首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We show that radiation emitted from material freely falling toward a black hole or neutron star cannot be blue-shifted as recently claimed by Cohen and Struble. The relativistic corrections to the classical apparent limb angle are given explicitly for spherical sources in collapse.  相似文献   

2.
We calculate the fields surrounding and the power radiated by a slowly rotating neutron star with a frozen-in magnetic dipole field, tilted with respect to the rotation axis, including the effects of spacetime curvature. The general relativistic effects suppress the radiated power relative to flat space by factors up to 1/7 for magnetic dipole radiation and 1/50 for the associated electric quadrupole radiation. This suppression exceeds that which might be expected from a surface red shift alone.Numerical results are found using power series which describe the behavior of electromagnetic fields exterior to a black hole or slowly rotating neutron star. These new solutions, appropriate near the stellar surface, converge for all radii exterior to the neutron star (or black hole) making analytic continuation of the power series unnecessary as well as allowing matching to a linear combination of asymptotic expansions, appropriate for large radius. Typical numerical values for these functions are presented as well as techniques for accelerating the convergence of their respective power series which make them attractive alternatives to numerical integration.Supported in part by NSF Grant PHY 77 28356.  相似文献   

3.
A gravitationless black hole model is proposed in accord with a five-dimensional fully covariant Kaluza-Klein (K-K) theory with a scalar field, which unifies the four-dimensional Einsteinian general theory of relativity and Maxwellian electromagnetic theory. It is shown that a dense compact core of a star, when it collapses to a critical density, suddenly turns off or shields its gravitational field. The core, if its mass exceeds an upper limit, directly collapses into a black hole. Otherwise, the extremely large pressure, as the gravity is turned off, immediately stops the collapse and drives the mantle material of supernova moving outward, which leads to an impulsive explosion and forms a neutron star as a remnant. A neutron star can further evolve into a black hole when it accretes enough matter from a companion star such that the total mass exceeds a lower limit. The black hole in the K-K theory is gravitationless at the surface because the scalar field is infinitely strong, which varies the equivalent gravitational constant to zero. In general, a star, at the end of its evolution, is relatively harder to collapse into a gravitationless K-K black hole than a strong gravitational Schwarzschild black hole. This is consistent with the observation of some very massive stars to form neutron stars rather than expected black holes. In addition, the gravitationless K-K black hole should be easier to generate jets than a Schwarzschild black hole.  相似文献   

4.
We show that observable blueshifted radiation can emanate from material freely falling toward compact objects. Using a fully relativistic treatment and considering possible blocking of photon trajectories by a neutron star or black hole, we demonstrate that blueshifts are observable.Supported in part by the National Science Foundation.  相似文献   

5.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

6.
We investigate the stochastic gravitational wave background that results from neutron star birth throughout the Universe. The neutron star birth rate, as a function of redshift, is calculated using an observation-based model for the evolving star formation rate, together with an estimate of the rate of core-collapse supernovae in the nearby Universe and an estimate of the neutron star/black hole branching ratio. Using three sample waveforms, based on numerical models of stellar core collapse by Zwerger & Müller, the spectral flux density, spectral strain, spectral energy density and duty cycle of the background have been computed. Our results show, contrary to recent claims, that the spectrum of the stochastic background clearly reflects the different physics in the core-collapse models. For a star formation model that is corrected for dust extinction, the neutron star formation rate throughout the Universe is high enough to result in a nearly continuous background of gravitational waves, with spectral features that can be related to emission mechanisms.  相似文献   

7.
We review our current knowledge of the disk-jet coupling in neutron star X-ray binaries. We compare neutron star and black hole X-ray binaries, by means of radio and X-ray observations, in order to understand the role played in the production of the jet, by characteristics proper of the accreting compact object involved: the existence of a solid surface, the presence of an ergosphere/event horizon, the strength of the magnetic field, the spin of the compact object.  相似文献   

