首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of upstream urbanization on the enhanced urban heat-island (UHI) effects between Shanghai and Kunshan is investigated by analyzing seven years of surface observations and results from mesoscale model simulations. The observational analysis indicates that, under easterly and westerly winds, the temperature difference between Shanghai and Kunshan increases with wind speed when the wind speed \(<\) 5 m s \(^{-1}\) . The Weather Research and Forecasting (WRF) numerical model, coupled with a one-layer urban canopy model (UCM), is used to examine the UHI structure and upstream effects by replacing the urban surface of Shanghai and/or Kunshan with cropland. The WRF/UCM modelling system is capable of reproducing the surface temperature and wind field reasonably well. The simulated urban canopy wind speed is a better representation of the near-surface wind speed than is the 10-m wind speed at the centre of Shanghai. Without the urban landscape of Shanghai, the surface air temperature over downstream Kunshan would decrease by 0.2–0.4  \(^{\circ }\) C in the afternoon and 0.4–0.6  \(^{\circ }\) C in the evening. In the simulation with the urban landscape of Shanghai, a shallow cold layer is found above the UHI, with a minimum temperature of about \(-0.2\) to \(-\) 0.5  \(^{\circ }\) C during the afternoon hours. Strong horizontal divergence is found in this cold layer. The easterly breeze over Shanghai is strengthened at the surface by strong UHI effects, but weakened at upper levels. With the appearance of the urban landscape specific humidity decreases by 0.5–1 g kg \(^{-1}\) within the urban area because of the waterproof property of an urban surface. On the other hand, the upper-level specific humidity is increased because of water vapour transferred by the strong upward vertical motions.  相似文献   

2.
Weather and climate are major factors influencing worldwide wildfire activity. This study assesses surface and atmospheric conditions associated with the 2014 extreme wildfires in the Northwest Territories (NWT) of Canada. Hot and dry conditions led to the NWT experiencing the most severe wildfire season in its recorded history. The season included a record number of cloud-to-ground lightning flashes and set a record for area burned. Lightning was the dominant ignition source and accounted for about 95% of the wildfires. Prolonged periods of smoke led to dramatic reductions in visibility, frequent road closures, and reduced air quality resulting in numerous health alerts. Temporal and spatial patterns of lightning characteristics in 2014, derived from Canadian Lightning Detection Network data, were different from those in other years with, for example, far more positive flashes from 0600 to 1200?utc (midnight to 6:00 am local time). The highest fraction of positive cloud-to-ground flashes (43.1%) occurred in the smoke-dominated North Slave region, which was more than in the Dehcho, South Slave, or Sahtu regions. Mid-tropospheric atmospheric circulation over a large region that included the NWT was classified into the six most common summer patterns. Results showed that ridging and ridge displacements occurred more frequently during 2014 although lightning was associated with all circulation patterns. This study has advanced the understanding of the roles of weather, lightning, and mid-tropospheric circulation patterns associated with extreme wildfires in northwestern Canada.  相似文献   

3.
In studies of lake–atmosphere interactions, the fluxes of momentum, water vapour and sensible heat are often parametrized as being proportional to the differences in wind, humidity and air temperature between the water surface and a reference height above the surface. Here, the proportionality via transfer coefficients in these relationships was investigated with the eddy-covariance method at three sites within an eddy-covariance mesonet across Lake Taihu, China. The results indicate that the transfer coefficients decreased with increasing wind speed for weak winds and approached constant values for strong winds. The presence of submerged macrophytes reduced the momentum transfer (drag) coefficient significantly. At the two sites free of submerged macrophytes, the 10-m drag coefficients under neutral stability were 1.8 $(\pm \,0.4) \times \,10^{-3}$ ( ± 0.4 ) × 10 ? 3 and $1.7\,(\pm \,0.3) \times \,10^{-3 }$ 1.7 ( ± 0.3 ) × 10 ? 3 at the wind speed of $9\,\text{ m } \text{ s }^{-1}$ 9 m s ? 1 , which are 38 and 34 % greater than the prediction by the Garratt model for the marine environment.  相似文献   

