首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this study we used two stable isotopes, δ13C and δ18O, for water mass classification in the coastal region off eastern Hokkaido. δ13C* values, which were corrected for the biological effect, and δ 18O values up to 300 m depth suggested that the isotopic character of the onshore and offshore water in the southern Okhotsk Sea, the Nemuro Strait and the western North Pacific could be explained by the mixing of three source waters: the Oyashio water (OYW), Soya Warm Current water (SWCW) and East Sakhalin Current water (ESCW). In summer, δ 13C*-δ 18O plots indicated mixing between SWCW from the southern Okhotsk Sea and OYW in the Pacific coast of southeastern Hokkaido, while temperature-salinity plots of the onshore water showed minimal difference from the offshore OYW. In winter, on the other hand, the mixed water of ESCW and OYW (or SWCW) appeared in the Pacific coastal region, distributed as cold, low salinity onshore water. Finally, we estimated mixing ratios of OYW, SWCW and ESCW in the coastal region of western North Pacific using their mean values of δ 13C* and δ 18O as endmembers. These results suggest seasonal and yearly changes of water mass combination en route from the southern Okhotsk Sea to the western North Pacific.  相似文献   

2.
A new grid data set for the southwestern part of the Okhotsk Sea was compiled by using all the available hydrographic data from the Japan Oceanographic Data Center, World Ocean Atlas 1994 and the other additional data sources with the resolution of about 10 km. We examine the seasonal variations of areas and volumes of Soya Warm Current Water (SWCW) and East Sakhalin Current Water (ESCW) and show that the exchanges of these water masses drastically occur in April and November. The peculiar variation of sea level in this region is also related with the water mass exchange. Sea level at the Hokkaido coast of the Okhotsk Sea reaches its minimum in April about two months later than in the case of ordinary mid-latitude ocean, and its maximum in December besides the summer peak. The winter peak of sea level in December is caused by the advent of fresh and cold ESCW which is accumulated at the subsurface layers (20–150 m) through the Ekman convergence by the prevailing northerly wind. Sea level minimum in April is caused by the release of the convergence and the recovery of dense SWCW that is saline and much colder than that in summer.  相似文献   