8.
GRB 170817A was confirmed to be associated with GW170817, which was produced by a neutron star - neutron star merger. It indicates that at least some short gamma-ray bursts come from binary neutron star mergers. Theoretically, it is widely accepted that short gamma-ray bursts can be produced by two distinctly different mechanisms, binary neutron star mergers and neutron star - black hole mergers. These two kinds of bursts should be different observationally due to their different trigger mechanisms. Motivated by this idea, we collect a universal data set constituted of 51 short gamma-ray bursts observed by Swift/BAT, among which 14 events have extended emission component. We study the observational features of these 51 events statistically. It is found that our samples consist of two distinct groups. They clearly show a bimodal distribution when their peak photon fluxes at 15–150 keV band are plotted against the corresponding fluences. Most interestingly, all the 14 short bursts with extended emission lie in a particular region of this plot. When the fluences are plotted against the burst durations, short bursts with extended emission again tend to concentrate in the long duration segment. These features strongly indicate that short gamma-ray bursts really may come from two distinct types of progenitors. We argue that those short gamma-ray bursts with extended emission come from the coalescence of neutron stars, while the short gamma-ray bursts without extended emission come from neutron star - black hole mergers.  相似文献   

9.
We investigate the effect of mass on the radiation of a relativistically rotating neutron star. The method of Haxton and Ruffini is used to find the radiation flux from a relativistically rotating neutron star. By extending the idea of a point charge orbiting a black hole, a pulsar is modeled by simulating a relativistically rotating magnetic dipole embedded within a neutron star. The resulting equations retain the mass of the neutron star, thereby introducing effects of general relativity on the radiation from the dipole. We present exact solutions to the modeling equation as well as plots of energy spectra at different rotational velocities and inclination angles. We also present plots of total energy versus mass and two tables containing a comparison of energy ratios. These demonstrate that, for realistic neutron star masses, the high speed enhancement of the radiation is always more than compensated by the frame dragging effect, leading to a net reduction of radiation from the star. It is found that the inclusion of mass not only reduced the special relativistic enhancement, but negates it entirely as the mass of the neutron star approaches the mass limit.  相似文献   

10.
I discuss the nature of the compact X-ray source in the center of the supernova remnant RCW 103. Several models, based on the accretion onto a compact object are briefly discussed. I show that it is more likely that the central X-ray source is an accreting neutron star than an accreting black hole. I also argue that models of a disrupted binary system consisting of an old accreting neutron star and a new one observed as a 69-ms pulsar are most favored. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Helium star–compact object binaries, and helium star–neutron star binaries in particular, are widely believed to be the progenitors of the observed double-neutron-star systems. In these, the second neutron star is presumed to be the compact remnant of the helium star supernova. In this paper, the observational implications of such a supernova are discussed, and in particular are explored as a candidate γ-ray burst mechanism. In this scenario, the supernova results in a transient period of rapid accretion on to the compact object, extracting via magnetic torques its rotational energy at highly super-Eddington luminosities in the form of a narrowly beamed, strongly electromagnetically dominated jet. Compton scattering of supernova photons advected within the ejecta, and photons originating at shocks driven into the ejecta by the jet, will cool the jet and can produce the observed prompt emission characteristics, including the peak-inferred isotropic energy relation, X-ray flash characteristics, subpulse light curves, energy-dependent time lags and subpulse broadening, and late time spectral softening. The duration of the burst is limited by the rate of Compton cooling of the jet, eventually creating an optically thick, moderately relativistically expanding fireball that can produce the afterglow emission. If the black hole or neutron star stays bound to a compact remnant, late term light curve variability may be observed as in SN 2003dh.  相似文献   

12.
The phenomenon of pulsars is considered as the evidence for existence of black holes in neutron and quark stars. Within the framework of the degenerated star model with black-hole interior the existence of millisecond pulsars withP<0.5 ms and single pulsars with negative derivative of the period were predicted. The anisotropic accretion of neutron (or quark) star matter on to a rotating black hole leads to the formation of directed radiation (projector), which makes heat spots at surface (volcanos), that explains the nature of pulsating radiation and the complicated structure of impulses. This model gives both the mechanism of self-acceleration of degenerated star rotation (mass accretion on to the internal black hole) producing millisecond pulsars and also the mechanism of significant deceleration of rotation (ejection of neutral mass through a volcanic crater), leading to long-periodic X-ray pulsars. The black hole produces high densities and temperatures of the degenerated star mass that transforms gradually the neutron star into quark star (Cygnus X-3).  相似文献   

13.
The gamma-ray burst GR170817 A associated with GW170817 is subluminous and subenergetic compared with other typical short gamma-ray bursts. It may be due to a relativistic jet viewed off-axis, or a structured jet or cocoon emission. Giant flares from magnetars may possibly be ruled out.However, the luminosity and energetics of GRB 170817 A are coincident with those of magnetar giant flares. After the coalescence of a binary neutron star, a hypermassive neutron star may be formed. The hypermassive neutron star may have a magnetar-strength magnetic field. During the collapse of this hypermassive neutron star, magnetic field energy will also be released. This giant-flare-like event may explain the luminosity and energetics of GRB 170817 A. Bursts with similar luminosity and energetics are expected in future neutron star-neutron star or neutron star-black hole mergers.  相似文献   

