4 km from it. Ground shaking caused by the earthquake was recorded by a dense strong-motion array in the town. The array provided high-quality three-component ground acceleration data which is used to quantify a hazard scenario. In addition, surveys conducted in the town in the aftermath of the earthquake have provided information on macroseismic intensity at various locations in the town. Detailed information regarding the building stock in the town is collected, and their seismic vulnerability models are created by using building damage data obtained from the June 2000 South Iceland earthquakes. Damage to buildings are then simulated by using the scenario hazard and vulnerability models. Damage estimates were also obtained by conducting a survey. Simulated damage based on the scenario macroseismic intensity is found to be similar to damage estimated from survey data. The buildings performed very well during the earthquake—damage suffered was only 5 % of the insured value on the average. Correlation between actual damage and recorded ground-motion parameters is found to be statistically insignificant. No significant correlation of damage was observed, even with macroseismic intensity. Whereas significant correlation was observed between peak ground velocity and macroseismic intensity, neither of them appear to be good indicators of damage to buildings in the study area. This lack of correlation is partly due to good seismic capacity of buildings and partly due to the ordinal nature of macroseismic intensity scale. Consistent with experience from many past earthquakes, the survey results indicate that seismic risk in South Iceland is not so much due to collapse of buildings but rather due to damage to non-structural components and building contents.  相似文献   

17.
根据2022年云南宁蒗MS 5.5地震现场调查情况,详细描述本次地震的烈度分布情况和房屋震害特征,计算各烈度区内各类房屋结构的平均震害指数和破坏比,与2012年宁蒗—盐源MS 5.7地震和历史地震震害统计规律进行对比,结果表明: ①本次地震最大烈度为Ⅶ度,长轴呈NW向,与地震构造背景、震源机制解、余震序列分布和震例统计规律等科技支撑成果吻合较好; ②本次地震中房屋震害较轻,主要得益于脱贫攻坚、农村危房改造和抗震改造等项目的实施,震区房屋结构的整体抗震性能加强。  相似文献   

18.
详细的建筑结构特征参数是得到合理地震易损性分析结果的基础。本文给出了一种结合已有地震易损性分析成果,在具备有限特征参数的情况下,利用BP神经网络进行单体或群体结构震害等级推演的方法。以陕西省渭南市607栋设防砌体易损性评估结果为样本构建了一个3层BP神经网络模型,并对北京市海淀区近2万栋设防砌体不同地震烈度下的可能破坏状态进行推演,结果能够反映区域本地化特征,也与抗震设计目标和震害案例相符。该方法适用于少量特征参数下单体或群体结构的快速震害等级推演,可为相似烈度地区的建筑结构风险评估提供参考。  相似文献   

19.
In western Europe, the knowledge of long-term seismicity is based on reliable historical seismicity and covers a time period of less than 700 years. Despite the fact that the seismic activity is considered as low in the region extending from the Lower Rhine Embayment to England, historical information collected recently suggests the occurrence of three earthquakes with magnitude around 6.0 or greater. These events are a source of information for the engineer or the scientist involved in mitigation against large earthquakes. We provide information relevant to this aspect for the Belgian earthquake of September 18, 1692. The severity of the damage described in original sources indicates that its epicentral intensity could be IX (EMS-98 scale) and that the area with intensity VII and greater than VII has at least a mean radius of 45 km. Following relationships between average macroseismic radii and magnitude for earthquakes in stable continental regions, its magnitude Ms is estimated as between 6.0 and 6.5. To extend in time our knowledge of the seismic activity, we conducted paleoseismic investigations in the Roer Graben to address the question of the possible occurrence of large earthquakes with coseismic surface ruptures. Our study along the Feldbiss fault (the western border of the graben) demonstrates its recent activity and provides numerous lines of evidence of Holocene and Late Pleistocene large earthquakes. It suggests that along the 10 km long Bree fault scarp, the return period for earthquakes with magnitude from 6.2 to 6.7 ranges from 10,000 to 20,000 years during the last 50,000 years. Considering as possible the occurrence of similar earthquakes along all the Quaternary faults in the Lower Rhine Embayment, a large earthquake could occur there each 500–1000 years. These results are important in two ways. (i) The evidence that large earthquakes occur in western Europe in the very recent past which is not only attested by historical sources, but also suggested by paleoseismic investigations in the Roer Graben. (ii) The existence of a scientific basis to better evaluate the long-term seismicity in this part of Europe (maximal magnitude and return period) in the framework of seismic hazard assessment.  相似文献   

20.
基于时变地震损伤模型提出酸性大气环境作用下多龄期钢框架结构概率地震易损性分析的方法及步骤;考虑服役龄期对钢框架结构抗震性能的影响,分别建立时变概率地震需求模型、时变概率抗震能力模型及时变易损性模型;在概率地震需求分析及概率抗震能力分析的基础上,得到多龄期(20年、30年、40年、50年)钢框架结构的易损性模型及易损性曲线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号