首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为了加速软土地基固结排水过程,在传统竖井排水固结法的竖井中增设U型导热管,对U型导热管内的水进行预加热,并使其在管内循环,实现管-土之间热传递,以改善土的渗透性状。针对这一新的软基处理技术,本文首先通过研究渗流固结过程中的温度影响因子,建立了渗透系数与温度之间的关系。其次,基于理想竖井地基固结理论,建立基于温度修正的理想竖井地基固结度解析解。最后,分析了温度因素对理想竖井地基固结度及固结时间的影响规律。结果表明:同一时间因素下,温度越高,理想竖井地基的固结度越高,且温差越大,固结度差值越大;温度较高时到达某一固结度所需时间比温度较低时到达同一固结度所需时间少。在固结度较小时,温度因素对固结时间的影响并不显著;而固结度较大时,则固结时间差别较为显著。  相似文献   

2.
双层竖井地基半透水边界固结分析   总被引:1,自引:0,他引:1  
在现有双层竖井地基固结理论基础上,对双面半透水边界下的固结问题进行了研究,给出了相应的固结解答。将该解答编制成应用程序,对一算例进行了参数分析,以了解双层竖井地基半透水边界的固结特性。算例分析表明,半透水边界对竖井地基的固结影响较大:半透水参数(Rt,Rb)越大,则整个系统的孔压消散越快;半透水参数对与其相邻的土层的固结影响要比远离其边界的土层的固结影响大得多;按变形定义和按孔压定义的平均固结度两者的差别受半透水边界参数的影响。  相似文献   

3.
李红坡  梅国雄  肖涛  陈征 《岩土力学》2020,41(5):1560-1566
在软基处理工程中,经常出现竖井打设变密而地基固结效率降低的现象。鉴于此,建立了重叠涂抹区内土体水平向渗透系数的分布函数,给出了涂抹区重叠时竖井地基超静孔压和平均固结度的解析解。通过分析不同工况下竖井地基固结度随竖井间距的变化情况,探究了竖井间距减小而地基固结效率不增反减的成因。最后,探讨了涂抹作用和井阻作用对竖井最小临界间距的影响。结果表明:相邻竖井涂抹区重叠是竖井地基中出现竖井最小临界间距的根本原因。涂抹作用越大,则竖井最小临界间距越大;具体表现为当地基扰动程度增大时或涂抹区半径增大时,竖井最小临界间距随之增大。井阻作用越大,则竖井最小临界间距越小;具体表现为当竖井渗透系数减小时、竖井长度增大时或竖井半径减小时,竖井最小临界间距随之减小。  相似文献   

4.
常规真空预压法在处理超软土地基时耗时较长,且加固效果有限。真空预压联合加热技术是近年来提出的一种新型软基处理技术,但国内相关研究刚刚兴起。针对宁波典型软黏土地基,利用自制的温控模型试验装置,设计并开展了真空预压联合加热与常规真空预压处理效果的对比研究,细致分析了不同加热温度情况下(常温~80℃)软土地基的温度、孔压和沉降的发展趋势,对比了不同技术加固前后土体的物理力学特性变化情况。研究结果表明:相比于常规真空预压法,真空预压联合加热技术能加快固结速率,减小工后沉降,提高软土地基承载力;当加热温度不高时,真空预压法处理效果随温度升高而增强,但这种趋势并非线性增长;当温度达到一定值后,热法联合处置技术的加固效果会衰减,甚至起反作用;通过对固结沉降的反演分析得出,相比于常温情况,40℃、50℃和60℃处理后软土固结系数分别提高30%、35%和5%;从处置效果和经济性出发,加热到40~50℃是热法地基处理技术的较适宜温度范围。  相似文献   

5.
针对塑料排水板(PVD)安装热源能提升PVD性能、加速竖井地基固结这一工程现象,基于热-水-应力 (T-H-M) 三场全耦合的有限元方法来模拟利用热源进行地基处理新技术(PVTD)。首先,以微分形式与等效弱形式分别给出T-H-M耦合控制方程,并推导出其有限元方程组。然后在多场耦合有限元软件中建立饱和土的T-H-M全耦合模型,并通过与已有解析解比较,验证了模型正确性。最后,对一个经典有涂抹区的竖井地基算例,分不耦合温度(UT)、耦合温度但不考虑其对饱和土物性影响(CT)、耦合温度考虑温度对饱和土渗透性影响(CTP) 3种情况进行固结计算分析。研究结果表明,相对于无热源竖井地基,CT情况下由于热源产生的附加孔隙水压力,固结速度略有下降;CTP情况下,由于热源有效改善涂抹区的渗透性能,竖井地基固结速率明显加快。上述研究结论从理论上较好地阐明了PVTD的作用机制。  相似文献   

