首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A review is presented of the progress that has been made in the last 3 years towards quantifying the properties of high-mass detached and semi-detached eclipsing binaries in Local Group galaxies. Comparisons between these observational results on masses, radii, temperatures and luminosities for stars in detached binaries and evolution models for single stars at the appropriate metallicity are found to be very good. New evolution models for interacting binaries passing through case A mass exchange are being calculated, and indicate a requirement for some mass loss to find agreement with the observational data. The observational data on such semi-detached systems show similar properties to those in the Milky Way galaxy. The directly-determined distances to all these eclipsing binaries are proving to be most valuable for strengthening the distance scale amongst the Local Group galaxies.  相似文献   

2.
This paper argues that the Milky Way galaxy is probably the largest member of the Local Group. The evidence comes from estimates of the total mass of the Andromeda galaxy (M31) derived from the three-dimensional positions and radial velocities of its satellite galaxies, as well as the projected positions and radial velocities of its distant globular clusters and planetary nebulae. The available data set comprises 10 satellite galaxies, 17 distant globular clusters and nine halo planetary nebulae with radial velocities. We find that the halo of Andromeda has a mass of together with a scalelength of 90 kpc and a predominantly isotropic velocity distribution. For comparison, our earlier estimate for the Milky Way halo is Although the error bars are admittedly large, this suggests that the total mass of M31 is probably less than that of the Milky Way . We verify the robustness of our results to changes in the modelling assumptions and to errors caused by the small size and incompleteness of the data set.
Our surprising claim can be checked in several ways in the near future. The numbers of satellite galaxies, planetary nebulae and globular clusters with radial velocities can be increased by ground-based spectroscopy, while the proper motions of the companion galaxies and the unresolved cores of the globular clusters can be measured using the astrometric satellites Space Interferometry Mission ( SIM ) and Global Astrometric Interferometer for Astrophysics ( GAIA ). Using 100 globular clusters at projected radii 20 R 50 kpc with both radial velocities and proper motions, it will be possible to estimate the mass within 50 kpc to an accuracy of 20 per cent. Measuring the proper motions of the companion galaxies with SIM and GAIA will reduce the uncertainty in the total mass caused by the small size of the data set to 22 per cent.  相似文献   

3.
We have explored the hypothesis that the total mass ratio of the two main galaxies of the Local Group, the Andromeda galaxy (M31) and the Milky Way (MW), can be constrained by measuring the tidal force induced by the surrounding mass distribution, M31 included, on the MW. We argue that the total mass ratio between the two groups can be approximated, at least qualitatively, by finding the tidal radius where the internal binding force of the MW balances the external tidal force acting on it. Since M31 is the massive tidal 'perturber' of the local environment, we have used a wide range of M31 to MW mass-ratio combinations to compute the corresponding tidal radii. Of these, only a few match the distance of the zero-tidal shell, i.e. the shell identified observationally by the outermost dwarf galaxies which do not show any sign of tidal effects. This is the key to constraining the best mass-ratio interval of the two galaxies. Our results favour a solution where the mass ratio ranges from 2 to 3, implying a massive predominance of M31.  相似文献   

4.
Using the “Updated Nearby Galaxy Catalog”, we consider different properties of companion galaxies around luminous hosts in the Local Volume. The data on stellar masses, linear diameters, surface brightnesses, HI‐richness, specific star formation rate (sSFR), and morphological types are discussed for members of the nearest groups, including the Milky Way and M 31 groups, as a function of their separation from the hosts. Companion galaxies in groups tend to have lower stellar masses, smaller linear diameters, and fainter mean surface brightnesses as the distance to their host decreases. The hydrogen‐to‐stellar mass ratio of the companions increases with their linear projected separation from the dominant luminous galaxy. This tendency is more expressed around the bulge‐dominated hosts. While linear separation of the companions decreases, their mean sSFR becomes lower, accompanied with the increasing sSFR scatter. the typical linear projected separation of dSphs around the bulge‐dominated hosts, 350 kpc, is substantially larger than that around the disk‐dominated ones, 130 kpc. This difference probably indicates the presence of larger hot/warm gas haloes around the early‐type host galaxies. The mean fraction of dSph (quenched) companions in the 11 nearest groups as a function of their projected separation Rp can be expressed as ƒ(E) = (0.55–0.69)×Rp. The fraction of dSphs around the Milky Way and M 31 looks much higher than in other nearby groups because the quenching efficiency dramatically increases towards the ultra‐low mass companions. We emphasize that the observed properties of the Local Group are not typical for other groups in the Local Volume due to the role of selection effects caused by our location inside the Local Group. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We use an N -body/hydrodynamic simulation to forecast the future encounter between the Milky Way and the Andromeda galaxies, given present observational constraints on their relative distance, relative velocity, and masses. Allowing for a comparable amount of diffuse mass to fill the volume of the Local Group, we find that the two galaxies are likely to collide in a few billion years – within the Sun's lifetime. During the interaction, there is a chance that the Sun will be pulled away from its present orbital radius and reside in an extended tidal tail. The likelihood for this outcome increases as the merger progresses, and there is a remote possibility that our Sun will be more tightly bound to Andromeda than to the Milky Way before the final merger. Eventually, after the merger has completed, the Sun is most likely to be scattered to the outer halo and reside at much larger radii (>30 kpc). The density profiles of the stars, gas and dark matter in the merger product resemble those of elliptical galaxies. Our Local Group model therefore provides a prototype progenitor of late-forming elliptical galaxies.  相似文献   