14.
The collapse of massive stars may result in the formation of accreting black holes in their interiors. The accreting stellar matter may advect substantial magnetic flux on to the black hole and promote the release of its rotational energy via magnetic stresses (the Blandford–Znajek mechanism). In this paper we explore whether this process can explain the stellar explosions and relativistic jets associated with long gamma-ray bursts. In particular, we show that the Blandford–Znajek mechanism is activated when the rest mass–energy density of matter drops below the energy density of the magnetic field in the near vicinity of the black hole (within its ergosphere). We also discuss whether such a strong magnetic field is in conflict with the rapid rotation of the stellar core required in the collapsar model, and suggest that the conflict can be avoided if the progenitor star is a component of a close binary. In this case the stellar rotation can be sustained via spin-orbital interaction. In an alternative scenario the magnetic field is generated in the accretion disc, but in this case the magnetic flux through the black hole ergosphere is not expected to be sufficiently high to explain the energetics of hypernovae by the BZ mechanism alone. However, this energy deficit can be recovered via the additional power provided by the disc.  相似文献   

15.
The evolution of high-and low-mass X-ray binaries (HMXB and LMXB) into different types of binary radio pulsars, the ‘high-mass binary pulsars’(HMBP) and ‘low-mass binary pulsars’ (LMBP) is discussed. The HMXB evolve either into Thorne-Zytkow objects or into short-period binaries consisting of a helium star plus a neutron star (or a black hole), resembling Cygnus X-3. The latter systems evolve (with or without a second common-envelope phase) into close binary pulsars, in which the companion of the pulsar may be a massive white dwarf, a neutron star or a black hole ( some final systems may also consist of two black holes). A considerable fraction of the systems may also be disrupted in the second supernova explosion. We discuss the possible reasons why the observed numbers of double neutron stars and of systems like Cyg X-3 are several orders of magnitude lower than theoretically predicted. It is argued that the observed systems form the tip of an iceberg of much larger populations of unobserved systems, some of which may become observable in the future. As to the LMBP, we consider in some detail the origins of systems with orbital periods in the range 1–20 days. We show that to explain their existence, losses of orbital angular momentum (e.g., by magnetic braking) and in a number of cases: also of mass, have to be taken into account. The masses of the low-mass white dwarf companions in these systems can be predicted accurately. We notice a clear correlation between spin period and orbital period for these systems, as well as a clear correlation between pulsar magnetic field strength and orbital period. These relations strongly suggest that increased amounts of mass accreted by the neutron stars lead to increased decay of their magnetic fields: we suggest a simple way to understand the observed value of the ‘bottom’ field strengths of a few times 108 G. Furthermore, we find that the LMBP-systems in which the pulsar has a strong magnetic field (> 1011 G) have an about two orders of magnitude larger birth rate (i.e., about 4 × 10-4 yr-1 in the Galaxy) than the systems with millisecond pulsars (which have B < 109 G). Using the observational fact that neutron stars receive a velocity kick of ∼450 km/s at birth, we find that some 90% of the potential progenitor systems of the strong-field LMBP must have been disrupted in the Supernovae in which their neutron stars were formed. Hence, the formation rate of the progenitors of the strong-field LMBP is of the same order as the galactic supernova rate (4 × 10-3 yr-1). This implies that a large fraction of all Supernovae take place in binaries with a close low-mass (< 2.3 M⊙) companion.  相似文献   

16.
There are remarkable similarities between the rapid X-ray variability of low-magnetic field neutron stars in low mass X-ray binaries, and that of black holes. In particular at frequencies < 100 Hz, their power spectra can be strikingly similar. The highest frequency phenomena (kilohertz QPOs, black hole high-frequency QPOs and neutron star hectohertz QPOs) are the ones that show most differences, perhaps because they originate closest to the compact object. Most variability components vary in frequency in correlation with one another, and the correlations once again are very similar across neutron stars and black holes – some extend even to white dwarfs. Although this does not strictly require that all phenomena whose frequencies are involved are caused by the same physics in all three source types, this does indicate that basic properties of the accretion flow which are the same in all three source types play an important role in generating at least some of the frequencies.  相似文献   

