首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
The main Woodlawn ore lens is a polymetallic, massive sulphide deposit’ with pyrite the major constituent, variable sphalerite, galena and chalcopyrite, and minor arsenopyrite, tetrahedrite‐tennantite, pyrrhotite and electrum. The silicate gangue minerals are chlorite, quartz, talc and sericitic mica. Other mineralization in the vicinity consists of footwall copper ore in chlorite schist and several smaller massive sulphide lenses. The predominant country rocks are felsic volcanics and shales, with abundant quartz, chlorite and mica, and talc in mineralized zones.

An important textural feature of the massive ore is the fine compositional banding. Bands, which vary in thickness from a few tens of micrometres to several millimetres, are produced by variations in the sulphide content. Post‐depositional metomorphism and minor fracturing have only slightly modified this banding.

Apart from the major element constituents—Pb, Zn, Fe, Cu and S—the ore is characterized by significant (100–1000 ppm) values for Ag, As, Cd, Mn, Sb and Sn, and lower (1–100 ppm) values of Au, Bi, Co, Ga, Hg, Mo, Ni, Tl. In and Ge. Variations in the base‐metal sulphide content, the gangue mineralogy, and trace elements, are used to separate the orebody into hanging‐wall and footwall zones. The hanging‐wall zone shows a more variable trace element content, with higher Tl, Sn, Ni, Mn, Ge and Sb, but lower Ag, Cd, and Mo, than the footwall zone.

In general style of mineralization, mineralogy, and chemistry, the Woodlawn deposit resembles other volcanogenic massive sulphide deposits in eastern Australia, in New Brunswick in Canada, and the Kuroko deposits of Japan.  相似文献   

2.
争光金矿床(伴生锌)位于我国东北地区黑龙江省多宝山Cu-Au-Mo成矿带南东端,构造上处于古亚洲成矿构造域和滨太平洋成矿构造域的叠加部位。该金矿距北西向的多宝山铜金矿和铜山铜矿分别约为10km和5km,因此,深入研究其成矿时代、成因类型归属,理清与多宝山铜金矿-铜山铜矿的关系具有重要科学价值。争光金矿赋矿围岩为奥陶系多宝山组安山质火山岩地层,发育爆发相、溢流相、火山碎屑流相、火山沉积相等,且爆发相和喷溢相交替出现,具有喷发时期熔岩溢流与火山碎屑物的喷发交替进行或具多旋回火山活动的特征;根据火山集块岩、火山角砾岩、火山碎屑岩的空间展布及岩相变化特征,推测矿区内发育有古火山机构。受后期北西向构造影响,火山岩地层具北西向弱定向变形特征。含金脉系呈脉状、网脉状沿北西向、北东向及南北向构造产出;矿石矿物以黄铁矿、闪锌矿、黄铜矿、方铅矿为主,金以裂隙金、粒间金和包裹金的形式赋存于上述硫化物中,部分赋存在石英中。综合脉系特征、矿物组合、蚀变类型、闪锌矿Fe含量等,本文明确提出该矿床为中硫型浅成低温热液型金矿。对矿区内发育的成矿后闪长玢岩、花岗闪长斑岩及长石斑岩等脉岩的锆石U-Pb测年结果初步厘定争光金矿金成矿作用早于454Ma。综合判断争光金矿与多宝山含金斑岩铜矿、铜山铜矿同形成于480~454Ma受古亚洲洋俯冲作用控制的岛弧背景,构成完整的斑岩Cu-Au与中硫化型浅成低温热液Au成矿系统。  相似文献   

3.
云南个旧锡多金属矿区卡房矿田伴生金矿主要赋存于中三叠统个旧组卡房段地层的中上部,矿化受花岗岩侵入的热液活动、变玄武岩及NE向和EW向褶皱、断裂构造控制。伴生金矿床可分为含金(银)多金属矽卡岩硫化锡铜矿床及含金脉(层)状锡铅矿床。金主要呈银金矿、自然金等独立矿物出现,主要载金矿物有自然铋、毒砂、辉钼矿等,其中以自然铋含金量最高。金矿化在变玄武岩底界之下6~20m处矿化最强,最富集。  相似文献   