3.
Oyashio water flowing into the Mixed Water Region (MWR) and the Kuroshio Extension region that forms North Pacific Intermediate Water (NPIW) has been examined, based on four Conductivity-Temperature-Depth profiler (CTD)/Lowered Acoustic Doppler Current Profiler (L-ADCP) surveys of water masses and ocean currents. There are two processes by which the Oyashio water intrudes across the Subarctic Front (SAF): one is a direct cross-nearshore-SAF transport near Hokkaido along the western boundary, and the other is a cross-offshore-SAF process. Seasonal variations were observed in the former process, and the transport of the Oyashio water across SAF near Hokkaido in the density range of 26.6–27.4σθ was 5–10 Sv in spring 1998 and 2001, and 0–4 Sv in autumn 2000, mainly corresponding to the change of the southwestward Oyashio transport. Through the latter process, 5–6 Sv of the Oyashio water was entrained across the offshore SAF from south of Hokkaido to 150° in both spring 2001 and autumn 2000. The total cross-SAF Oyashio water transport contributing to NPIW formation is more than 10 Sv, which is larger than previously reported values. Most of the Oyashio water formed through the former process was transported southeastward through the Kuroshio Extension. It is suggested that the Oyashio intrusion via the latter process feeds NPIW in the northern part of the MWR, mainly along the Subarctic Boundary and SAF. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In order to examine the formation, distribution and transport of North Pacific Intermediate Water (NPIW), repeated hydrographic observations along several lines in the western North Pacific were carried out in the period from 1996 to 2001. NPIW formation can be described as follows: (1) Oyashio water extends south of the Subarctic Boundary and meets Kuroshio water in intermediate layers; (2) active mixing between Oyashio and Kuroshio waters occurs in intermediate layers; (3) the mixing of Oyashio and Kuroshio waters and salinity minimum formation around the potential density of 26.8σθ proceed to the east. It is found that Kuroshio water flows eastward even in the region north of 40°N across the 165°E line, showing that Kuroshio water extends north of the Subarctic Boundary. Volume transports of Oyashio and Kuroshio components (relative to 2000 dbar) integrated in the potential density range of 26.6–27.4σθ along the Kuroshio Extension across 152°E–165°E are estimated to be 7–8 Sv (106 m3s−1) and 9–10 Sv, respectively, which is consistent with recent work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
In order to examine the formation, distribution and synoptic scale circulation structure of North Pacific Intermediate Water (NPIW), 21 subsurface floats were deployed in the sea east of Japan. A Eulerian image of the intermediate layer (density range: 26.6–27.0σθ) circulation in the northwestern North Pacific was obtained by the combined analysis of the movements of the subsurface floats in the period from May 1998 to November 2002 and historical hydrographic observations. The intermediate flow field derived from the floats showed stronger flow speeds in general than that of geostrophic flow field calculated from historical hydrographic observations. In the intermediate layer, 8 Sv (1 Sv ≡ 106 m3s−1) Oyashio and Kuroshio waters are found flowing into the sea east of Japan. Three strong eastward flows are seen in the region from 150°E to 170°E, the first two flows are considered as the Subarctic Current and the Kuroshio Extension or the North Pacific Current. Both volume transports are estimated as 5.5 Sv. The third one flows along the Subarctic Boundary with a volume transport of 5 Sv. Water mass analysis indicates that the intermediate flow of the Subarctic Current consists of 4 Sv Oyashio water and 1.5 Sv Kuroshio water. The intermediate North Pacific Current consists of 2 Sv Oyashio water and 3.5 Sv Kuroshio water. The intermediate flow along the Subarctic Boundary contains 2 Sv Oyashio water and 3 Sv Kuroshio water. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
An inverse calculation using hydrographic section data collected from October to December 2000 yields velocity structure and transports of the Kuroshio in the Okinawa Trough region of the East China Sea (ECS) and south of central Japan, and of the Ryukyu Current (RC) southeast of the Ryukyu Islands. The results show the Kuroshio flowing from the ECS, through the Tokara Strait (TK), with a subsurface maximum velocity of 89 cm s−1 at 460 dbar. In a section (TI) southeast of Kyushu, a subsurface maximum velocity of 92 cm s−1 at 250 dbar is found. The results also show the RC flowing over the continental slope from the region southeast of Okinawa (OS) to the region east of Amami-Ohshima (AE) with a subsurface maximum velocity of 67 cm s−1 at 400 dbar, before joining the Kuroshio southeast of Kyushu (TI). The volume transport around the subsurface velocity maximum southeast of Kyushu (TI) balances well with the sum of those in TK and AE. The temperature-salinity relationships found around these velocity cores are very similar, indicating that the same water mass is involved. These results help demonstrate the joining of the RC with the Kuroshio southeast of Kyushu. The net volume transport of the Kuroshio south of central Japan is estimated to be 64∼79 Sv (1 Sv ≡ 106 m3s−1), of which 27 Sv are supplied by the Kuroshio from the ECS and 13 Sv are supplied by the RC from OS. The balance (about 24∼39 Sv) is presumably supplied by the Kuroshio recirculation south of Shikoku, Japan.  相似文献   

