首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
重力数据库各项外部改正的计算   总被引:2,自引:0,他引:2  
本文介绍的是在重力数据库系统中配备的一套重力各项外部改正计算的方法和程序,其中地形改正和均衡改正程序将远区改正范围划分为三个区:远一区为1或2公里至20公里,采用平面公式,高程数据网度为1公里×1公里;远二区为20公里至166.7公里,采用球面公式,高程数据网度为5′×5′;远三区为166.7公里至全球,采用球面公式旋转椭球体模型,为全球1°×1°高程数据网,各区一律用园域接口。为便于用户选择,每区备有多种方法。此外还备有高度改正,中间层改正和正常改正程序。用这个系统可以计算自由空间重力异常,布格重力异常和均衡重力异常值。  相似文献   

2.
地壳均衡假说与湘西北地壳均衡失调探讨   总被引:2,自引:0,他引:2  
由湖南省1:100万10′×15′平均均衡重力异常图知,湘西北地区呈重力高;除此以外的广大地区,当消除花岗岩对应的局部重力低外,均衡异常基本呈零值特征。笔者认为这是湖南全省的地壳均衡失调区,并从5个方面对该问题进行了分析。  相似文献   

3.
在区域重力资料整理中,拟从1:5万地形图上读取1×1公里的高程网,建立全国地形图网结点高程数据库,用于计算区域重力远区地形改正值。但在山区能达到多大精度?这里为大家提供一份典型山区地形改正的试验资料,并据此谈些粗浅的看法,供同志们参考。  相似文献   

4.
陕西省,尤其是秦岭地区处于中国南北构造和东西构造的交汇部位,是中国地壳五大块体中的青藏块体、塔里木块体、华南块体和华北块体的分界部位,其地壳结构和地质构造都十分复杂。因此,利用区域地球物理场对陕西省深部构造进行研究十分必要。一、方法上地幔与地壳之间存在着一个物质界面—莫霍洛维奇不连续面,简称莫霍面。它可引起相当可观的重力异常。因此,由区域重力异常,通过反演计算可以获得莫霍面的起伏变化和地壳视厚度值。按王懋基等采用的方法,本文用40×40公里网格计算平均重力异常,用  相似文献   

5.
提出利用铅垂柱体薄片作为面元的面元积分法,计算三度体球冠重力异常的计算公式,用三度体球冠模型模拟三度背斜体,计算了均匀密度球冠模型、非均匀密度储油球冠模型的重力异常。最后通过误差分析,验证了该方法的可行性。采用波数域重力归一化总梯度计算方法,计算了均匀密度球冠模型、非均匀密度储油气球冠模型G^H场,发现似三度背斜体与二度背斜体有相似的G^H场等值线特征,似三度贮油气藏背斜构造的G^H场亦表现出明显的“两高夹一低”的储油典型标志。所以,可以用非均匀密度三度体储油球冠模型模拟三度贮油气藏背斜构造。  相似文献   

6.
以前国内重力勘探教科书中,关于2.0 km以远地壳质量重力校正值的计算仅限于2.0~166.7 km圆形环带以内,并且采用的是直角坐标系内成立的计算公式。近年,中国地质调查局推出直角坐标系公式和球坐标系公式一起应用的重力校正值计算程序,但校正值计算涉及范围仍然局限于2.0~166.7 km圆形环带内。笔者曾推导出球壳型六面体重力场△g(zi)公式和其他与重力校正计算相关的公式,现用这些公式开展纯球坐标系内地壳质量的重力校正值高精度计算及其数值特征研究。取得的成果是:1全球陆地和海洋表面、尺度约40 km正方形网格上,169km以远地壳全部质量重力校正值计算;2中国陆地2'×2'网格上,169 km以远地壳全部质量重力校正值计算;3西藏雅江大转弯3°×2°小区地表、尺度约0.556 km正方形网格上,169 km以远地壳全部质量重力校正值计算。通过对上述全球和局部地区169 km以远地壳质量的重力校正值分布特征分析,得到如下结论:1全球重力校正值的最大值、最小值和平均值分别为106.990×10-5m/s2(87.877°E,32.271°N),-41.146×10-5m/s2(166.122°E,28.327°N)和-16.439×10-5m/s2,其数值分布特征与全球高程/海深分布特征基本一致。2在局部地区,169~1 272 km大环带的地壳质量的陆地地形校正值分布特征与该区高程分布特征基本一致。这说明,在地形高程差异大的地区,重力校正值中存在与地形高程正相关的高频成分,与以前众多专家的认识大不相同。实际上,该高频成分是由计算区本身相邻计算点之间存在较大的高程差值引起的。3无论局部地区及其周围陆高或海深变化多么大,1 272 km以远地壳质量的重力校正值均近似为数值很小的常数,可以不计算。4当局部地区及其周围高程或海深变化均很平缓时,169 km以远地壳全部质量的重力校正值也近似为常数,也可以不计算。此成果对于完善地壳质量重力校正值高精度计算有重要意义。  相似文献   