4.
Through the ?zmir–Ankara–Erzincan and the Vardar oceans suture zones, convergence between the Eurasian and African plates played a key role in controlling Palaeogene magmatism in northwestern Anatolia, northern Aegean, and eastern Balkans. LA-ICP-MS dating of U and Pb isotopes on zircon separates from the tuffs of the Harmankaya Volcanic Rocks, which are inter-fingered with the lower-middle Eocene deposits of the Gaziköy Formation to the north of the Ganos Fault and the Karaa?aç Formation in the Gelibolu Peninsula, yielded a late Ypresian (51 Ma) age. The chemical characteristics suggest that the lavas and tuffs of the Harmankaya Volcanic Rocks are products of syn- or post-collision magmas. These volcanic rocks show also close affinities to the subduction-related magmas. In addition to the already known andesitic volcanic rocks, our field observations in Gökçeada Island indicate also the existence of granitic and rhyolitic rocks (Marmaros Magmatic Assemblage). Our U–Pb zircon age data has shown that the newly discovered Marmaros granitic plutons intruded during late Oligocene (26 Ma) into the deposits of the Karaa?aç Formation in Gökçeada Island. LA-ICP-MS dating of U and Pb isotopes on zircon separates from the Marmaros rhyolitic rocks yielded a late Oligocene (26 Ma) crystallization age. Geochemical characteristics indicate that the more-evolved Oligocene granitic and rhyolitic rock of the Marmaros Magmatic Assemblage possibly assimilated a greater amount of crustal material than the lower Eocene Harmankaya Volcanic Rocks. Geochemical features and age relationships suggest increasing amounts of crustal contamination and a decreasing subduction signature during the evolution of magmas in NW Turkey from the early Eocene to the Oligocene. The magmatic activity developed following the northward subduction of the ?zmir–Ankara–Erzincan oceanic lithosphere and the earliest Palaeocene final continental collision between the Sakarya and Anatolide–Tauride zones.  相似文献   

5.
G. Xu 《Ore Geology Reviews》1996,11(6):339-361
The sediment-hosted ZnPbAg deposit at Dugald River is situated 87 km northeast of Mount Isa, NW Queensland. It is a mid-scale base metal accumulation restricted to a black slate sequence of low metamorphic grade. The orebody is tabular and consists of fine- to medium-grained sulphides with a dominant mineralogy of sphalerite, pyrrhotite, pyrite, galena, quartz and muscovite. Three different ore types have been recognized based on mineralization textures; laminated, banded and brecciated. The present reserve stands at 38 million tons of ore averaging 13.0% Zn, 2.1% Pb and 42 g/t Ag. A structural investigation has revealed that six stages of deformation have affected the metasediments in the Dugald River area. The first four (D1, D2, D3 and D4) are characterized by the extensive development of folds and associated axial plane cleavage. They were all generated in a ductile regime and are of considerable significance for the structural evolution of this region as well as for the emplacement and localization of the sulphide mineralization. D5 provides a transition towards brittle deformation developing strong kink folds with subhorizontal axial planes. D6 was a brittle event, producing E-W-trending open folds and major NE and NW strike-slip faults crosscutting all the pre-existing structural elements plus segmenting the orebody. Correlation between the development of deformation and the formation of mineralization can be observed from macro- to microscales. Relationships of mineralization with folds and cleavage indicate a post-D2 (dominant deformation event) and probably syn-D4 deformation timing for the ZnPbAg mineralization at Dugald River, as suggested by the ubiquitous truncations of D2 fabrics by ore mineral assemblages throughout the deposit.  相似文献   