7.
A numerical study using a 3-D nonhydrostatic model has been applied to baroclinic processes generated by the K 1 tidal flow in and around the Kuril Straits. The result shows that large-amplitude unsteady lee waves are generated and cause intense diapycnal mixing all along the Kuril Island Chain to levels of a maximum diapycnal diffusivity exceeding 103 cm2s−1. Significant water transformation by the vigorous mixing in shallow regions produces the distinct density and potential vorticity (PV) fronts along the Island Chain. The pinched-off eddies that arise and move away from the fronts have the ability to transport a large amount of mixed water (∼14 Sv) to the offshore regions, roughly half being directed to the North Pacific. These features are consistent with recent satellite imagery and in-situ observations, suggesting that diapycnal mixing within the vicinity of the Kuril Islands has a greater impact than was previously supposed on the Okhotsk Sea and the North Pacific. To examine this influence of tidal processes at the Kurils on circulations in the neighboring two basins, another numerical experiment was conducted using an ocean general circulation model with inclusion of tidal mixing along the islands, which gives a better representation of the Okhotsk Sea Mode Water than in the case without the tidal mixing. This is mainly attributed to the added effect of a significant upward salt flux into the surface layer due to tidal mixing in the Kuril Straits, which is subsequently transported to the interior region of the Okhotsk Sea. With a saline flux into the surface layer, cooling in winter in the northern part of the Okhotsk Sea can produce heavier water and thus enhance subduction, which is capable of reproducing a realistic Okhotsk Sea Mode Water. The associated low PV flux from the Kuril Straits to the open North Pacific excites the 2nd baroclinic-mode Kelvin and Rossby waves in addition to the 1st mode. Interestingly, the meridional overturning in the North Pacific is strengthened as a result of the dynamical adjustment caused by these waves, leading to a more realistic reproduction of the North Pacific Intermediate Water (NPIW) than in the case without tidal mixing. Accordingly, the joint effect of tidally-induced transport and transformation dominating in the Kuril Straits and subsequent eddy-transport is considered to play an important role in the ventilation of both the Okhotsk Sea and the North Pacific Ocean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Hydrographic structure and transport of intermediate water were observed in the Kuroshio region south of Japan, focusing on the 26.6–27.5σθ density in six cruises from May 1998 through September 2001. In the section off the Boso Peninsula where the Kuroshio exfoliates eastward, the intermediate water was clearly clustered into three groups meridionally composed of the coastal water, the Kuroshio water and the offshore water. Compared with the Kuroshio water characterized by warm, salty water transported by the Kuroshio, the coastal and offshore waters significantly degenerated due to mixing with cold, fresh waters originated from the subarctic region: the former was affected by alongshore spread of the coastal Oyashio and the latter by direct intrusion of the new North Pacific Intermediate Water (NPIW) into the southern side of the Kuroshio current axis. Particularly the offshore water showed higher apparent oxygen utilization (AOU) in layers deeper than 26.9σθ while it showed lower AOU in layers shallower than 26.9σθ, which indicated that colder, fresher and higher AOU water was distributed on the southeastern side of the Kuroshio in deeper layers. In May 1998, the Oyashio-Kuroshio mixing ratio was estimated to be typically 2:8 for the offshore water on the assumption of isopycnal mixing. Moreover, northeastward volume transport of the Kuroshio water was obtained from geostrophic velocity fields adjusted to lowered acoustic Doppler current profiler (LADCP) data to yield 6.1 Sv at 26.6–26.9σθ and 11.8 Sv at 26.9–27.5 σθ. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The outflow from the Sea of Okhotsk to the North Pacific is important in characterising the surface-to-intermediate-depth water masses in the Pacific Ocean. The two basins are separated by the Kuril Islands with numerous straits, among which the Bussol and the Kruzenshterna Straits are deeper than 1000 m. The physics governing the transport between the two basins is complicated, but when the semidiurnal and diurnal tides are subtracted, the observed density and velocity structures across the Bussol Strait suggest a significant contribution from geostrophic balance. Using a two-layer model with the interface at 27.5σ θ , part of the upper layer transport that is not driven by tides is estimated using two previously unexplored data sets: outputs from the Ocean General Circulation Model for Earth Simulator (OFES), and historical hydrographic data. The Pacific water flows into the Sea of Okhotsk through the northeastern straits. The greatest inflow is through the Kruzenshtern Strait, but the OFES results show that the contributions from other shallower straits are almost half of the Kruzenshtern inflow. Similarly, the outflow from the Sea of Okhotsk is through the southwestern straits of the Kuril Islands with the largest Bussol Strait contributing 60% of the total outflow. The OFES and hydrographic estimates agree that the exchange is strongest in February to March, with an inflow of about −6 to −12 Sv (negative indicates the flow from the North Pacific, 1 Sv = 106 m3s−1), and an outflow from the Sea of Okhotsk of about +8 to +9 Sv (positive indicates the flow from the Sea of Okhotsk), which is weakest in summer (−3 to +1 Sv through the northeastern straits and +0 to +3 Sv through the southwestern straits). The estimated seasonal variation is consistent with a simple analytic model driven by the difference in sea surface height between the two basins.  相似文献   

