首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Under strong seismic excitation, a rigid block will uplift from its support and undergo rocking oscillations which may lead to (complete) overturning. Numerical and analytical solutions to this highly nonlinear vibration problem are first highlighted in the paper and then utilized to demonstrate how sensitive the overturning behavior is not only to the intensity and frequency content of the base motion, but also to thc presence of strong pulses, to their detailed sequence, and even to their asymnletry. Five idealised pulses capable of representing "rupture-directivity" and "fling" affected ground motions near the fault, are utilized to this end : the one-cycle sinus, the one-cycle cosinus, the Ricker wavelet, the truncated (T)-Ricker wavelet, and the rectangular pulse "Overturning-Acceleration Amplification" and "Rotation" spectra are introduced and presented. Artificial neural network modeling is then developed as an alternative numerical solution. The neural network analysis leads to closed-form expressions for predicting the overturning failure or survival of a rigid block, as a function of its geometric properties and the characteristics of the excitation time history. The capability of the developed neural network modeling is validated through comparisons with the numerical solution. The derived analytical expressions could also serve as a tool for assessing the destructiveness of near-fault ground motions, for structures sensitive to rocking with foundation uplift.  相似文献   

3.
In this paper the rocking response of slender/rigid structures stepping on a viscoelastic foundation is revisited. The study examines in depth the motion of the system with a non‐linear analysis that complements the linear analysis presented in the past by other investigators. The non‐linear formulation combines the fully non‐linear equations of motion together with the impulse‐momentum equations during impacts. The study shows that the response of the rocking block depends on the size, shape and slenderness of the block, the stiffness and damping of the foundation and the energy loss during impact. The effect of the stiffness and damping of the foundation system along with the influence of the coefficient of restitution during impact is presented in rocking spectra in which the peak values of the response are compared with those of the rigid block rocking on a monolithic base. Various trends of the response are identified. For instance, less slender and smaller blocks have a tendency to separate easier, whereas the smaller the angle of slenderness, the less sensitive the response to the flexibility, damping and coefficient of restitution of the foundation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A new finite element model to analyze the seismic response of deformable rocking bodies and rocking structures is presented. The model comprises a set of beam elements to represent the rocking body and zero‐length fiber cross‐section elements at the ends of the rocking body to represent the rocking surfaces. The energy dissipation during rocking motion is modeled using a Hilber–Hughes–Taylor numerically dissipative time step integration scheme. The model is verified through correct prediction of the horizontal and vertical displacements of a rigid rocking block and validated against the analytical Housner model solution for the rocking response of rigid bodies subjected to ground motion excitation. The proposed model is augmented by a dissipative model of the ground under the rocking surface to facilitate modeling of the rocking response of deformable bodies and structures. The augmented model is used to compute the overturning and uplift rocking response spectra for a deformable rocking frame structure to symmetric and anti‐symmetric Ricker pulse ground motion excitation. It is found that the deformability of the columns of a rocking frame does not jeopardize its stability under Ricker pulse ground motion excitation. In fact, there are cases where a deformable rocking frame is more stable than its rigid counterpart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Results obtained for rigid structures suggest that rocking can be used as seismic response modification strategy. However, actual structures are not rigid: structural elements where rocking is expected to occur are often slender and flexible. Modeling of the rocking motion and impact of flexible bodies is a challenging task. A non‐linear elastic viscously damped zero‐length spring rocking model, directly usable in conventional finite element software, is presented in this paper. The flexible rocking body is modeled using a conventional beam‐column element with distributed masses. This model is verified by comparing its pulse excitation response to the corresponding analytical solution and validated by overturning analysis of rocking blocks subjected to a recorded ground motion excitation. The rigid rocking block model provides a good approximation of the seismic response of solitary flexible columns designed to uplift when excited by pulse‐like ground motions. Guidance for development of rocking column models in ordinary finite element software is provided. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Allowing structures to uplift modifies their seismic response; uplifting works as a mechanical fuse and limits the forces transmitted to the superstructure. However, engineers are generally reluctant to construct an unanchored structure because the system could overturn due to lacking redundancy. Using a safety factor for the design of a flat rocking foundation, ie, designing it wider, goes against the main idea of this seismic modification method as the force demand for the structure increases. We propose to extend the flat base of a rocking block with curved extensions to better protect the block from overturning, yet not prevent its uplifting. After investigating the seismic response of such rocking blocks, we extend the study to investigate the seismic response of rolling and rocking frames comprising columns with curved base extensions. The equations of motion are derived, time history analyses are performed, and rocking spectra are constructed. We draw two important conclusions: (a) the response of a class of rocking oscillators with curved base extensions is equivalent to the response of a flat-base rocking oscillators of the same slenderness, yet larger size; (b) the rotation demand on two negative stiffness rocking and rolling oscillators with the same uplifting acceleration and the same size is roughly the same as long as the rocking oscillators are not close to overturning. The above findings can serve as a basis for the rational seismic design of structures supported on rocking columns with curved bases, a system that has been used since the 1960s.  相似文献   