6.
The Havran-Bal?kesir Fault Zone (HBFZ) is one of the major active structures of the Southern Marmara Region, which has been shaped by the southern branch of North Anatolian fault since the Pliocene. HBFZ is a 10–12 km wide, 120 km long, right-lateral strike-slip fault zone that consists of two ENE-striking main faults, namely, the Havran-Balya and Bal?kesir faults. The 90-km-long Havran-Balya fault exhibits right-stepping en echelon geometry and is made up of (1) Havran, (2) Osmanlar, (3) Turplu and (4) Ovac?k fault segments. On the eastern part, the 70-km-long Bal?kesir fault is divided into two fault segments; (1) Gökçeyaz? and (2) Kepsut. We estimated the long-term slip rate between 3.59 and 3.78 mm/yr using river offset. The Kepsut, Gökçeyaz? and Ovac?k fault segments are capable of generating an earthquake with a moment magnitude of up to 7.2. Detailed palaeoseismological studies show that the HBFZ is responsible for some surface faulting earthquakes with an average recurrence interval of 1000–2000 years during the late Holocene. Considering the fact that there was no evidence of a surface-ruptured earthquake for 2000 years, it can be stated that there is a seismic gap on the Gökçeyaz? fault segment.  相似文献   

7.
河南省洛宁县铁炉坪大型脉状银铅矿床地处华北陆块南缘熊耳山中生代变质核杂岩构造西部,由一组主要的NNE走向陡倾斜矿脉和一组次要的NW走向陡倾斜矿脉有规律地组成.矿脉以条带状、角砾状和晶洞-晶簇-梳状三种主要形式多阶段充填而成,按照主要矿脉的矿物共生序列可以分为四个阶段:铁镁碳酸盐阶段(I)、烟灰色石英-贱金属硫化物-银矿...  相似文献   

8.
The sediment-hosted Zn---Pb---Ag deposit at Dugald River is situated 87 km northeast of Mount Isa, NW Queensland. It is a mid-scale base metal accumulation restricted to a black slate sequence of low metamorphic grade. The orebody is tabular and consists of fine- to medium-grained sulphides with a dominant mineralogy of sphalerite, pyrrhotite, pyrite, galena, quartz and muscovite. Three different ore types have been recognized based on mineralization textures; laminated, banded and brecciated. The present reserve stands at 38 million tons of ore averaging 13.0% Zn, 2.1% Pb and 42 g/t Ag. A structural investigation has revealed that six stages of deformation have affected the metasediments in the Dugald River area. The first four (D1, D2, D3 and D4) are characterized by the extensive development of folds and associated axial plane cleavage. They were all generated in a ductile regime and are of considerable significance for the structural evolution of this region as well as for the emplacement and localization of the sulphide mineralization. D5 provides a transition towards brittle deformation developing strong kink folds with subhorizontal axial planes. D6 was a brittle event, producing E-W-trending open folds and major NE and NW strike-slip faults crosscutting all the pre-existing structural elements plus segmenting the orebody. Correlation between the development of deformation and the formation of mineralization can be observed from macro- to microscales. Relationships of mineralization with folds and cleavage indicate a post-D2 (dominant deformation event) and probably syn-D4 deformation timing for the Zn---Pb---Ag mineralization at Dugald River, as suggested by the ubiquitous truncations of D2 fabrics by ore mineral assemblages throughout the deposit.  相似文献   