11.
Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves are summarized. Observations using acoustic Doppler current profilers (ADCPs) suggest that the connectivity of mean-volume-transports is incomplete between the Tsushima (2.6 Sverdrups; 1 Sv = 106 m3/s) and Taiwan Straits (1.2 Sv). The remaining 1.4-Sv transport must be supplied by onshore Kuroshio intrusion across the East China Sea shelf break. The Yellow Sea Warm Current is not a persistent ocean current, but an episodic event forced by northerly winter monsoon winds. Nevertheless, the Cheju Warm Current is detected clearly regardless of season. In addition, the throughflow in the Taiwan Strait may be episodic in winter when northeasterly winds prevail. The throughflow strengthens (vanishes) under moderate (severe) northeasterly wind conditions. Using all published ADCP-derived estimates, the throughflow transport (V) in the Taiwan Strait is approximated as
where V 0, V 1, K are 1.2 Sv, 1.3 Sv, and 157 days, respectively, t is yearday, and T is 365.2422 days (i.e., 1 year). The difference between the throughflow transports in the Tsushima and Taiwan Straits suggests that the onshore Kuroshio intrusion across the shelf break increases from autumn to winter. The China Coastal Current has been observed in winter, but shelf currents are obscure in summer.  相似文献   

12.
OntheoriginoftheTsushimaWarmCurrentWater¥TangYuxiangandHeung-JaeLie(FirstinstituteOfOceanography,StateOceanicAdministration,Q...  相似文献   

13.
南海东北部春季海表pCO_2分布及海-气CO_2通量   总被引:1,自引:1,他引:0  
2013年南海东北部春季共享航次采用走航观测方式,现场测定了表层海水和大气的二氧化碳分压(pCO2)及相应参数。结合水文、化学等同步观测要素资料,对该海域pCO2的分布变化进行了探讨。结果表明,陆架区受珠江冲淡水、沿岸上升流及生物活动的影响,呈现CO2的强汇特征;吕宋海峡附近及吕宋岛西北附近海域受海表高温、黑潮分支"西伸"、吕宋岛西北海域上升流等因素影响,呈现强源特征。根据Wanninkhof的通量模式,春季整个南海东北部海域共向大气释放约4.25×104 t碳。  相似文献   

14.
Excess CO2 and pHexcess showing an increase in dissolved inorganic carbon and a decrease in pH from the beginning of the industrial epoch (middle of the 19th century) until the present time have been calculated in the intermediate water layer of the northwestern Pacific and the Okhotsk Sea. It is concluded that: (1) The Kuril Basin (Okhotsk Sea) and the Bussol' Strait areas are characterized by the greatest concentrations of excess CO2 at isopycnal surfaces due to the processes of formation and transformation of intermediate water mass. (2) The largest difference in excess CO2 concentration between the Okhotsk Sea and the western subarctic Pacific (about 8 µmol/kg) is found at the = 27.0. (3) The difference in excess CO2 between the western subarctic Pacific and subtropical regions is significant only in the upper part of the intermediate water layer ( = 26.7–27.0). (4) About 10% of the excess CO2 accumulation in the subtropical north Pacific is determined by water exchange with the subarctic Pacific and the Okhotsk Sea.  相似文献   