4.
In this study, the CNRM-CM5 model is shown to simulate too warm SSTs in the tropical Atlantic as most state-of-the-art CMIP5 models. The warm bias develops within 1 or 2 months in decadal experiments initialised in January using an observationally derived state. To better quantify the role of the atmospheric biases in initiating this warm SST bias, several sensitivity experiments have been performed. In a first set of experiments, the surface solar net heat flux sent to the ocean model is academically corrected over the southeastern tropical Atlantic Ocean. This correction locally reduces the warm SST bias by more than 50 % with some remote impacts over equatorial regions. In contrast, the solar heat flux correction has locally little impact on the spring cooling. A second set of experiments quantifies the role of surface winds, using a nudging technique. When applied in a narrow equatorial region, the wind correction mainly improves the SST annual cycle amplitude along the Equator. It promotes not only the spring cooling along the Equator in preconditioning the mixed-layer depth but also in the southeastern Atlantic along the African coast. These local and remote effects are attributed to the more realistic representation of the oceanic equatorial circulation, driven by corrected winds. These results are consistent with those reported by Wahl et al. (Clim Dyn 36:891–906, 2011) in a very similar study with the Kiel Climate Model. The solar and wind biases have comparable effects in their study, although the importance of off-equatorial winds is less clear in our study. Diagnosing the wind energy flux provides a physical understanding of the equatorial region. When combining the corrections of both the equatorial wind and the southeastern solar heat flux, no obvious feedback between them is evidenced. The present study also emphasizes the need to consider two time-scales, the annual mean and the seasonal cycle, as well as two regions, the equatorial and the southeastern Atlantic regions, to comprehensively address the Atlantic SST bias. As pointed out in Richter (Clim Dyn, doi:10.1007/s00382-012-1624-5, 2013), the need to improve the atmospheric component of the CNRM-CM model is emphasized, even though strong positive coupling feedbacks are highlighted.  相似文献   

5.
6.
A number of open questions remain regarding the role of low-level jets (LLJs) and nocturnal mixing processes in the buildup of tropospheric ozone. The prevalence of southerly winds and LLJs in the U.S. Southern Great Plains during summer makes this region an ideal site for investigating the structure of the nocturnal boundary layer and its impacts on urban air quality. Ozone $(\mathrm{O}_{3})$ and nitrogen oxide concentrations measured at regulatory monitoring sites in the Oklahoma City (OKC) area and simulations with the Weather Research and Forecasting with Chemistry (WRF/Chem) model were analyzed to show how the nocturnal LLJ moderates boundary-layer mixing processes and air quality. Datasets collected during the Joint Urban 2003 campaign, which took place in July 2003 in OKC, provided detailed information about nocturnal boundary-layer structure and dynamics. In general, ${\mathrm{O}_{3}}$ time series show the expected behavior that urban ${\mathrm{O}_{3}}$ concentrations decrease at night due to nitrogen oxide titration reactions, but elevated ${\mathrm{O}_{3}}$ concentrations and secondary ${\mathrm{O}_{3}}$ peaks are also seen quite frequently after sunset. LLJs developed on most nights during the study period and were associated with strong vertical wind shear, which affected the boundary-layer stability and structure. Near-surface ${\mathrm{O}_{3}}$ concentrations are higher during less stable nights when active mixing persists throughout the night. The WRF/Chem model results agree well with the observations and further demonstrate the role of LLJs in moderating nocturnal mixing processes and air quality. The highest nocturnal ${\mathrm{O}_{3}}$ concentrations are linked to a strong LLJ that promotes both nocturnal long-range transport and persistent downward mixing of ${\mathrm{O}_{3}}$ from the residual layer to the surface.  相似文献   