9.
《Geodinamica Acta》2013,26(5):345-361
The Lower Cambrian Kocayayla Group forms the stratigraphically lowermost part of the relative autochthonous Geyikdagi unit of the Taurus Range in the Sandikli (Afyon) region. It is represented by the Celiloglu Formation, Gögebakan Formation, Kestel Çayi volcanics and the Tasoluk Formation in the ascending order. The Celiloglu Formation consists of quartzites with intercalations of metapelites. The Gögebakan Formation overlies the Celiloglu Formation along a gradational boundary, and is composed of metapelites with mafic volcanic intercalations. The Gögebakan Formation grades laterally and vertically into the Kestel Çayi volcanics (Sandikli porphyroids) consisting of rhyolites with volcanosedimentary intercalations. The Tasoluk Formation is composed of yellow quartzites and it is the uppermost unit of the Kocayayla Group gradationally overlaying Kestel Çayi volcanics. The Kocayayla Group is overlain by the Sandikli unit and there is a pronounced unconformity between them. The Sandikli unit consists of white quartzites, brown dolomites, trilobite-bearing limestones and mudstones of the Middle-Upper Cambrian age. The Lower Jurassic Ilyasli Formation unconformably covers both the Kocayayla Group and Sandikli unit. The flat-laying Neogene volcanosedimentary rocks are the youngest succesion unconformably covering the all older rock units. The Kocayayla Group was deformed and underwent a low-grade metamorphism marked by sericite-chlorite-biotite/stilpnomelane-quartz paragenesis in the metapelites of the Gögebakan and Tasoluk formations and chlorite-epidote-albite-quartz and opaque assemblage in the mafic volcanic intercalations in the Gögebakan Formation, before the deposition of the trilobite-bearing Middle-Upper Cambrian succession. The Gögebakan and Tasoluk formations and the Kestel Çayi volcanics show a single penetrative foliation which mostly obliterated the primary structures whereas beds, trace fossils and cross-stratifications are partly preserved in the quarzite beds of the Celiloglu Formation. The Gögebakan Formation has rough foliation while the Kestel Çayi volcanics displays anastomizing and continuous foliation with a prominent stretching lineation. The attitude of the stretching lineation concentrates at 25/45 and 280/43 in the Kocayayla area, and s-clasts, s/c fabrics and quartz sigmoids indicate top-NNE and ESE shear sense. This difference in shear direction is related to the post-Liassic rotation in the core of southwest-verging asymmetric anticline. After removing this younger folding it is determined that, the linear fabrics has a concentration of 280/43 with top-ESE shear sense. In the Tasoluk area, the linear fabrics clusters at 320/43 with top-NW shear sense. The difference in orientation of foliation, linear fabric and shear sense in the Lower Cambrian Kocayayla Group indicate regional scale Alpine fold event(s) that rotated the earlier deformation fabrics in the Geyikdagi unit.  相似文献   

10.
The layered mafic–ultramafic rocks in the Sierras de San Luis, Argentina (Las Águilas, Las Higueras and Virorco), constitute a 3–5-km-wide belt that extends over 100 km from NE to SW. They carry a sulphide mineralization consisting of pyrrhotite, pentlandite and chalcopyrite, in veins and as disseminated to massive ore. Disseminated spinels are frequently associated with the sulphide minerals as well as platinum group minerals. A strong correlation between S, Ni, Co, Cu, Cr, Pt and Pd indicates the presence of one to three levels of mineralization within the ultramafic units. The maximum concentration of these elements coincides with the units containing platinum group minerals (PGM) and spinel group minerals. This clear relationship constitutes a good prospecting guide in the search for layers with high-grade ore, probably associated with deeper stratigraphic levels where ultramafic rocks are dominant. The bulk rock chemistry and concentrations of metals and platinum group elements as well as textural evidence suggest that the parental magma was mafic with tholeiitic affinities and MgO rich. The Las Águilas layered mafic–ultramafic body and the remaining bodies in the area bear similar characteristics to well-known stratified complexes developed in extensional tectonic regimes, as it is the case of Jinchuan (China), Kabanga (Tanzania) and Fiambala (Argentina).  相似文献   