6.
We use the very large Millennium Simulation of the concordance Λ cold dark matter cosmogony to calibrate the bias and error distribution of Timing Argument estimators of the masses of the Local Group and of the Milky Way. From a large number of isolated spiral–spiral pairs similar to the Milky Way/Andromeda system, we find the interquartile range of the ratio of timing mass to true mass to be a factor of 1.8, while the 5 and 95 per cent points of the distribution of this ratio are separated by a factor of 5.7. Here, we define true mass as the sum of the 'virial' masses, M 200, of the two dominant galaxies. For present best values of the distance and approach velocity of Andromeda, this leads to a median likelihood estimate of the true mass of the Local Group of  5.27 × 1012 M  or  log  M LG/M= 12.72  , with an interquartile range of [12.58, 12.83] and a 5–95 per cent range of [12.26, 13.01]. Thus, a 95 per cent lower confidence limit on the true mass of the Local Group is  1.81 × 1012 M  . A timing estimate of the Milky Way's mass based on the large recession velocity observed for the distant satellite Leo I works equally well, although with larger systematic uncertainties. It gives an estimated virial mass for the Milky Way of  2.43 × 1012 M  with a 95 per cent lower confidence limit of  0.80 × 1012 M  .  相似文献   

7.
We have modelled, for the cases of Milky Way and M31, the effects on the galactic discs, of the arrival at high velocity (≥150 km s−1) of giant HI clouds, with masses of up to 108M⊙. Predictions are compared with the detailed structure of the observed rotation curves for these two galaxies. The model explains the rises and falls observed at large distances from the centre of each galaxy, distributed with a degree of regularity in radius, in terms of a specific type of perturbations driven by the infall of the high velocity clouds (HVC's) arriving from the intracluster medium of the Local Group. The underlying rotation curve is explained conventionally via the distribution of the baryonic and dark matter components of the galaxy in question. This scenario, though tested here on the two major Local Group objects, is in principle applicable to galaxies undergoing minor mergers with subgalactic mass gas clouds.  相似文献   

8.
The chemical evolution history of a galaxy hides clues about how it formed and has been changing through time. We have studied the chemical evolution history of the Milky Way (MW) and Andromeda (M31) to find which are common features in the chemical evolution of disc galaxies as well as which are galaxy-dependent. We use a semi-analytic multizone chemical evolution model. Such models have succeeded in explaining the mean trends of the observed chemical properties in these two Local Group spiral galaxies with similar mass and morphology. Our results suggest that while the evolution of the MW and M31 shares general similarities, differences in the formation history are required to explain the observations in detail. In particular, we found that the observed higher metallicity in the M31 halo can be explained by either (i) a higher halo star formation efficiency (SFE), or (ii) a larger reservoir of infalling halo gas with a longer halo formation phase. These two different pictures would lead to (i) a higher [O/Fe] at low metallicities, or (ii) younger stellar populations in the M31 halo, respectively. Both pictures result in a more massive stellar halo in M31, which suggests a possible correlation between the halo metallicity and its stellar mass.  相似文献   

9.
The Arecibo H i Strip Survey probed the halos of approximately 300 cataloged galaxies and the environments of approximately 14 groups with sensitivity to neutral hydrogen masses >/=107 M middle dot in circle. The survey detected no objects with properties resembling the high-velocity clouds (HVCs) associated with the Milky Way or Local Group. If the HVCs were typically MHi=107.5 M middle dot in circle objects distributed throughout groups and galaxy halos at distances of approximately 1 Mpc, the survey should have made approximately 70 HVC detections in groups and approximately 250 detections around galaxies. The null detection implies that HVCs are deployed at typical distances of 相似文献   