7.
The surface of windy Antarctic snowfields is subject to drifting snow, which leads to the formation of sastrugi. In turn, sastrugi contribute to the drag exerted by the snow surface on the atmosphere and hence influence drifting snow. Although the surface drag over rough sastrugi fields has been estimated for individual locations in Antarctica, its variation over time and with respect to drifting snow has received little attention. Using year-round data from a meteorological mast, seasonal variations in the neutral drag coefficient at a height of 10 m \((C_{{ DN}10})\) in coastal Adelie Land are presented and discussed in light of the formation and behaviour of sastrugi based on observed aeolian erosion patterns. The measurements revealed high \(C_{{ DN}10} \) values \((\ge \) 2 \(\times \) 10\(^{-3})\) and limited drifting snow (35% of the time) in summer (December–February) versus lower \(C_{{ DN}10} \) values \((\approx \) 1.5 \(\times \) \(10^{-3})\) associated with more frequent drifting snow (70% of the time) in winter (March–November). Without the seasonal distinction, there was no clear dependence of \(C_{{ DN}10} \) on friction velocity or wind direction, but observations revealed a general increase in \(C_{{ DN}10} \) with rising air temperature. The main hypothesis defended here is that higher temperatures increase snow cohesion and the development of sastrugi just after snow deposition while inhibiting the sastrugi streamlining process by raising the erosion threshold. This increases the contribution of the sastrugi form drag to the total surface drag in summer when winds are lighter and more variable. The analysis also showed that, in the absence of erosion, single snowfall events can reduce \(C_{{ DN}10} \) to \(1\,\times \,10^{-3}\) due to the burying of pre-existing microrelief under newly deposited snow. The results suggest that polar atmospheric models should account for spatial and temporal variations in snow surface roughness through a dynamic representation of the sastrugi form drag.  相似文献   

8.
The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (\(\alpha \) and \(\beta )\) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., \(\alpha = 3\) and \(\beta = 1/26~\hbox {(ms)}^{-1}\) for the infrared, and \(\alpha = 3\) and \(\beta = 1/19~\hbox {(ms)}^{-1}\) for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter \(\alpha \) and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of \(\alpha \). The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.  相似文献   

9.
In Kochendorfer et al. (Boundary-Layer Meteorol 145:383–398, 2012, hereafter K2012) the vertical wind speed $(w)$ measured by a non-orthogonal three-dimensional sonic anemometer was shown to be underestimated by $\approx $ 12 %. Turbulent statistics and eddy-covariance fluxes estimated using $w$ were also affected by this underestimate in $w$ . Methodologies used in K2012 are clarified here in response to Mauder’s comment. In addition, further analysis of the K2012 study is presented to help address questions raised in the comment. Specific responses are accompanied with examples of time series, calculated correlation coefficients, and additional explanation of the K2012 methods and assumptions. The discussion and analysis included in the comment and in this response do not affect the validity of the methods or conclusions presented in K2012.  相似文献   

10.
The effects of abrupt streamwise transitions of the aerodynamic roughness length ( $z_\mathrm{o}$ z o ) on the stable atmospheric boundary layer are evaluated using a series of large-eddy simulations based on the first Global Energy and Water Cycle Experiment Atmospheric Boundary Layer intercomparison study (GABLS1). Four $z_\mathrm{o}$ z o values spanning three orders of magnitude are used to create all possible binary distributions with each arranged into patches of characteristic length scales equal to roughly one-half, one, and two times the equivalent homogeneous boundary-layer height. The impact of the heterogeneity on mean profiles of wind speed and temperature, on surface fluxes of heat and momentum, and on internal boundary-layer dynamics are considered. It is found that $z_\mathrm{o}$ z o transitions do not significantly alter the functional relationship between the average surface fluxes and the mean profiles of wind speed and potential temperature. Although this suggests that bulk similarity theory is applicable for modelling the stable boundary layer over $z_\mathrm{o}$ z o heterogeneity, effective surface parameters must still be specified. Existing models that solve for effective roughness lengths of momentum and heat are evaluated and compared to values derived from the simulation data. The existing models are unable to accurately reproduce both the values of the effective aerodynamic roughness lengths and their trends as functions of patch length scale and stability. A new model for the effective aerodynamic roughness length is developed to exploit the benefits of the other models tested. It accurately accounts for the effects of the heterogeneity and stratification on the blending height and effective aerodynamic roughness length. The new model provides improved average surface fluxes when used with bulk similarity.  相似文献   