7.
An approximate analytical method is presented for the dynamic response of a rigid cylindrical foundation embedded in a poroelastic soil layer under the excitation of a time-harmonic rocking moment. The soil underlying the foundation base is represented by a single-layered poroelastic soil based on rigid bedrock while the soil along the side of the foundation is modeled as an independent poroelastic stratum composed of a series of infinitesimally thin layers. The accuracy of the present solution is verified by comparisons with existing solutions obtained from other researchers. Numerical results for the rocking dynamic impedance and dynamic response factor are presented to demonstrate the influence of nondimensional frequency of excitation, poroelastic soil layer thickness, depth ratio of the foundation and internal friction of the poroelastic soil.  相似文献   

8.
A freestanding rigid block subjected to base excitation can exhibit complicated motion described by five response modes: rest, pure rocking, pure sliding, combined sliding-rocking, and free flight. Previous studies on the dynamics of a rocking block have assumed that the block does not interact with neighboring objects. However, there are many applications in which the block may start or come in contact with an adjacent boundary during its motion, for example, a bookcase or cabinet colliding with a partition wall in an earthquake. This paper investigates the dynamics of a sliding-rocking block considering impact with an adjacent wall. A model is developed in which the base and wall are assumed rigid, and impact is treated using the classical impulse and momentum principle. The model is verified by comparing its predictions in numerical simulations against those of an existing general-purpose rigid-body model in which impact is treated using a viscoelastic impact model. The developed model is used to investigate the effects of different parameters on the stability of a block subjected to analytical pulse excitations. It is found that wall placement (left or right) has a dominant effect on the shape of the overturning acceleration spectra for pulse excitations. In general, decreasing the gap distance, base friction coefficient, and wall coefficient of restitution enhance the stability of the block. Similar observations are made when evaluating the overturning probability of a block using earthquake floor motions.  相似文献   

9.
Shaking table tests were conducted to investigate the response of rectangular wooden blocks and block assemblies of various sizes and slenderness to harmonic and earthquake base excitation. The shaking tests were followed by an analytical and a numerical study of response of single blocks and block assemblies. The analytical study was aimed at establishing criteria for the initiation of rocking and of overturning in response to harmonic base motion and consisted of solving numerically the differential equations of motion of a rigid block on a rigid foundation. The numerical study, in the course of which the response of both single blocks and block assemblies was examined, was implemented by means of the Distinct Element Method (DEM). Prior to the DE simulation of actual shaking tests, preliminary analyses were conducted to confirm numerical stability and to evaluate material and damping parameters. Comparing the recorded time histories with those given by the analytical study and the DE simulation, good agreement was found. The distinct element model in use appeared to follow the highly non-linear motion of rigid body assemblies faithfully to reality. On the basis of the results, provided that the necessary parameters are carefully estimated, the employed DE model can be regarded as an appropriate tool to simulate response of rigid body assemblies to dynamic base excitation.  相似文献   

10.
Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the ‘right’ moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L’Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.  相似文献   