15.
Water masses in the East Sea are newly defined based upon vertical structure and analysis of CTD data collected in 1993–1999 during Circulation Research of the East Asian Marginal Seas (CREAMS). A distinct salinity minimum layer was found at 1500 m for the first time in the East Sea, which divides the East Sea Central Water (ESCW) above the minimum layer and the East Sea Deep Water (ESDW) below the minimum layer. ESCW is characterized by a tight temperature–salinity relationship in the temperature range of 0.6–0.12 °C, occupying 400–1500 m. It is also high in dissolved oxygen, which has been increasing since 1969, unlike the decrease in the ESDW and East Sea Bottom Water (ESBW). In the eastern Japan Basin a new water with high salinity in the temperature range of 1–5 °C was found in the upper layer and named the High Salinity Intermediate Water (HSIW). The origin of the East Sea Intermediate Water (ESIW), whose characteristics were found near the Korea Strait in the southwestern part of the East Sea in 1981 [Kim, K., & Chung, J. Y. (1984) On the salinity-minimum and dissolved oxygen-maximum layer in the East Sea (Sea of Japan), In T. Ichiye (Ed.), Ocean Hydrodynamics of the Japan and East China Seas (pp. 55–65). Amsterdam: Elsevier Science Publishers], is traced by its low salinity and high dissolved oxygen in the western Japan Basin. CTD data collected in winters of 1995–1999 confirmed that the HSIW and ESIW are formed locally in the Eastern and Western Japan Basin. CREAMS CTD data reveal that overall structure and characteristics of water masses in the East Sea are as complicated as those of the open oceans, where minute variations of salinity in deep waters are carefully magnified to the limit of CTD resolution. Since the 1960s water mass characteristics in the East Sea have changed, as bottom water formation has stopped or slowed down and production of the ESCW has increased recently.  相似文献   

16.
Hydrographic observations in Hidaka Bay, south of Hokkaido, Japan were carried out in late winter 1996 and 1997 to examine the spatial distributions and circulation features of two different water masses, i.e., Coastal Oyashio Water (COW) and Tsugaru Warm Water (TWW), and their modifications. It is known that COW is mostly composed of cold and low-salinity water of the melted drift ice coming from the Okhotsk Sea and flows into Hidaka Bay from winter to spring and TWW with high-salinity continuously supplies from the Tsugaru Strait to the North Pacific. Cold surface mixed layers (<26.2σθ, 0–100 m depth) were found mainly over the shelf slope, confirming that anti-clockwise flow of COW was formed. TWW was relatively high in salinity and low in potential vorticity, and had some patch-like water masses with a temperature and salinity maximum in the limited area in the further offshore at the deeper density levels of 26.6–26.8σθ. The fine structure of vertical temperature and salinity profiles appeared between TWW and COW is an indication of enhanced vertical mixing (double-diffusive mixing), as inferred from the estimated Turner angles. At a mouth of the Tsugaru Strait in late winter 1997, a significant thermohaline front between TWW and the modified COW was formed and a main path of TWW spreaded south along the Sanriku coast, probably as the bottom controlled flow. Hence, the patch-like TWW observed in late winter is isolated from the Tsugaru Warm Current and then rapidly modified due to a diapycnal mixing. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
This study examines the evolution of the Kuroshio Tropical Water (KTW) from the Luzon Strait to the I-Lan Ridge northeast of Taiwan. Historical conductivity temperature depth (CTD) profiles are analyzed using a method based on the calculation of the root mean square (rms) difference of the salinity along isopycnals. In combination with analysis of the distribution of the salinity maximum, this method enables water masses in the Kuroshio and the vicinity, to be tracked and distinguished as well as the detection of the areas where water masses are modified. Vertical and horizontal eddy diffusivities are then calculated from hydrographic and current velocity data to elucidate the dynamics underlying the KTW interactions with the surrounding water masses. Changes in KTW properties mainly occur in the southern half of the Luzon Strait, while moderate variations are observed east of Taiwan on the right flank of the Kuroshio. In spite of a front dividing the KTW from the South China Sea Tropical Water (SCSTW) on Kuroshio׳s western side, mixing between these two water masses seemingly occurs in the Luzon Strait. These water masses׳ interaction is not evident east of Taiwan. The estimation of eddy diffusivities yields high horizontal diffusivities (Kh~102 m2 s−1) all along the Kuroshio path, due to the high current shear along the Kuroshio׳s flanks. The vertical diffusivity approaches 10−3 m2 s−1, with the highest values in the southern Luzon Strait. Instabilities generated when the Kuroshio encounters the rough topography of this region may enhance both vertical and horizontal diffusivities there.  相似文献   