11.
An analytical model for mean wind profiles in sparse canopies (W. Wang, Boundary-Layer Meteorol 142:383–399, 2012) has been further developed, with (1) an explicit solution being derived, and (2) a linear term being added to the $K$ -closure scheme to improve the shear-stress parametrization when the contribution of non-local transport is significant. Results from large-eddy simulations and from laboratory experiments are used to evaluate the model and adjust model parameters, showing that the model can well simulate canopy wind and stress profiles not only for sparse-canopy scenarios, but also for dense-canopy scenarios. The analytical solution converges exactly to the standard surface-layer logarithmic wind profile in the case of zero canopy density, and tends to an exponential wind profile for a dense canopy.  相似文献   

12.
Forcing relationships in steady, neutrally stratified atmospheric boundary-layer (ABL) flow are thoroughly analyzed. The ABL flow can be viewed as balanced between a forcing and a drag term. The drag term results from turbulent stress divergence, and above the ABL, both the drag and the forcing terms vanish. In computational wind engineering applications, the ABL flow is simulated not by directly specifying a forcing term in the ABL but by specifying boundary conditions for the simulation domain. Usually, these include the inflow boundary and the top boundary conditions. This ‘boundary-driven’ ABL flow is dynamically different from its real counterpart, and this is the major reason that the simulated boundary-driven ABL flow does not maintain horizontal homogeneity. Here, first a dynamical approach is proposed to develop a neutrally stratified equilibrium ABL flow. Computational fluid dynamics (CFD) software (Fluent 6.3) with the standard \(k\) \(\varepsilon \) turbulence model is employed, and by applying a driving force profile, steady equilibrium ABL flows are simulated by the model. Profiles of wind speed and turbulent kinetic energy (TKE) derived using this approach are reasonable in comparison with the conventional logarithmic law and with observational data respectively. Secondly, the equilibrium ABL profiles apply as inflow conditions to simulate the boundary-driven ABL flow. Simulated properties between the inlet and the outlet sections across a fetch of 10 km are compared. Although profiles of wind speed, TKE, and its dissipation rate are consistently satisfactory under higher wind conditions, a deviation of TKE and its dissipation rate between the inlet and outlet are apparent (7–8 %) under lower wind-speed conditions (2 m s \(^{-1}\) at 10 m). Furthermore, the simulated surface stress systematically decreases in the downwind direction. A redistribution of the pressure field is also found in the simulation domain, which provides a different driving pattern from the realistic case in the ABL.  相似文献   

13.
On the location and orientation of the South Pacific Convergence Zone   总被引:2,自引:0,他引:2  
Three semi-permanent cloud bands exist in the Southern Hemisphere extending southeastward from the equator, through the tropics, and into the subtropics. The most prominent of these features occurs in the South Pacific and is referred to as the South Pacific Convergence Zone (SPCZ). Similar bands, with less intensity, exist in the South Indian and Atlantic oceans. We attempt to explain the physical mechanisms that promote the diagonal orientation of the SPCZ and the processes that determine the timescales of its variability. It is argued that the slowly varying sea surface temperature patterns produce upper tropospheric wind fields that vary substantially in longitude. Regions where 200?hPa zonal winds decrease with longitude (i.e., negative zonal stretching deformation, or $ {{\partial \overline{U} } \mathord{\left/ {\vphantom {{\partial \overline{U} } {\partial x}}} \right. \kern-0em} {\partial x}} < 0 $ ) reduce the group speed of the eastward propagating synoptic (3?C6?day period) Rossby waves and locally increase the wave energy density. Such a region of wave accumulation occurs in the vicinity of the SPCZ, thus providing a physical basis for the diagonal orientation and earlier observations that the zone acts as a ??graveyard?? of propagating synoptic disturbances. In essence, $ {{\partial \overline{U} } \mathord{\left/ {\vphantom {{\partial \overline{U} } {\partial x}}} \right. \kern-0em} {\partial x}} = 0 $ demarks the boundary of the graveyard while regions where $ {{\partial \overline{U} } \mathord{\left/ {\vphantom {{\partial \overline{U} } {\partial x}}} \right. \kern-0em} {\partial x}} < 0 $ denote the graveyard itself. Composites of the life cycles of synoptic waves confirm this hypothesis. From the graveyard hypothesis comes a more general theory accounting for the SPCZ??s spatial orientation and its longer term variability influenced by the El Ni?o-Southern Oscillation (ENSO), or alternatively, the changing background SST associated with different phases of ENSO.  相似文献   