11.
The Falun gold quartz vein mineralization is located ca 230 km NW of Stockholm, Sweden, within the Early Proterozoic volcano-sedimentary sequence of Bergslagen. The mineralization consists of a system with subparallel quartz veins that crosscut the alteration zone to the Falun massive sulphide deposit. Early barren and late gold-bearing quartz veins follow tectonic structures postdating the formation of the massive sulphide ore. Both generations of veins are epigenetic to the massive sulphide ore and were formed by hydrothermal processes. Fluid inclusion study of the gold-bearing quartz veins indicates a low-moderately saline fluid (0.3 to 17.4 equiv wt% NaCl). Heterogeneous trapping is indicated by coexisting inclusions showing a variable CO2 content from 100% CO2 ± CH4 to 100% aqueous fluid. Temperatures of total homogenization also show a wide spread from 116–350°C with a slightly bimodal distribution with peaks at ca 180°C and 280°C. MeasuredδD values — 69 to — 63%0 (SMOW), of inclusion fluid and calculatedδ 18O values of hydrothermal fluids — 7.5 to — 1.4%0 (SMOW), strongly suggest a meteoric origin for the fluids. The quite consistentδD values and the range inδ 18O values indicate that major water-rock interaction led to the evolution inδ18O of the hydrothermal fluids.  相似文献   

12.
The sulphide-bearing rocks of the Upper Cretaceous Germav Formation in southeastern Turkey (Bozova–Urfa) and the morphologically varied sulphide occurrences they contain have been investigated. Pyrite and marcasite are the main sulphide minerals; lesser bravoite and millerite also occur. Pyritised branches and leaves, trace fossils, and animal microfossils and macrofossils are abundant. Most of the concretionary and authigenic concretionary pyrite occurrences are probably related to burrows. The concretionary pyrites have low Co and high Ni contents and low Co:Ni ratios. The pyrite-rich lithostratigraphic sequences were deposited in a deep-sea environment, and pyrite mineralization developed in syn-sedimentary, early diagenetic and epigenetic stages under anoxic conditions. To cite this article: C. Bölücek, B. Ilhan, C. R. Geoscience 338 (2006).  相似文献   

13.
Here we report the occurrence of some uncommon mineral assemblages including pääkönenite, aurostibite, native arsenic, native antimony, and native bismuth found in the Baogutu gold deposit in the western Junggar, Xinjiang, NW China. The mineralization could be generally subdivided into two types: the gold-bearing quartz-vein type mineralization and disseminated mineralization in the wall rocks. The sulfide minerals in gold lodes commonly include pyrite, arsenopyrite, marcasite, and stibnite. However, the L7 lode in No. 4 orebody and the L1 lode in No. 11 orebody of the Baogutu gold deposit are quite different in terms of their mineral assemblages. The L7 lode contains native arsenic–quartz veins in shallow levels and stibnite–quartz veins at depth. Gold-bearing minerals (electrum, native gold, and rarely aurostibite) mainly coexist with pääkönenite, stibnite, native arsenic, and native antimony. The crystallization of As- and Sb-bearing minerals was likely to have consumed H2S from the hydrothermal fluid, which probably triggered the precipitation of native gold. The L1 lode consists of several discontinuous sulfide-dominated lensoid orebodies. The massive sulfide ores that produced most of the gold resource are characterized by an intimate association between native bismuth and native gold mineralization.  相似文献   