6.
针对真空预压条件下竖井地基固结问题,考虑竖井地基扰动区土体径向渗透系数变化的3种模式(扰动区渗透系数为常数、线性变化、抛物线变化)和竖井井阻随时间变化等因素影响;建立数学计算模型,采用解析解法,推导了考虑径向渗透系数因施工扰动而变化的真空预压竖井地基固结问题的解析解。基于此解,编制了计算程序,绘制出了考虑扰动区土体径向渗透系数变化和竖井井阻随时间变化影响的真空预压竖井地基固结曲线图。研究表明:井阻变化率对固结速率有较大影响;在土体扰动区径向渗透系数变化的3种模式中,渗透系数为抛物线变化时固结速率最快,渗透系数为线性时次之,渗透系数为常数时固结速率最慢。  相似文献   

7.
张志龙  王红雨 《工程地质学报》2023,113(6):2093-2103
淤地坝在黄河中上游水土流失治理中发挥着重要作用,而“坝前淤积面加坝”是除险加固病险淤地坝常用的一种施工方法。针对饱和欠固结状态的坝前淤积土大变形非线性计算问题,文中采用分段线性方法构建了饱和欠固结土竖井地基固结模型(RSUC)并编写了Fortran计算程序。在验证新建模型准确性的基础上,对比分析了欠固结土与正常固结土竖井地基固结计算结果的差异。通过工程案例分析了淤积土的自重固结过程,讨论了增设塑料排水板对淤积土堆载固结的影响。结果表明,计入欠固结土前期未消散的超静孔隙水压力,使得欠固结土竖井地基的固结速度比正常固结竖井地基慢;欠固结淤积土在晾晒期间其体内孔隙比、超静孔压随深度呈非线性变化,底部固结速度、沉降值相对较大;布设塑料排水板可以减缓堆载引起的淤积土坝基中超静孔隙水压力的峰值,加速淤积土的固结速度、减小工后沉降,增加坝基的稳定性。  相似文献   

8.
竖井地基的粘弹—粘塑性固结及有限元解   总被引:2,自引:0,他引:2  
用1个带双屈服面的粘弹-粘塑性模型来描述软土的流变性状,并结合Biot固结理论对软土地基的固结沉降进行有限元分析。对竖井预固结地基进行计算,以预压所产生的沉降量及所引起的附加有效应力分别大于设计载荷所引起的最终沉降量和附加应力为终止预压的依据,计算取得了合理结果。  相似文献   

9.
设计竖井地基热排水固结模型试验系统,选取宁波软黏土在水热循环温度70℃下开展热排水固结模型试验,分析了无堆载加热、分级堆载、恒载降温阶段各测点的温度、孔隙水压力及地表沉降变化规律,并以试验为原型,利用COMSOL软件建立热排水固结耦合模型,进行了有限元模拟分析。结果表明:模拟结果与试验结果可以相互验证;无堆载加热阶段,土体孔隙水压力先增大后消散,地表沉降先隆起后下沉,地基发生固结压缩;分级堆载阶段,耦合模型地基固结速率较退化模型快,地基平均固结度到达90%时,耦合模型所用时间较退化模型显著减少;恒载降温阶段,降温能使残余孔压快速消散,土体有效应力增加,土体沉降继续增大,地基进一步固结压缩。  相似文献   

10.
王洁  李传勋  郭霄  卢萌盟 《岩土力学》2022,43(10):2828-2840
软土固结过程中展现出明显的非线性压缩和渗透特性,同时竖井的淤堵效应常导致井阻在固结过程中随深度和时间不断演化,但目前能考虑井阻随时空演化的竖井地基非线性固结解析解还很鲜见。通过引入孔隙比与有效应力及孔隙比与渗透系数间的半对数模型描述了土体的非线性固结特性,建立了能同时考虑井阻随时空变化和涂抹影响的竖井地基非线性固结模型,并采用分离变量法获得了固结模型的解析解。将特定参数下固结解的计算结果与实测数据、已有的竖井地基固结解答进行了对比分析以验证其可靠性。最后,对竖井地基的非线性固结性状开展了大量计算分析。结果表明:竖井渗透系数随深度线性衰减越明显则地基固结速率越慢;外荷载一定时,随着软土压缩指数cc与渗透率指数ck之比的增大,竖井地基固结速度减慢;在cc /ck值不变的情况下,外荷载增加,地基固结速率加快。在涂抹区的3种径向渗透系数变化模式中,抛物线变化模式下的地基固结速度最快,线性变化模式下的地基固结速度次之,恒定模式下的地基固结速度最慢,且这种性状并不因为考虑井阻变化或土体非线性固结特性而发生改变。  相似文献   