11.
Rocking motion, established in either the superstructure in the form of a 2‐point stepping mechanism (structural rocking) or resulting from rotational motion of the foundation on the soil (foundation rocking), is considered an effective, low‐cost base isolation technique. This paper unifies for the first time the 2 types of rocking motion under a common experimental campaign, so that on the one hand, structural rocking can be examined under the influence of soil and on the other, foundation rocking can be examined under the influence of a linear elastic superstructure. Two building models, designed to rock above or below their foundation level so that they can reproduce structural and foundation rocking respectively, were tested side by side in a centrifuge. The models were placed on a dry sandbed and subjected to a sequence of earthquake motions. The range of rocking amplitude that is required for base isolation was quantified. Overall, it is shown that the relative density of sand does not influence structural rocking, while for foundation rocking, the change from dense to loose sand can affect the time‐frequency response significantly and lead to a more predictable behaviour.  相似文献   

12.
Fluctuations in axial load imposed on a rocking footing will affect its moment capacity, the shape of its moment–rotation hysteresis, and potentially the system's seismic performance. Structural asymmetry increases the likelihood of axial load variation during earthquake excitations. To investigate this issue, a unique centrifuge testing program was carried out on low‐rise frame–wall–rocking foundation systems. In this paper, the seismic behaviors of asymmetric and symmetric models from this test program are systematically compared. Experimental results reveal that placing the lateral force resisting shear wall outboard produces significant axial load fluctuation, which in turn greatly deteriorate the lateral load‐carrying capacity of a foundation rocking dominated frame–wall system, particularly in its weak direction. However, it strengthens the system when loading is towards the shear wall, leading to a highly asymmetric hysteretic response. During earthquake loading, all asymmetric rocking foundation systems observe smaller peak roof accelerations, but larger peak and permanent roof drifts compared with the symmetric systems. Despite these differences in response, the axial load fluctuation and structural asymmetry do not significantly change the relative energy dissipated by the rocking foundations and inelastic structural components within each frame–wall–rocking foundation model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one-to-one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance.  相似文献   

14.
Predicting the rocking response of structures to ground motion is important for assessment of existing structures, which may be vulnerable to uplift and overturning, as well as for designs which employ rocking as a means of seismic isolation. However, the majority of studies utilize a single rocking block to characterize rocking motion. In this paper, a methodology is proposed to derive equivalence between the single rocking block and various rocking mechanisms, yielding a set of fundamental rocking parameters. Specific structures that have exact dynamic equivalence with a single rocking block, are first reviewed. Subsequently, approximate equivalence between single and multiple block mechanisms is achieved through local linearization of the relevant equations of motion. The approximation error associated with linearization is quantified for three essential mechanisms, providing a measure of the confidence with which the proposed methodology can be applied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
While limiting-equilibrium Mononobe–Okabe type solutions are still widely used in designing rigid gravity and flexible cantilever retaining walls against earthquakes, elasticity-based solutions have been given a new impetus following the analytical work of Veletsos and Younan [23]. The present paper develops a more general finite-element method of solution, the results of which are shown to be in agreement with the available analytical results for the distribution of dynamic earth pressures on rigid and flexible walls. The method is then employed to further investigate parametrically the effects of flexural wall rigidity and the rocking base compliance. Both homogeneous and inhomogeneous retained soil is considered, while a second soil layer is introduced as the foundation of the retaining system. The results confirm the approximate convergence between Mononobe–Okabe and elasticity-based solutions for structurally or rotationally flexible walls. At the same time they show the beneficial effect of soil inhomogeneity and that wave propagation in the underlying foundation layer may have an effect that cannot be simply accounted for with an appropriate rocking spring at the base.  相似文献   

16.
Unbonded posttensioning anchors a rocking structural member to its foundation and produces its controlled rocking response when the member undergoes seismic action. Unlike rocking of free-standing bodies, little attention has been given to the dynamic behavior of these controlled rocking members. This paper utilizes experiments of concrete structural members with unbonded posttensioning, varying member geometries, and levels of initial posttensioning force to (a) characterize the associated impact energy loss and (b) improve modeling of controlled rocking motions. Experimental results show that impact energy loss in controlled rocking members can be captured accurately using the coefficient of restitution (r) approach of the modified simple rocking model (MSRM). Based on the MSRM, a controlled rocking model (CRM) is developed that additionally accounts for the variations in contact length at the member-to-foundation (rocking) interface. The CRM reproduces the experimental responses of controlled rocking members with good accuracy and is used to investigate controlled rocking motions under horizontal base excitations.  相似文献   