14.
We applied three approaches to estimate the zero-plane displacement $d$ through the aerodynamic measurement height $z$ (with $z = z_{m}- d$ and $z_{m}$ being the measurement height above the surface), and the aerodynamic roughness length $z_{0}$ , from single-level eddy covariance data. Two approaches (one iterative and one regression-based) were based on the universal function in the logarithmic wind profile and yielded an inherently simultaneous estimation of both $d$ and $z_{0}$ . The third approach was based on flux–variance similarity, where estimation of $d$ and consecutive estimation of $z_{0}$ are independent steps. Each approach was further divided into two methods differing either with respect to the solution technique (profile approaches) or with respect to the variable (variance of vertical wind and temperature, respectively). All methods were applied to measurements above a large, growing wheat field where a uniform canopy height and its frequent monitoring provided plausibility limits for the resulting estimates of time-variant $d$ and $z_{0}$ . After applying, for each approach, a specific data filtering that accounted for the range of conditions (e.g. stability) for which it is valid, five of the six methods were able to describe the temporal changes of roughness parameters associated with crop growth and harvest, and four of them agreed on $d$ to within 0.3 m most of the time. Application of the same methods to measurements with a more heterogeneous footprint consisting of fully-grown sugarbeet and a varying contribution of adjacent harvested fields exhibited a plausible dependence of the roughness parameters on the sugarbeet fraction. It also revealed that the methods producing the largest outliers can differ between site conditions and stability. We therefore conclude that when determining $d$ for canopies with unknown properties from single-level measurements, as is increasingly done, it is important to compare the results of a number of methods rather than rely on a single one. An ensemble average or median of the results, possibly after elimination of methods that produce outliers, can help to yield more robust estimates. The estimates of $z_{0}$ were almost exclusively physically plausible, although $d$ was considered unknown and estimated simultaneously with the methods and results described above.  相似文献   

15.
Investigation of the Stable Atmospheric Boundary Layer at Halley Antarctica   总被引:2,自引:2,他引:0  
Boundary-layer measurements from the Brunt Ice Shelf, Antarctica are analyzed to determine flux–profile relationships. Dimensionless quantities are derived in the standard approach from estimates of wind shear, potential temperature gradient, Richardson number, eddy diffusivities for momentum and heat, Prandtl number, mixing length and turbulent kinetic energy. Nieuwstadt local scaling theory for the stable atmospheric boundary-layer appears to work well departing only slightly from expressions found in mid-latitudes. An $E$ E $l_{\mathrm{m}}$ l m single-column model of the stable boundary layer is implemented based on local scaling arguments. Simulations based on the first GEWEX Atmospheric Boundary-Layer Study case study are validated against ensemble-averaged profiles for various stability classes. A stability-dependent function of the dimensionless turbulent kinetic energy allows a better fit to the ensemble profiles.  相似文献   

16.
Stereoscopic particle image velocimetry was used to provide a three-dimensional characterization of the flow around a simplified urban model defined by a 5 by 7 array of blocks, forming four parallel streets, perpendicular to the incoming wind direction corresponding to a zero angle of incidence. Channeling of the flow through the array under consideration was observed, and its effect increased as the incoming wind direction, or angle of incidence (AOI), was changed from \(0^{\circ }\) to \(15^{\circ }\), \(30^{\circ }\), and \(45^{\circ }\). The flow between blocks can be divided into two regions: a region of low turbulence kinetic energy (TKE) levels close to the leeward side of the upstream block, and a high TKE area close to the downstream block. The centre of the arch vortex is located in the low TKE area, and two regions of large streamwise velocity fluctuation bound the vortex in the spanwise direction. Moreover, a region of large spanwise velocity fluctuation on the downstream block is found between the vortex legs. Our results indicate that the reorientation of the arch vortex at increasing AOI is produced by the displacement of the different TKE regions and their interaction with the shear layers on the sides and top of the upstream and downstream blocks, respectively. There is also a close connection between the turbulent structure between the blocks and the wind gusts. The correlations among gust components were also studied, and it was found that in the near-wall region of the street the correlations between the streamwise and spanwise gusts \(R_{uv}\) were dominant for all four AOI cases. At higher wall-normal positions in the array, the \(R_{uw}\) correlation decreased with increasing AOI, whereas the \(R_{uv}\) coefficient increased as AOI increased, and at \({\textit{AOI}}=45^{\circ }\) all three correlations exhibited relatively high values of around 0.4.  相似文献   

