共查询到6条相似文献,搜索用时 0 毫秒
1.
This study used a quadratic programming sector model to assess the integrated impacts of climate change on the agricultural economy of Egypt. Results from a dynamic global food trade model were used to update the Egyptian sector model and included socio-economic trends and world market prices of agricultural goods. In addition, the impacts of climate change from three bio-physical sectors – water resources, crop yields, and land resources – were used as inputs to the economic model. The climate change scenarios generally had minor impacts on aggregated economic welfare (sum of Consumer and Producer Surplus or CPS), with the largest reduction of approximately 6 percent. In some climate change scenarios, CPS slightly improved or remained unchanged. These scenarios generally benefited consumers more than producers, as world market conditions reduced the revenue generating capacity of Egyptian agricultural exporters but decreased the costs of imports. Despite increased water availability and only moderate yield declines, several climate change scenarios showed producers being negatively affected by climate change. The analysis supported the hypothesis that smaller food importing countries are at a greater risk to climate change, and impacts could have as much to do with changes in world markets as with changes in local and regional biophysical systems and shifts in the national agricultural economy. 相似文献
2.
气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势 总被引:7,自引:0,他引:7
丁一汇 任国玉 石广玉 Gong Peng Zheng Xunhua Zhai Panmao Zhang De'er Zhao Zongci Wang Shaowu Wang Huijun Luo Yong Chen Deliang Gao Xuejie Dai Xiaosu 《气候变化研究进展》2007,3(Z1):1-5
The climate change in China shows a considerable similarity to the global change, though there still exist some significant differences between them. In the context of the global warming, the annual mean surface air temperature in the country as a whole has significantly increased for the past 50 years and 100 years, with the range of temperature increase slightly greater than that in the globe. The change in precipitation trends for the last 50 and 100 years was not significant, but since 1956 it has assumed a weak increasing trend. The frequency and intensity of main extreme weather and climate events have also undergone a significant change. The researches show that the atmospheric CO2 concentration in China has continuously increased and the sum of positive radiative forcings produced by greenhouse gases is probably responsible for the country-wide climate warming for the past 100 years, especially for the past 50 years. The projections of climate change for the 21st century using global and regional climate models indicate that, in the future 20-100 years, the surface air temperature will continue to increase and the annual precipitation also has an increasing trend for most parts of the country. 相似文献
3.
SoEun Ahn Joseph E. de Steiguer Raymond B. Palmquist Thomas P. Holmes 《Climatic change》2000,45(3-4):493-509
Global warming due to the enhanced greenhouse effect through human activities has become a major public policy issue in recent years. The present study focuses on the potential economic impact of climate change on recreational trout fishing in the Southern Appalachian Mountains of North Carolina. Significant reductions in trout habitat and/or populations are anticipated under global warming since the study area is on the extreme margins of trout habitat of the eastern U.S. The purpose of this study is to estimate the potential welfare loss of trout anglers due to global warming. A nested multinomial logit model was developed and estimated to describe the angler's fishing choice behavior. The estimated median welfare loss (Compensating Variation) ranged from $5.63 to $53.18 per angler per single occasion under the various diminished trout habitat and/or population scenarios. 相似文献
4.
S. Pattnaik S. Abhilash S. De A. K. Sahai R. Phani B. N. Goswami 《Climate Dynamics》2013,41(2):341-365
This study investigates the influence of Simplified Arakawa Schubert (SAS) and Relax Arakawa Schubert (RAS) cumulus parameterization schemes on coupled Climate Forecast System version.1 (CFS-1, T62L64) retrospective forecasts over Indian monsoon region from an extended range forecast perspective. The forecast data sets comprise 45 days of model integrations based on 31 different initial conditions at pentad intervals starting from 1 May to 28 September for the years 2001 to 2007. It is found that mean climatological features of Indian summer monsoon months (JJAS) are reasonably simulated by both the versions (i.e. SAS and RAS) of the model; however strong cross equatorial flow and excess stratiform rainfall are noted in RAS compared to SAS. Both the versions of the model overestimated apparent heat source and moisture sink compared to NCEP/NCAR reanalysis. The prognosis evaluation of daily forecast climatology reveals robust systematic warming (moistening) in RAS and cooling (drying) biases in SAS particularly at the middle and upper troposphere of the model respectively. Using error energy/variance and root mean square error methodology it is also established that major contribution to the model total error is coming from the systematic component of the model error. It is also found that the forecast error growth of temperature in RAS is less than that of SAS; however, the scenario is reversed for moisture errors, although the difference of moisture errors between these two forecasts is not very large compared to that of temperature errors. Broadly, it is found that both the versions of the model are underestimating (overestimating) the rainfall area and amount over the Indian land region (and neighborhood oceanic region). The rainfall forecast results at pentad interval exhibited that, SAS and RAS have good prediction skills over the Indian monsoon core zone and Arabian Sea. There is less excess rainfall particularly over oceanic region in RAS up to 30 days of forecast duration compared to SAS. It is also evident that systematic errors in the coverage area of excess rainfall over the eastern foothills of the Himalayas remains unchanged irrespective of cumulus parameterization and initial conditions. It is revealed that due to stronger moisture transport in RAS there is a robust amplification of moist static energy facilitating intense convective instability within the model and boosting the moisture supply from surface to the upper levels through convergence. Concurrently, moisture detrainment from cloud to environment at multiple levels from the spectrum of clouds in the RAS, leads to a large accumulation of moisture in the middle and upper troposphere of the model. This abundant moisture leads to large scale condensational heating through a simple cloud microphysics scheme. This intense upper level heating contributes to the warm bias and considerably increases in stratiform rainfall in RAS compared to SAS. In a nutshell, concerted and sustained support of moisture supply from the bottom as well as from the top in RAS is the crucial factor for having a warm temperature bias in RAS. 相似文献
5.
青藏高原隆升对西北干旱气候形成影响的模拟(Ⅰ):对大气环流影响 总被引:1,自引:2,他引:1
青藏高原隆升对西北干旱区大气环流影响的研究,对于理解西北干旱区的成因有重要的意义.本文通过三个数值试验,初步探讨了高原隆升前和隆升至临界高度时,北半球特别是我国西北地区大气环流场与现在的差异.结果表明,青藏高原隆升对北半球特别是西北地区海平面气压场、500 hPa高度场、100 hPa高度场有明显的影响;高原隆升前和隆升至临界高度时,北半球绝大部分地区海平面气压场、500 hPa高度场、100hPa高度场都比现在偏低.不同季节时,各环流场变化的情况也基本一致.高原隆升至临界高度时已经对北半球特别是西北地区的环流形势产生了较大的影响,这将导致西北地区气候条件发生较明显的变化. 相似文献