14.
The mineralization area (Altınpınar, Torul–Gümüşhane) is situated in the Southern Zone of the Eastern Pontides Orogenic Belt (EPOB), which is one of the important metallogenic provinces in the Alpine–Himalayan belt and is intruded by the late Carboniferous granitic rocks (Gümüşhane Granitoid), an early to middle Jurassic volcano-sedimentary unit consisting mainly of basaltic–andesitic volcanic and pyroclastic rocks (Şenköy Formation) and Eocene basaltic–andesitic volcanic rocks (Alibaba Formation). The studied Pb–Zn ± Au mineralizations are related to silica veins ranging from a few millimeters to a maximum of 40 cm in thickness and are localized within fracture zones developed along the contact between the Gümüşhane Granitoid and Şenköy Formation. Silicic, sulfidic, hematitic, argillic, intense chloritic and carbonate alteration are the most common types from the fault lines toward the outer zones. Cavity filling and banded structures are widely observed. The mineral paragenesis comprises galena, sphalerite, pyrite, chalcopyrite, tennantite and quartz. Mineral chemistry studies indicate that ion exchange occurs between Zn and Fe in sphalerites, and the Zn/Cd ratio of sphalerites varies between 50.65 and 144.64. The homogenization temperatures measured from fluid inclusions vary between 170 °C and 380 °C, especially between 250 °C and 300 °C, and the wt.% NaCl eqv. salinity of ore-forming fluids is between 2.4 and 7.3 (4.7 on average), supporting an epithermal system in their origin. The values of sulfur isotopes, which are obtained from pyrite and galena minerals, range between − 8.3‰ and − 2.3‰, indicating that sulfur, which enables mineral formation, originates from magmatic genesis. The average formation temperature of the ore is 317 °C as determined with a sulfur isotope geothermometer. The values of oxygen and hydrogen isotopes vary between 8.5‰ and 10.2‰ and − 91‰ and −73‰, respectively. With regard to the compositions of oxygen and hydrogen isotopes, fluids comprising the mineralization are formed by the mixture of magmatic water and meteoric water. This situation is supported by the fact that the increase in the homogenization temperature indicates dilution with surface water but depends on the increase in the salinity of fluid inclusions. Considering all the data, it is clear that the studied mineralization is an epithermal vein-type mineralization that is related to granitic magmas.  相似文献   

15.
Fault zones control the locations of many ore deposits, but the ore-forming processes in such fault zones are poorly understood. We have studied the deformation and ore textures associated with fault zones that controlled the lead–zinc mineralization of the Dongmozhazhua deposit, central Tibet, ∼100 km southwest of Yushu City. Geological mapping shows that the structural framework of the Dongmozhazhua area is defined by NW–SE-trending reverse faults and superposed folds that indicate at least two stages of deformation. The first stage is characterized by tight nearly E–W-striking folds that formed during the closure of the Jinshajiang Paleo-Tethyan Ocean in the Triassic. The second stage of deformation produced NW–SE-trending reverse faults and related structures of the Fenghuoshan–Nangqian fold-and-thrust belt associated with India–Asia collision in the late Eocene to Oligocene. Scanline surveys along the ore-controlling fault zones show an internal structure that comprises a damage zone, a breccia zone with clasts that have become rounded, and a breccia zone with lenticular clasts, and this complex architecture was formed during at least two compressional substages of deformation. The Pb–Zn mineralization in the Dongmozhazhua area occurs exclusively close to NW–SE-trending reverse fault zones. Microtextural observations reveal that mineralization occurred as veinlets and disseminated blebs in limestone clasts, and as continuous bands and cements in fractured rocks. Cataclastic sulfide grains also can be seen in the matrix of some fault zones. The types of mineralization differ with structural position. The fillings of the ore-bearing veinlets typify the products of hydraulic fracture and both types of mineralization took place concurrently with regional contraction. We consider, therefore, that the ore-bearing fluids in the Dongmozhazhua deposit were concentrated in fault zones during regional compression and that the ore minerals were precipitated during hydraulic fracturing of host rocks. Subsequent fault activity pulverized some pre-existing sulfide material into cataclastic grains in the matrix of a tectonic breccia that developed in the same faults.  相似文献   