17.
A dataset obtained using a wind-profile radar located at the Yangtze River Delta in China ( $31.14^{\circ }$ N, $121.81^{\circ }$ E) in 2009 was used to investigate the characteristics and evolution of low-level jets (LLJs) along the east China coast. The study investigated the daily and seasonal structures of LLJs as well as several possible causes. A total of 1,407 1-h LLJ periods were detected based on an adaptive definition that enabled determination of four LLJ categories. The majority (77 %) of LLJs were found to have speeds $<$ 14.0 m s $^{-1}$ (maximum of 34.6 m s $^{-1})$ and occur at an average altitude below 600 m (76 % of the observed LLJs). The dominant direction of the LLJs was from the south-south-west, which accounted for nearly 32 %, with the second most common wind direction ranging from $040^{\circ }$ to $100^{\circ }$ , albeit with a number of stronger LLJs from the west-south-west. A comparison of LLJs and South-west Jets revealed that the frequencies of occurrence in summer are totally different. Results also revealed that in spring and summer, most LLJs originate from the south-south-west, whereas in autumn and winter, north-east is the dominant direction of origin. The peak heights of LLJs tended to be higher in winter than in other seasons. The horizontal wind speed and peak height of the LLJs displayed pronounced diurnal cycles. The Hilbert–Huang transform technique was applied to demonstrate that the intrinsic mode functions with a cycle of nearly 23 h at levels below 800 m, and the instantaneous amplitudes of inertial events (0.0417–0.0476 h $^{-1}$ frequencies) have large values at 300–600 m. The variations in the occurrences of LLJs suggested connections between the formation mechanisms of LLJs and the South-west Jet stream, steady occupation of synoptic-scale pressure system, and land–sea temperature contrasts.  相似文献   

18.
Wind climate in Northwest Europe is subject to long-term persistence (LTP), also called the Hurst phenomenon. Ignorance of LTP causes underestimation of climatic variability. The quantification of multi-year variability is important for the assessment of the uncertainty of future multi-year wind yields. Estimating LTP requires long homogeneous time series. Such series of wind observations are rare, but annual mean geostrophic wind speed (U) can be used instead. This study demonstrates a method to estimate the 10-year aggregated mean U for the near and the far future and its uncertainty in Northwest Europe. Time series of U were derived from daily sea level pressure from the European Climate Assessment Dataset. Minor inhomogeneities cannot be ruled out, but were shown to hardly affect the estimated Hurst exponent $(\hat{H})$ . A maximum likelihood method was adjusted to remove the biases in $\hat{H}$ . The geostrophic wind speed over the North Sea, the British Isles and along the Scandinavian coast are characterised by statistically significant H between 0.58 and 0.74, (H?=?0.5 implies no LTP). The additional affect of the parameter uncertainty is estimated in a Bayesian way and is highly dependent on the record length. The assessment of structural changes in future wind fields requires general circulation models. An ensemble of seventeen simulations (ESSENCE) with one single climate model (ECHAM5/MPI-OM) was used to evaluate structural trends and LTP. The estimated $\hat{H}$ in the ESSENCE simulations are generally close to 0.5 and not significant. Significant trends in U are found over large parts of the investigated domain, but the trends are small compared to the multi-year variability. Large decreasing trends are found in the vicinity of Iceland and increasing trends near the Greenland coast. This is likely related to the sea ice retreat within the ESSENCE simulations and the associated change in surface temperature gradients.  相似文献   