18.
During CREAMS expeditions, fCO2 for surface waters was measured continuously along the cruise tracks. The fCO2 in surface waters in summer varied in the range 320–440 μatm, showing moderate supersaturation with respect to atmospheric CO2. In winter, however, fCO2 showed under-saturation of CO2 in most of the area, while varying in a much wider range from 180 to 520 μatm. Some very high fCO2 values observed in the northern East Sea (Japan Sea) appeared to be associated with the intensive convection system developed in the area. A gas-exchange model was developed for describing the annual variation of fCO2 and for estimating the annual flux of CO2 at the air-sea interface. The model incorporated annual variations in SST, the thickness of the mixed layer, gas exchange associated with wind velocity, biological activity and atmospheric concentration of CO2. The model shows that the East Sea releases CO2 into the atmosphere from June to September, and absorbs CO2 during the rest of the year, from October through May. The net annual CO2 flux at the air-sea interface was estimated to be 0.032 (±0.012) Gt-C per year from the atmosphere into the East Sea. Water column chemistry shows penetration of CO2 into the whole water column, supporting a short turnover time for deep waters in the East Sea. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Direct current measurements by a shipboard and bottom-mounted acoustic Doppler current profiler and concurrent hydrographic observations with a CTD were conducted off southeastern Hokkaido, Japan, between January and May 2005 to reveal temporal variations in the current structure and volume transport of the Coastal Oyashio (CO). The CO, which has a baroclinic jet structure with southwestward speeds exceeding 90 cm s?1 and a width of 7–8 km, was associated with a surface-to-bottom density front and was formed on the offshore side of the shelf break. The volume transport of CO (T CO) was estimated by integrating the fluxes of lower-density water that was trapped against the coast along the density front represented by the 26.2 σ θ isopycnal line. This transport decreased monotonously from 0.79 Sv (1 Sv = 106 m3 s?1) in January to 0.21 Sv in March and subsequently to 0.12 Sv in May, possibly due to the decay of the East Sakhalin Current Water in the Okhotsk Sea. Accompanied by a decrease in T CO, the location of the jet structure associated with the density front moved toward the coast while the maximum speed of the jet decreased and the tilt of the front became more horizontal. Consequently, more saline offshore Oyashio water flowed into the deep part of the shelf area, and the current structure altered from relatively barotropic in winter to baroclinic in spring. This study is the first to estimate the observed volume transport of the CO from direct current measurements.  相似文献   

20.
Hydrographic data collected from Gulf of Aden since 1920 have been compiled to identify and refine the definitions of water masses in the Gulf of Aden (GA) and to describe their spatio-temporal variability. Four water masses have been identified based on their θ-S characteristics. The Red Sea Water (RSW) that flows from the Red Sea is the most prominent water in the GA; this occupies about 37% of the total volume of Gulf of Aden. The Gulf of Aden Surface Water (∼3%) forms as a mixture of local water and the water from western Arabian Sea during winter and Red Sea surface water during summer. The intermediate water, identified as Gulf of Aden Intermediate Water (GAIW), occupies about 9% of the total volume of GA; a characteristic salinity minimum is associated with it at σθ=26.50 kg m−3. The northward spread of sub-tropical subsurface water from the south appears to be the major source of GAIW. The bottom water, named Gulf of Aden Bottom Water, showed the least variability. It was formed due to the mixing of Red Sea Water and water of southern origin. Mixing triangles have been used to analyze the composition of water in the GA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号