16.
鄂东北鹰咀山锰矿床地质特征及找矿标志   总被引:1,自引:0,他引:1       下载免费PDF全文
鹰咀山锰矿床产出在桐柏—大别造山带中,目前已发现有4条锰矿(化)体,其产出受控于红安群黄麦岭组和七角山组。本文基于矿区锰矿勘查工作和室内观察、测试研究相结合等手段,对研究区含矿岩系(建造)特征、矿体及矿石矿物特征、成矿过程和找矿标志等方面进行了分析探讨。结果表明:鹰咀山锰矿为沉积变质型矿床,锰矿(化)体主要赋存在黄麦岭组云母石英片岩夹硅质(有时含少量泥质)大理岩建造的岩性段中;矿石类型主要为片岩型锰矿石和大理岩型锰矿石,矿石中锰矿物主要为硬锰矿、软锰矿、菱锰矿、锰白云石和黑锰矿等;初步认为锰矿的形成经历了沉积、变质改造和次生氧化富集的成矿阶段;含锰硅质大理岩和含锰云母石英片岩可作为该地区锰矿的典型找矿标志,该标志对鄂东北地区锰矿找矿具有重要意义。  相似文献   

17.
The Ortaklar VMS deposit is hosted in the Koçali Complex consisting of basalts and deep sea pelagic sediments, which formed by rifting and continental break-up of the southern Neotethyan in Late Triassic. The basalts are of NMORB-type without notable crustal contamination. From the surface to depth, the Ortaklar deposit consists of a gossan zone, a thick massive ore zone and a poorly developed stockwork zone. Primary mineralisation is characterised by distinctive facies including sulphide breccias (proximal), graded beds (distal), stockworks and chimney fragments. Ore mineral abundances decrease in the order of pyrite, magnetite, chalcopyrite, and sphalerite. Two distinct phases of mineralisation, massive magnetite and massive sulphide, are present in the Ortaklar deposit. Textural evidence (e.g., magnetite replacing sulphides) and the spatial relationships with the host rocks indicate that magnetite and sulphide minerals were generated in different stages. The transition from sulphide to magnetite mineralisation is interpreted to relate to variation in H2S content of ore fluids. The 1st stage massive sulphide ore might have formed by early hydrothermal fluids rich in Fe and H2S. The 2nd stage massive magnetite might have formed by later neutral hydrothermal fluids rich in Fe but poor in H2S, replacing the pre-existing sulphide ore.The alteration patterns, mineral paragenesis, lithological features (massive ore-stockwork ore-gossan) of the Ortaklar deposit together with its trace elements, Cu-Pb-Zn-Au-Ag and REE signatures are all consistent with a Cyprus-type VMS system. The δ34S values in pyrite and chalcopyrite samples range from 2.6 to 5.7‰, indicating that the hydrothermal fluids were associated with sub-seafloor igneous activity, typical of Cyprus-type VMS deposits. However, magnetite formed later than sulphide minerals in the Ortaklar deposit, contrasting with typical Cyprus-type VMS deposits where magnetite generally occurs in lower sections. Consequently, although the Ortaklar deposit generally conforms to Cyprus-type deposits, it is distinguished from them by its late stage and high magnetite concentration. Thus, the Ortaklar deposit is thought to be an exceptional and perhaps unique Cyprus-type VMS deposit.  相似文献   

18.
滇西北金顶巨型Zn-Pb矿田产于兰坪晚中生代—新生代盆地中北部,对其成矿作用机制仍存在分歧。跑马坪铅锌矿床是其北东部的一个大型隐伏矿床,由众多规模不等、呈筒柱状、大脉状及不规则囊状的矿体(群)组成。大量的地质填图及坑道观察表明,该矿床的形成严格受北西向逆断层破碎带的控制,矿体就位于云龙组(Ey)砂泥岩不整合面下伏的三合洞组(T3s)碎裂状灰岩、砂结灰岩质角砾岩内;断层破碎带中的矿化更强,而旁侧的次级裂隙多被砖红色砂泥岩充填。依据矿物组合及矿石组构特点,自矿体中心向外,依次可分为致密块状富锌矿带、脉状细粒硫化物矿化带、脉状胶粒状硫化物矿化带、方解石-天青石-铁氧化物矿化带和碳酸盐化带5个矿化带,各带之间多为渐变过渡关系。显微镜、扫描电镜观测和能谱面扫描分析发现,矿石中存在代表流体混合成矿特征的环-胶状构造及包含结构等显微组构,指示富含金属离子及硫酸盐的卤水与富含还原性硫的流体在高渗透性碎裂状灰岩或灰岩质角砾岩中混合而快速沉淀成矿。因此,逆断层控制的幕式流体混合作用可能是跑马坪铅锌矿床的重要成矿机制。  相似文献   