19.
The current outbreak of mountain pine beetle (MPB) that started in the late 1990s in British Columbia, Canada, is the largest ever recorded in the north American native habitat of the beetle. The killing of trees is expected to change the vertical distribution of net radiation ( $Q^*$ Q ? ) and the partitioning of latent ( $Q_\mathrm{E}$ Q E ) and sensible ( $Q_\mathrm{H}$ Q H ) heat fluxes in the different layers of an attacked forest canopy. During an intensive observation period in the summer of 2010, eddy-covariance flux and radiation measurements were made at seven heights from ground level up to 1.34 times the canopy height in an MPB-attacked open-canopy forest stand $(\hbox {leaf area index} = 0.55~\mathrm{{m}}^{2}\ \mathrm{{m}}^{-2})$ ( leaf area index = 0.55 m 2 m - 2 ) in the interior of British Columbia, Canada. The lodgepole pine dominated stand with a rich secondary structure (trees and understorey not killed by the beetle) was first attacked by the MPB in 2003 and received no management. In this study, the vertical distribution of the energy balance components and their sources and sinks were analyzed and energy balance closure (EBC) was determined for various levels within the canopy. The low stand density resulted in approximately 60 % of the shortwave irradiance and 50 % of the daily total $Q^*$ Q ? reaching the ground. Flux divergence calculations indicated relatively strong sources of latent heat at the ground and where the secondary structure was located. Only very weak sources of latent heat were found in the upper part of the canopy, which was mainly occupied by dead lodgepole pine trees. $Q_\mathrm{H}$ Q H was the dominant term throughout the canopy, and the Bowen ratio ( $Q_\mathrm{H}/Q_\mathrm{E}$ Q H / Q E ) increased with height in the canopy. Soil heat flux ( $Q_\mathrm{G}$ Q G ) accounted for approximately 4 % of $Q^*$ Q ? . Sensible heat storage in the air ( $\Delta Q_\mathrm{S,H}$ Δ Q S , H ) was the largest of the energy balance storage components in the upper canopy during daytime, while in the lower canopy sensible heat storage in the boles ( $\Delta Q_\mathrm{S,B}$ Δ Q S , B ) and biochemical energy storage ( $\Delta Q_\mathrm{S,C}$ Δ Q S , C ) were the largest terms. $\Delta Q_\mathrm{S,H}$ Δ Q S , H was almost constant from the bottom to above the canopy. $\Delta Q_\mathrm{S,C}$ Δ Q S , C , $\Delta Q_\mathrm{S,B}$ Δ Q S , B and latent heat storage in the air ( $\Delta Q_\mathrm{S,E}$ Δ Q S , E ) varied more than $\Delta Q_\mathrm{S,H}$ Δ Q S , H throughout the canopy. During daytime, energy balance closure was high in and above the upper canopy, and in the lowest canopy level. However, where the secondary structure was most abundant, ${\textit{EBC}} \le 66\,\%$ EBC ≤ 66 % . During nighttime, the storage terms together with $Q_\mathrm{G}$ Q G made up the largest part of the energy balance, while $Q_\mathrm{H}$ Q H and $Q_\mathrm{E}$ Q E were relatively small. These radiation and energy balance measurements in an insect-attacked forest highlight the role of secondary structure in the recovery of attacked stands.  相似文献   

20.
Nine methods to determine local-scale aerodynamic roughness length \((z_{0})\) and zero-plane displacement \((z_{d})\) are compared at three sites (within 60 m of each other) in London, UK. Methods include three anemometric (single-level high frequency observations), six morphometric (surface geometry) and one reference-based approach (look-up tables). A footprint model is used with the morphometric methods in an iterative procedure. The results are insensitive to the initial \(z_{d}\) and \(z_{0}\) estimates. Across the three sites, \(z_{d}\) varies between 5 and 45 m depending upon the method used. Morphometric methods that incorporate roughness-element height variability agree better with anemometric methods, indicating \(z_{d}\) is consistently greater than the local mean building height. Depending upon method and wind direction, \(z_{0}\) varies between 0.1 and 5 m with morphometric \(z_{0}\) consistently being 2–3 m larger than the anemometric \(z_{0}\). No morphometric method consistently resembles the anemometric methods. Wind-speed profiles observed with Doppler lidar provide additional data with which to assess the methods. Locally determined roughness parameters are used to extrapolate wind-speed profiles to a height roughly 200 m above the canopy. Wind-speed profiles extrapolated based on morphometric methods that account for roughness-element height variability are most similar to observations. The extent of the modelled source area for measurements varies by up to a factor of three, depending upon the morphometric method used to determine \(z_{d}\) and \(z_{0}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号