10.
Summary. Hubble's (1936, p. 125) view that the Local Group (LG) is “a typical, small group of nebulae which is isolated in the general field” is confirmed by modern data. The total number of certain and probable Group members presently stands at 35. The half-mass radius of the Local Group is found to be kpc. The zero-velocity surface, which separates the Local Group from the field that is expanding with the Hubble flow, has a radius Mpc. The total mass of the LG is . Most of this mass appears to be concentrated in the Andromeda and Milky Way subgroups of the LG. The total luminosity of the Local Group is found to be :. This yields a mass-to-light ratio (in solar units) of . The solar motion with respect to the LG is \,km s, directed towards an apex at , and . The velocity dispersion within the LG is km s. The galaxies NGC 3109, Antlia, Sextans A and Sextans B appear to form a distinct grouping with kpc relative to the LG, that is located beyond the LG zero-velocity surface at a distance of 1.7 Mpc from the Local Group centroid. The luminosity distribution of the LG has a slope . This value is significantly less negative than that which is found in rich clusters of galaxies. The luminosity distribution of the dwarf spheroidal galaxies is steeper than that for dwarf irregulars. Furthermore the dSph galaxies are strongly concentrated within the Andromeda and Milky Way subclusters of the Local Group, whereas the majority of dIr galaxies appear to be free-floating members of the LG as a whole. With the possible exception of Leo I and Leo A, most LG members appear to have started forming stars simultaneously Gyr ago. Many of the galaxies, for which evolutionary data are available, appear to have shrunk with time. This result is unexpected because Hubble Space Telescope observations appear to show galaxies at to be smaller than they are at . In the Large Magellanic Cloud the rate of cluster formation was low for a period that extended from Gyr to Gyr ago. The rate of cluster formation may have increased more rapidly 3–5 Gyr ago, than did the rate of star formation. The reason for the sudden burst of cluster formation in the LMC Gyr ago remains obscure. None of the dwarf galaxies in the LG appears to have experienced a starburst strong enough to have produced a “boojum”. Received 14 April 1999  相似文献   

11.
The hierarchical paradigm predicts that large galaxies like the Milky Way formed through mergers of smaller systems, which are expected to leave behind substructures in the halo of the final product. Recently the first tests of this prediction on galaxies other than the Milky Way have been made (eg NGC 5907 by Sackett et al.; M31 by Ibata et al.), but one should bare in mind that it is extremely difficult to detect halos in external galaxies let alone substructures in those halos. On the other hand, the multi-dimensional phase-space information available for our Galaxy (6d for stars in the vicinity of the Sun, and 4d for more distant ones) enables us to directly search for merger signatures. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
介绍了本星系群中最大的旋涡星系M31(仙女星系)的基本观测性质。与银河系结构类似,M31的基本成分包括:核、核球、盘和晕。对以上各个成分的观测和研究进展分别作了综述,重点是盘的星族成分和恒星形成历史,以及球状星团的分布和晕的形成历史。同时与银河系的各种观测特征和形成机制作了详细的比较。  相似文献   

13.
We place constraints on the dynamics of the Local Group (LG) by comparing the dipole of the cosmic microwave background (CMB) with the peculiar velocity induced by the Two Micron All-Sky Redshift Survey galaxy sample. The analysis is limited by the lack of surveyed galaxies behind the zone of avoidance (ZoA). We therefore allow for a component of the LG velocity due to unknown mass concentrations behind the ZoA, as well as for an unknown transverse velocity of the Milky Way relative to the Andromeda galaxy. We infer extra motion along the direction of the Galactic Centre (where Galactic confusion and dust obscuration peaks) at the 95 per cent significance level. With a future survey of the ZoA it might be possible to constrain the transverse velocity of the Milky Way relative to Andromeda.  相似文献   

14.
We consider the problem of the relative motion both of the substructures of the Local Group of galaxies (revealed via the S-tree method), and of the velocity of the Local Group itself. The existence of statistically significant bulk flow of the Milky Way subsystem is shown via a 3D reconstruction procedure, which uses information on the radial velocities of the galaxies but does not take account of their distances. Once the bulk motion of the substructures is estimated we also consider, in combination with the observed cosmic microwave background (CMB) dipole, the mean velocity of the Local Group itself. Assigning to the Local Group the mean motion of its main substructures, we evaluate its peculiar velocity in Milky Way frame V LG→MW = (−7 ± 303, −15 ± 155, +177 ± 144) or 178 km s−1 toward galactic coordinates l  = 245 and b  = +85. Combined with the CMB dipole V MW→CMB, we obtain a Local Group velocity in CMB frame: V LG→CMB = (−41 ± 303, −497 ± 155, 445 ± 144) or 668 km s−1 towards l  = 265 and b  = 42. This estimation is in good agreement, within the 1 σ level, with the estimation of Yahil et al.  相似文献   