19.
Base-metal deposits in the Caçapava do Sul Copper Province are hosted by both volcanosedimentary rocks of the Bom Jardim Group and by metamorphic rocks of the Passo Feio Formation, and show a spatial relationship to the Caçapava Granite. These associations have led to much controversy about the genesis of the base-metal deposits, which has been at least partly resolved by precise dating using SHRIMP (Sensitive High Resolution Ion Microprobe) U/Pb zircon studies combined with S, Pb, and Sr isotope trace studies.The Passo Feio Formation is Neoproterozoic in age and was derived from a complex continental source, as shown by the presence of xenocryst zircons of Archaean, Paleoproterozoic, and Neoproterozoic ages. It was metamorphosed at ca. 700 Ma. The syntectonic Caçapava Granite that intruded the supracrustal rocks of the Passo Feio Formation at 562 Ma was derived from an old sialic basement.Lead-isotope data are consistent with a 562 Ma age for the base-metal sulphide deposits sited in the Passo Feio Formation. The least-radiogenic compositions lie between the field of the isotopic compositions of the Caçapava Granite and rocks of the Passo Feio Formation, suggesting that Pb in the sulphide deposits may have been derived from both sources. The Pb, like that in the Caçapava Granite and Passo Feio Formation, was derived from a primitive crustal source. Sulphur isotope data from the base-metal sulphide deposits in the Passo Feio Formation are compatible with a mixed sedimentary and magmatic source.The most logical model for ore genesis, based on the isotopic data and spatial relationships, is that magmatic metal-bearing fluids from Caçapava Granite leached metals from the Passo Feio Formation and that the deposited sulphides therefore show mixed isotopic signatures. However, there is also some isotopic evidence from the Caçapava Granite itself that suggests assimilation of S-bearing rocks of the Passo Feio Formation during emplacement. Thus, isotopic signatures could have been inherited from assimilated metal sulphides at this stage, and deposition could have been entirely from Caçapava Granite-derived magmatic fluids.Importantly, the inferred 562±8 Ma age for the deposits in the Passo Feio Formation is younger than the well-constrained age of 594±5 Ma for the Camaquã/Santa Maria deposits. Thus, the epigenetic sulphides in the Passo Feio Formation cannot be the source of these deposits as previously suggested. Other isotopic data also argue against such a model.  相似文献   

20.
安徽池州许桥银矿地质特征及矿区深部找矿方向   总被引:2,自引:0,他引:2  
许桥银矿床位于长江中下游成矿带安庆-贵池矿集区东南部,矿床银储量达到中型规模,成矿岩体为分水岭石英闪长岩,矿体主要呈似层状赋存于分水岭岩体北东侧奥陶系仑山组、汤山组地层层间裂隙中;矿石矿物主要为黄铁矿、闪锌矿、方铅矿、黝铜矿、黄铜矿、辉银矿、自然银,脉石矿物为石英、碳酸盐矿物;矿石组构以自形-他形晶结构、交代结构、稀疏浸染状构造和网脉状构造为主;围岩蚀变类型主要有硅化、碳酸盐化、矽卡岩化、绿泥石化等;许桥银矿床成矿作用经历了两个成矿期:热液期和表生期,热液期又可分为三个成矿阶段,即为矽卡岩阶段、石英-硫化物阶段及碳酸盐-硫化物阶段;成矿流体早期以岩浆热液为主、晚期混有大气降水的流体演化特征;成矿物质主要来源于岩浆热液,地层贡献了部分矿质;成矿温度为中低温(208~259℃),矿床类型为中低温热液银多金属矿床,并指明了矿区深部找矿方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号