11.
成层竖向排水井地基固结分析   总被引:3,自引:0,他引:3  
实际工程中竖井地基具有成层性,有时竖井也并未完全打穿软土层。在竖井打设区满足竖井等应变固结理论、下卧层满足一维太沙基固结理论假设的基础上,将现有竖井地基固结理论推广到成层未打穿竖井地基情况。利用边界条件和竖直向连续条件,确定该系统的正交关系,并给出了其固结解答,该解具有广泛的适用性。通过对竖井打设区和下卧层层数的变化,即可获得现有关于简单未打穿竖井地基的固结解答。将该解答编制成应用程序,对一算例进行了分析。结果表明,平均固结度按孔压定义和按变形定义是不相同的,硬表层的存在会加快其下土层的固结。  相似文献   

12.
The soil around a drain well is traditionally divided into smeared zone and undisturbed zone with constant hydraulic conductivity. In reality, hydraulic conductivity of the soil changes continuously and it may not be always appropriate to approximate its distribution with two zones. In this study, the horizontal hydraulic conductivity of the soil is described by an arbitrary function of radial distance. The horizontal flow under equal strain condition is analysed for a soil–drain system with a circular or regular polygonal boundary. It is found that the horizontal flow can be generally characterized with a linear equation in which the flow rate of water through soil–drain interface is proportional to the difference between the average excess pore pressure in the soil and the excess pore pressure in the drain well. The water exchange between the drain and the soil is analogous to that between fractures and matrix in a double porosity system, a popular conceptual model of fracture rocks. On the basis of this characterization, a simplified approach to analyse soil–drain systems is developed with one‐dimensional double porosity model (DPM). Analytical solutions for both fully and partially penetrating drains are derived. The solution for partially penetrating drains is compared with both numerical and approximate analytical results in literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a finite element procedure for the analysis of consolidation of layered soils with vertical drain using general one‐dimensional (1‐D) constitutive models. In formulating the finite element procedure, a Newton–Cotes‐type integration formula is used to avoid the unsymmetry of the stiffness matrix for a Newton (Modified Newton) iteration scheme. The proposed procedure is then applied for the consolidation analysis of a number of typical problems using both linear and non‐linear soil models. Results from this simplified method are compared with those from a fully coupled consolidation analysis using a well‐known finite element package. The average degree of consolidation, excess porewater pressure and average vertical effective stress are almost the same as those from the fully coupled analysis for both the linear and non‐linear cases studied. The differences in vertical effective stresses are tolerable except for the values near the vertical drain boundaries. The consolidation behaviour of soils below a certain depth of the bottom of vertical drain is actually one‐dimensional for the partially penetrating case. Therefore, there are not much differences in whether one uses a one‐dimensional model or a three‐dimensional model in this region. The average degree of consolidation has good normalized feature with respect to the ratio of well radius to external drainage boundary for the cases of fully penetrating vertical drain using a normalized time even in the non‐linear case. Numerical results clearly demonstrate that the proposed simplified finite element procedure is efficient for the consolidation analysis of soils with vertical drain and it has better numerical stability characteristics. This simplified method can easily account for layered systems, time‐dependent loading, well‐resistance, smear effects and inelastic stress–strain behaviour. This method is also very suitable for the design of vertical drain, since it greatly reduces the unknown variables in the calculation and the 1‐D soil model parameters can be more easily determined. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Ground improvement is a complex issue, and accurately predicting the consolidation and settlement of soft soil with prefabricated vertical drain (PVD) presents a significant challenge. Recent laboratory and field tests have highlighted the influence of the variable discharge capacity of PVD and the non-Darcian flow behavior of soft soil on consolidation. However, existing theories have not yet considered these two factors simultaneously. To address this gap, a numerical solution for consolidation analysis incorporating non-Darcian flow and variable discharge capacity of PVD was developed and applied in a test area. The results of this study demonstrate the significant impact of both non-Darcian flow and variable discharge capacity on the consolidation rate. A comprehensive comparison between the findings of this numerical solution, the degenerate solution, and monitored data reveals clear differences. Notably, the non-Darcian exponent (s) and discharge capacity parameters (A3) were found to exert a greater influence on consolidation behavior compared to other factors. These findings provide valuable guidance for the design and implementation of following airport ground improvement strategies.  相似文献   