17.
The connection between long Gamma Ray Bursts (GRBs) and Supernovae (SNe) have been established through the well observed cases. These events can be explained as the prompt collapse to a black hole (BH) of the core of a massive star (M≳40M ). The energies of these GRB-SNe were much larger than those of typical SNe, thus these SNe are called Hypernovae (HNe). The case of SN 2006aj/GRB060218 appears different: the GRB was weak and soft, being called an X-Ray Flash (XRF); the SN is dimmer and has very weak oxygen lines. The explosion energy of SN 2006aj was smaller, as was the ejected mass. In our model, the progenitor star had a smaller mass than other GRB-SNe (M∼20M ), suggesting that a neutron star (NS) rather than a BH was formed. If the nascent NS was strongly magnetized as a magnetar and rapidly spinning, it may launch a weak GRB or an XRF. The peculiar light curve of Type Ib SN 2005bf may also be powered by a magnetar. The blue-shifted nebular emission lines of 2005bf indicate the unipolar explosion possibly related to standing accretion shock instability (SASI) associated with a newly born NS.  相似文献   

18.
Among the variability behaviours exhibited by neutron star systems are the so-called 'horizontal branch oscillations' (HBO, with frequencies ≈50 Hz), the 'lower-frequency kHz quasi-periodic oscillation' (QPO) and the 'upper-frequency kHz QPO', with the latter two features being separated in frequency by an amount comparable to, but varying slightly from, the suspected spin-frequency of the neutron star. Recently, Psaltis, Belloni & van der Klis have suggested that there exists a correlation between these three frequencies that, when certain identifications of variability features are made, even encompasses black hole sources. We consider this hypothesis by reanalysing a set of GX 339−4 observations. The power spectral density (PSD) constructed from a composite of seven separate, but very similar, observations shows evidence for three broad peaks in the PSD. If the peak frequencies of these features are identified with QPO, then their frequencies approximately fit the correlations suggested by Psaltis, Belloni, & van der Klis. We also reanalyse a Cyg X-1 observation and show that the suggested QPO correlation may also hold, but that complications arise when the QPOs (which, in reality, are fairly broad features) are considered as a function of energy band. These fits suggest the existence of at least three separate, independent physical processes in the accretion flow, a hypothesis that is also supported by consideration of the Fourier frequency-dependent time lags and coherence function between variability in different energy bands. If these variability features have a common origin in neutron star and black hole systems, then 'beat frequency models' of kHz QPO in neutron star systems are called into question.  相似文献   

19.
Hydrodynamic simulations of the merger of stellar mass black hole-neutron star binaries are compared with mergers of binary neutron stars. The simulations are Newtonian but take into account the emission and back-reaction of gravitational waves. The use of a physical nuclear equation of state allows us to include the effects of neutrino emission. For low neutron star-to-black hole mass ratios, the neutron star transfers mass to the black hole during a few cycles of orbital decay and subsequent widening before finally being disrupted, whereas for ratios near unity the neutron star is destroyed during its first approach. A gas mass between approximately 0.3 and approximately 0.7 M middle dot in circle is left in an accretion torus around the black hole and radiates neutrinos at a luminosity of several times 1053 ergs s-1 during an estimated accretion timescale of about 0.1 s. The emitted neutrinos and antineutrinos annihilate into e+/- pairs with efficiencies of 1%-3% and rates of up to approximately 2x1052 ergs s-1, thus depositing an energy Enunu&d1; less, similar1051 ergs above the poles of the black hole in a region that contains less than 10-5 M middle dot in circle of baryonic matter. This could allow for relativistic expansion with Lorentz factors around 100 and is sufficient to explain apparent burst luminosities Lgamma approximately Enunu&d1;&solm0;&parl0;fOmegatgamma&parr0; up to several times 1053 ergs s-1 for burst durations tgamma approximately 0.1-1 s, if the gamma emission is collimated in two moderately focused jets in a fraction fOmega=2deltaOmega&solm0;&parl0;4pi&parr0; approximately 1&solm0;100-(1/10) of the sky.  相似文献   

20.
I review the evidence for stellar mass black holes in the Galaxy. The unique properties of the soft X-ray transient (SXTs) have provided the first opportunity for detailed studies of the mass-losing star in low-mass X-ray binaries. The large mass functions of these systems imply that the compact object has a mass greater than the maximum mass of a neutron star, strengthening the case that they contain black holes. The results and techniques used are discussed. I also review the recent study of a comparison of the luminosities of black hole and neutron star systems which has yielded compelling evidence for the existence of event horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号