7.
地表各点的实测重力垂直梯度值与正常重力垂直梯度理论值之间常有显著的差异,产生此差异的原因众说不一。本文通过相关计算,确认重力垂直梯度异常主要是由浅部密度不均匀体及地形起伏(尤其是近区地形起伏)所引起。利用1:100万的布格重力异常图计算重力垂直梯度异常,并据此确定出产生重力垂直梯度异常的密度不均匀体埋深是在2km以内。由此得出:①重力垂直梯度异常不应是重力山形异常的原因;②若要进行精确的高度改正,则应实测各点的重力垂直梯度值,否则还是宜用正常梯度理论值进行高度改正。  相似文献   

8.
青藏高原南缘处于重力不均衡状态,由北向南可依次分为高原近重力均衡区、喜马拉雅山正均衡异常区和山前盆地负均衡异常区,正、负异常呈现壮观的镜像分布。本文选取喜马拉雅中东部的均衡重力异常数据,结合地貌高程、地壳厚度、降雨量、冰川及山前沉积等的分布状况,探讨地貌分异与均衡重力异常分布的相互关系。由上述资料获得3条跨越喜马拉雅山的综合剖面,结果显示喜马拉雅中东部正均衡重力异常的分布与冰川、河流等代表的地表剥蚀作用存在明显的空间耦合关系,而与降雨量无直接联系,山前盆地负均衡重力异常与沉积厚度的分布也存在很好的耦合。利用数值模型计算得到了喜马拉雅地区的均衡调整时间域在1 Ma左右的时间尺度内。通过与地貌响应时间域相对比,以及对地表剥蚀厚度的估计,认为山脉地区的正均衡异常主要由地壳厚度补偿不足引起(侧重Airy假说),而山前盆地的负均衡异常主要由低密度沉积层的分布引起(侧重Pratt假说),由于地貌响应时间快于均衡调整时间,在大约5~2 Ma以来,地壳的均衡调整始终延迟于山脉的持续剥蚀和山前的持续沉积,使得岩石圈朝着"反均衡"方向演变,最终形成了喜马拉雅现今壮观的镜像均衡重力异常分布。  相似文献   

9.
重力位余弦变换谱基本特征   总被引:1,自引:1,他引:0  
为获得重力异常余弦变换谱的通式,提出并证明了3个定理;利用它们推导了点质量和直立矩形柱体的重力异常余弦变换谱理论公式,同时给出了重力异常余弦变换谱通式。分析了点质量和直立矩形柱体重力异常余弦变换谱的基本特征:点质量二维余弦变换谱等值线呈1/4同心圆形状,等值线随着波数的增大而变稀;直立矩形柱体谱出现了周期性变化的零等值线,该等值线将非零等值线划分为a×b个矩形区域,而且等值线值在各矩形型区域中正负交替变化,随着波数的增大,不同的矩型域中等值线值呈e指数衰减特征。  相似文献   

10.
江西省相山铀多金属矿田重磁坡度异常提取与成矿预测   总被引:1,自引:0,他引:1  
运用ERDAS IMAGINE 9.1和MAPGIS 6.7软件提取剩余重力坡度和磁坡度,根据已知矿床(点)与剩余重力坡度和磁坡度的关系得出:相山矿田内重力坡度在62.~73.(剩余重力值扩大15倍)且剩余重力值在-3 ~1 m/s2的区域为成矿有利区;北部成矿区磁坡度在40°~50°和61°~70°的两个区间为成矿有利区,西部成矿区磁坡度小于30°且磁异常值为-40 ~-45 nT的区域为成矿有利区,整个矿田磁坡度为71°~80°且磁异常值小于零的区域为成矿有利区.提取的剩余重力坡度异常和磁坡度异常能够反映矿田深部有利成矿部位,对深部找矿具有指导作用.  相似文献   