17.
This investigation deals with the rocking response of rigid blocks subjected to earthquake ground motion. A numerical procedure and computer program are developed to solve the non-linear equations of motion governing the rocking motion of rigid blocks on a rigid base subjected to horizontal and vertical ground motion. The response results presented show that the response of the block is very sensitive to small changes in its size and slenderness ratio and to the details of ground motion. Systematic trends are not apparent: The stability of a block subjected to a particular ground motion does not necessarily increase monotonically with increasing size or decreasing slenderness ratio. Overturning of a block by a ground motion of particular intensity does not imply that the block will necessarily overturn under the action of more intense ground motion. In contrast, systematic trends are observed when the problem is studied from a probabilistic point of view with the ground motion modelled as a random process. The probability of a block exceeding any response level, as well as the probability that a block overturns, increases with increase in ground motion intensity, increase in slenderness ratio of the block and decrease in its size. It is concluded that probabilistic estimates of the intensity of ground shaking may be obtained from its observed effects on monuments, minarets, tombstones and other similar objects provided suitable data in sufficient quantity is available, and the estimates are based on probabilistic analyses of the rocking response of rigid blocks, considering their non-linear dynamic behaviour.  相似文献   

18.
The seismic response of rocking frames that consist of a rigid beam freely supported on rigid freestanding rectangular piers has received recent attention in the literature. Past studies have investigated the special case where, upon planar rocking motion, the beam maintains contact with the piers at their extreme edges. However, in many real scenarios, the beam‐to‐pier contact lies closer to the center of the pier, affecting the overall stability of the system. This paper investigates the seismic response of rocking frames under the more general case which allows the contact edge to reside anywhere in‐between the center of the pier and its extreme edge. The study introduces a rocking block model that is dynamically equivalent to a rocking frame with vertically symmetric piers of any geometry. The impact of top eccentricity (ie, the distance of the contact edge from the pier's vertical axis of symmetry) on the seismic response of rocking frames is investigated under pulse excitations and earthquake records. It is concluded that the stability of a top‐heavy rocking frame is highly influenced by the top eccentricity. For instance, a rocking frame with contacts at the extreme edges of the piers can be more seismically stable than a solitary block that is identical to one of the frame's piers, while a rocking frame with contacts closer to the centers of the piers can be less stable. The concept of critical eccentricity is introduced, beyond which the coefficient of restitution contributes to a greater reduction in the response of a frame than of a solitary pier.  相似文献   

19.
20.
Rocking (overturning) instability analyses of rigid blocks based on the assumption that the friction between the block and the ground is sufficiently large to exclude the effect of sliding, are reconsidered by including the effect in question. Both modes of overturning instability – without impact and after one impact – are thoroughly discussed in connection with small sliding, whose value depends on the values of kinetic (dry) friction coefficient and the external frequency excitation. Using an energy approach the analytical derivation of the nonlinear differential equations of motion of free-standing rigid blocks under one-sine ground pulse including the effect of sliding, are comprehensively established. The serious difficulties in solving this problem on one hand the change of the kinetic friction coefficient during the motion and on the other hand the reliable evaluation of the actual friction effect when rocking is included, are effectively confronted. This is achieved through a reliable approximation of an equivalent (reduced) coefficient assuming that the major part of friction takes place from the initiation of motion and terminates shortly after the onset of rocking. In cases of slender blocks closed form solutions for overturning due to simultaneous rocking–sliding without or after one impact, are conveniently derived. Among other findings, it was explored that the single block in question for small values of the external frequency (long periods of excitation) the sliding effect is beneficial (stabilizing the block), while for large values of external frequency this effect is detrimental (destabilizing the block).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号