15.
In the coming few years, more new telescopes with large aperture will become available for observations of stars in the Milky Way and in Local Group galaxies, and, increasingly, of stars in more distant galaxies. A wide range of new targets will come within reach not only from the increase of telescope aperture, but also from new technology which improves the performance goals of modern instrumentation. New technologies on the horizon will be explored to evaluate their impact on scientific programs in the future. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
《New Astronomy》2003,8(5):439-448
We simulate the future evolution of the observed inhomogeneities in the local universe assuming that the global expansion rate is dominated by a cosmological constant. We find that within two Hubble times (∼30 billion years) from the present epoch, large-scale structures will freeze in co-moving coordinates and the mass distribution of bound objects will stop evolving. The Local Group will get somewhat closer to the Virgo cluster in co-moving coordinates, but will be pulled away from the Virgo in physical coordinates due to the accelerated expansion of the Universe. In the distant future there will only be one massive galaxy within our event horizon, namely the merger product of the Andromeda and the Milky Way galaxies. All galaxies that are not gravitationally bound to the Local Group will recede away from us and eventually exit from our event horizon. More generally, we identify the critical interior overdensity above which a shell of matter around an object will remain bound to it at late times.  相似文献   

17.
Recent work by several groups has established the properties of the dwarf satellites to M31. We reexamine the reported kinematics of this group employing a fresh technique we have developed previously. By calculating the distribution of a χ statistic (which we define in the paper) for the M31 system, we conclude that the total mass (disc plus halo) of the primary is unlikely to be as great as that of our own Milky Way. In fact the χ distribution for M31 indicates that, like NGC 3992, it does not have a massive halo. In contrast, the analysis of the satellites of NGC 1961 and NGC 5084 provides strong evidence for massive haloes surrounding both spiral galaxies.  相似文献   

18.
Summary. Due to the foreground extinction of the Milky Way, galaxies appear increasingly fainter the closer they lie to the Galactic Equator, creating a “zone of avoidance” of about 25% in the distribution of optically visible galaxies. A “whole-sky” map of galaxies is essential, however, for understanding the dynamics in our local Universe, in particular the peculiar velocity of the Local Group with respect to the Cosmic Microwave Background and velocity flow fields such as in the Great Attractor region. Various dynamically important structures behind the Milky Way have only recently been made “visible” through dedicated deep surveys at various wavelengths. The wide range of observational searches (optical, near infrared, far infrared, radio and X-ray) for galaxies in the Zone of Avoidance are reviewed, including a discussion on the limitations and selection effects of these partly complementary approaches. The uncovered and suspected large-scale structures are summarized. Reconstruction methods of the density field in the Zone of Avoidance are described and the resulting predictions compared with observational evidence. The comparison between reconstructed density fields and the observed galaxy distribution allow derivations of the density and biasing parameters and b. Received 4 April 2000 / Published online 18 July 2000  相似文献   

19.
The spatial distributions of the most recently discovered ultra-faint dwarf satellites around the Milky Way and the Andromeda galaxy are compared to the previously reported discs-of-satellites (DoS) of their host galaxies. In our investigation, we pay special attention to the selection bias introduced due to the limited sky coverage of Sloan Digital Sky Survey (SDSS). We find that the new Milky Way satellite galaxies follow closely the DoS defined by the more luminous dwarfs, thereby further emphasizing the statistical significance of this feature in the Galactic halo. We also note a deficit of satellite galaxies with Galactocentric distances larger than  100 kpc  that are away from the DoS of the Milky Way. In the case of Andromeda, we obtain similar results, naturally complementing our previous finding and strengthening the notion that the DoS are optical manifestations of a phase-space correlation of satellite galaxies.  相似文献   

20.
We use a self-consistent model of galaxy formation and the evolution of the intergalactic medium to study the effects of the reionization of the Universe at high redshift on the properties of satellite galaxies like those seen around the Milky Way. Photoionization suppresses the formation of small galaxies, so that surviving satellites are preferentially those that formed before the Universe reionized. As a result, the number of satellites expected today is about an order of magnitude smaller than the number inferred by identifying satellites with subhaloes of the same circular velocity in high-resolution simulations of the dark matter. The resulting satellite population has an abundance similar to that observed in the Local Group, although the distribution of circular velocities differs somewhat from the available data. We explore many other properties of satellite galaxies, including their gas content, metallicity and star formation rate, and find generally good agreement with available data. Our model predicts the existence of many as yet undetected satellites in the Local Group. We quantify their observability in terms of their apparent magnitude and surface brightness, and also in terms of their constituent stars. A near-complete census of the Milky Way's satellites would require imaging to   V ≈20  and to a surface brightness fainter than 26 V -band magnitudes per square arcsecond. Satellites with integrated luminosity   V =15  should contain of order 100 stars brighter than   B =26  , with central stellar densities of a few tens per square arcminute. Discovery of a large population of faint satellites would provide a strong test of current models of galaxy formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号