11.
A total of 11,500 line km of aerogravity data have been used to construct an free-air gravity anomaly map for the Antarctic region that may contain the microplate boundary between the Haag Nunataks block and southern Antarctic Peninsula. Along-line free-air gravity anomaly data resolved wavelengths of 9 km or greater with better than 5 mGal accuracy. Coincident radio echo soundings provided data to construct a digital terrain model. The gravity effect of the terrain was calculated by Gauss–Legendre quadrature (GLQ) and spectrally correlated with the free-air gravity data. Terrain-correlated free-air anomalies related to possible isostatic imbalances of the crust were separated from terrain-decorrelated anomalies that may reflect intra-crustal density contrasts. Subtracting terrain-correlated free-air anomalies from the gravity effects of the terrain yielded compensated terrain gravity effects (CTGE) that were used to model the Moho by inversion. The results indicate moderate but significant crustal thinning below the Evans Ice Stream that is consistent with an extensional origin for the deep, wide, steep-sided trough that contains the ice stream as well as the continued elevation of the footwall flank of the basin. Changes along the axis of the rift, both in the gravity anomaly field and the distribution of Moho topography, can be explained by processes associated with continental lithospheric extension. Subsequently, many of the features produced by extension have been modified by glacial erosion and the sub-ice topography and gravity data reflect this.  相似文献   

12.
多年来,不论重力勘探程度如何,在布格重力异常计算中都必须经过地形改正和中间层改正。本文通过分析在计算布格重力异常时地改和中间层改正对测点的重力补偿,提出了取消中间层改正以适应微重力勘探精细解释需要的地形校正方法。该方法建立在对实际地形(岩性)的正演基础上,可以根据施工地区的地质条件合理选择重力基准面进行可变密度地形校正。使用该方法可以比较好地消除地形起伏和不均匀岩性对测点产生的重力影响,从而得到比较可信的重力异常数据。  相似文献   

13.
Gravity data were analyzed in conjunction with available geological data to determine the origin of observed gravity anomalies and their possible relationship to metallic ore deposits. The gravity data analysis included the construction of a Bouguer gravity anomaly, isostatic residual gravity anomaly and enhanced horizontal gravity gradient maps, and two and one-half dimensional gravity models. The isostatic residual gravity anomaly field could be broken down into five distinct regions based on anomaly amplitude, trend and wavelength. The analysis of these regions showed that both the Birimian and granitoid provinces consist mainly of a series of short wavelength gravity maxima and minima with a few large scale anomalies which suggests that the subsurface geology is more complicated than is currently known. Two gravity models roughly oriented north-south also implied this complicated subsurface geology and showed that most source bodies have depths up to 5 km. The known base metal deposits occur on the edge of small-scale gravity maxima within the Birimian province with the exceptions of the deposits within the Bouroum-Yalogo belt which occur next to a large amplitude gravity maximum related to an ultramafic complex.  相似文献   

14.
J. Ebbing  O. Olesen 《Tectonophysics》2005,411(1-4):73-87
We investigate the Scandes mountain range by analysing the gravity field, the geoid heights and the degree of isostatic compensation of the lithosphere. Topographically, the Scandes mountain range can be divided in the Northern and Southern Scandes. Comparisons between the present topographic expression and the gravity field and the geoid show that the axis of highest elevation in the Northern Scandes is shifted eastwards compared to the minimum of the Bouguer anomaly, while the two coincide perfectly in the Southern Scandes. Geoid heights reduced by the effect of topographic masses show a large-scale minimum in the Northern Scandes, but no anomaly in the Southern Scandes.Regional, flexural isostatic calculations yield a flexural rigidity of D = 1023 Nm for the lithosphere of the Southern Scandes and the isostatic gravity and geoid residuals point to additional isostatic support by low-density rocks below the Moho. On the other side, for the lithosphere in the Northern Scandes no significant flexural rigidity can be resolved. Here, the Bouguer anomaly is best modelled with a small flexural rigidity, indicating nearly Airy isostatic behaviour. Local subsurface loading and horizontal tectonic forces overprint the isostatic compensations and increase the tectonic complexity of the Northern Scandes. These distinctive features of the Scandes cannot be explained by currently existing models of the present and Neogene uplift and the isostatic mechanism of the Scandes.  相似文献   