15.
动静力排水固结法在淤泥质地基处理工程中的应用   总被引:3,自引:0,他引:3  
张丽娟  李彰明  韩江 《岩土力学》2009,30(2):567-571
以广州南沙泰山石化仓储区1期淤泥质地基处理工程为背景,介绍了采用动静力排水固结法处理促淤饱和软黏土地基的基本思想和工艺。该工程施工与现场实时监测相结合,利用孔隙水压力、土体分层沉降和载荷试验等检测指标对加固效果进行了监测和检测。工程实践表明,采取动力即低能量“少击多遍”的强夯施工工艺,辅以填土预压和设置竖向塑料排水板的静力方法来加固淤泥质地基,其效果明显,促淤地基的物理力学性能和抗变形性能显著提高,整体加固效果很好,工后各项指标完全达到或超过预期值。  相似文献   

16.
Based on the consolidation theory raised by Fredlund, the solutions for the equal-strain consolidation of unsaturated foundation with the prefabricated vertical drain considering smear effect and drain resistance are analytically formulated in this paper. Firstly, governing equations for excess pore pressures (i.e., excess pore-air and pore-water pressures) under the equal-strain hypothesis are derived with the introduction of radial boundary conditions. Afterwards, the obtained coupled equations are solved by applying general integration, decoupling process, and Fourier sine series expansion. The smear coefficients and factors of drain resistance corresponding to air and water phases are both captured explicitly in the final solutions. Furthermore, the degenerated solutions are employed to verify the reliability of the current solutions. Finally, a parametric study is conducted to study the consolidation characteristics of the proposed foundation model against modeling sizes (S and N), smear coefficients (αa and αw), and drain resistance factors (Ga and Gw).  相似文献   

17.
The coefficient of consolidation is one of the most important parameters that control the rate of consolidation. Conventional consolidation theories assume that the coefficient of consolidation is constant during the whole consolidation process. In the case of sensitive clay, the coefficient of consolidation is strongly dependent on the level of effective stress of clay. With the dissipation of pore water pressure and the increase of effective stress, the soil structure of the upper subsoil is gradually destroyed downwards and its coefficient of consolidation becomes smaller. At the same time, the coefficient of permeability of the vertical drains drops down because of the kinking or bending effect. The destructured upper subsoil and the kinking of the vertical drain hinder the dissipation of the pore pressure in the lower subsoil. This paper presents a model to describe the above important phenomena during the consolidation of sensitive clay with vertical drain. The solution for proposed model can be obtained by extending the closed‐form solution of the consolidation of double‐layered ground with vertical drain by the interactive method introducing the concept of the moving boundary and the reduction of discharge capacity of vertical drain. The numerical results obtained from the finite element method package PLAXIS (Ver. 7.2) are adopted to compare those obtained from the present algorithm. Moreover, the rationality of the moving boundary is explained by the distributions of the excess pore water pressure in natural soil zone along the radial direction. Wenzhou airport project is taken as a case study in this paper. The results for the sensitive soil with decaying sand drain agree very well with the in situ measured data. The calculated results can properly explain two general phenomena observed in the consolidation of soft sensitive soil ground with vertical drains: one is that the time to achieve the same consolidation degree is much longer under heavy loading than that under light loading; the other is that the consolidation speed is much slower in the lower subsoil than in the upper subsoil. Finally, it is indicated that the vertical drains can decrease the hindrance effect of the destructured subsoil. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
单井固结模型的计算中通常将砂井周围土体简单划分为涂抹区和非涂抹区,不符合实际砂井周围土体的渗透系数分布复杂的事实。本文在Terzaghi固结理论的基础上提出了改进的单井固结模型,以一个待定参数流量系数Cq取代涂抹区和非涂抹区渗透系数来刻画砂井周围土体的横向渗透性特征,使单井固结问题得到高度简化又不失严密性。本文将改进模型用于非完整砂井单井固结的最终沉降量的数值计算,并将计算结果与谢康和改进法以及Hart法的解析解进行了比较,证明了改进模型数值解的可靠性。  相似文献   

19.
The system of vacuum pressure combined with vertical drains to accelerate soil consolidation is one of the most effective ground improvement methods. The consolidation theories of soft soil improved by vertical drains including void ratio–dependent compressibility and permeability have been widely applied in practice to predict the consolidation behavior. In this paper, analytical solutions of the consolidation of vertical drains are derived incorporating the loss and propagating stage of vacuum pressure. In addition, special solutions are obtained for the cases of instantaneous surcharge loading and staged surcharge loading, based on the general solution. The solution is verified by ignoring the propagating stage of vacuum pressure formation and comparing it with an existing solution. The effects of vacuum pressure loss and propagating stage combined with other parameters are investigated through the ratio between excess pore water pressure and surcharge loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号