15.
Gravity data from Assam compiled on Bouguer, Hayford and Airy isostatic anomaly maps have been interpreted in terms of tectonics of the area. The gravity anomalies suggest that the Dauki fault is very deep-seated. A gravity high of about 60 mGal near Haflong is interpreted as being the expression of an intrusive body with a density contrast of about + 0.15 g/cm3 with respect to the surroundings. From isostatic considerations, approximate crustal thicknesses over the Shillong Plateau, the Upper Assam valley and the Surma valley are estimated to be 40, 29 and 22 km respectively, suggesting a sharp change in crustal thickness from the Shillong Plateau to the Surma valley across the Dauki fault.  相似文献   

16.
通过对地形体及其密度信息数字图像化,利用计算机仿真能较精确地计算出地形体在任意一点的重力场强度。在重力异常地形校正时,用各测点的实测数据减去相应测点的地形体重力场强度,即得到地形改正和中间层改正后的重力场强度。这样,重力异常校正中的地形改正和中间层改正可一并完成,既简化了校正的工作步骤,又提高了准确性。通过地形体实例,分别用数字图像仿真计算和积分精确计算其重力场强度,结果表明,二者计算结果十分相近。用数字图像仿真计算地形体重力场强度,误差较小,准确性较高,该方法完全适合重力异常地形校正。  相似文献   

17.
青藏高原布格重力异常匹配滤波分析及其构造意义   总被引:4,自引:0,他引:4       下载免费PDF全文
利用匹配滤波的方法处理了青藏高原布格重力异常数据。基于重力异常一阶垂直导数的径向平均对数能谱曲线,青藏高原布格重力异常场可分为三层异常场。其中龙木错—双湖构造带在中部重力异常场和深部重力异常场图中都有显现;革吉—改则—错勤—申扎隐伏断裂在浅部和中部重力异常场中都存在。另一个明显的特征是藏北都显示有巨大且平缓的低重力异常圈闭,这与藏北Pn波速较低和Sn波缺失的特征吻合;在藏南存在一系列近东西向展布的重力异常断块。  相似文献   

18.
青藏高原东缘处于不均衡状态,自西而东可分为青藏高原弱负均衡重力异常区、龙门山正均衡重力异常区和四川盆地负均衡重力异常区,表明该区的不均衡状态并未导致Airy均衡运动的产生,即龙门山没有均衡下降,而处于不断的隆升状态,显示该地区反均衡运动的构造抬升是导致龙门山隆升的主因。本次采用似三度体重力异常计算方法对该区的正均衡重力异常进行模拟和反演,研究了大尺度地貌分异与均衡重力异常分区之间的相互关系,结果表明,龙门山的下地壳顶面抬升了11.2~12.6km,造成了龙门山的正均衡异常,揭示了构造抬升和剥蚀作用在相似的时间尺度上和空间尺度上控制着龙门山地貌的形成,龙门山的表面隆升是构造隆升和剥蚀作用相叠加的产物。  相似文献   

19.
Analysis of the free-air gravity field over the broadly elevated Hoggar region in northwest Africa suggests that the uplift is similar in origin to the midplate hotspot swells observed on the seafloor. The Hoggar Massif is a dome of Precambrian basement, approximately 1 km high, 1000 km wide, and capped by late Tertiary alkali basalt volcanos. Gravity measurements reveal a broad free-air high, with maximum amplitude of approximately 40 mGal, which is coincident with the areal extent of the Hoggar. Using the reasonable assumption that the Hoggar is in local isostatic balance, calculations indicate that the amplitude of the gravity anomaly is best explained if the isostatic root of the elevated area is 60 km below ground surface. This root depth is similar to that observed for both the Hawaiian Swell in the Pacific and the Bermuda Rise in the Atlantic, and is shallower than the expected base of the lithosphere. The gravity data suggest that the lithosphere beneath the Hoggar has been reduced in density, perhaps by reheating as inferred for oceanic swells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号