首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The abundance of helium relative to hydrogen is spectroscopically determined in prominences and in the chromosphere by using 1952, 1958, 1962 and 1966 eclipse data. Care is taken in the intensity calibration of emission lines, the self-absorption, and the departure from local thermodynamic equilibrium. We find from the line profiles and intensities of prominences and the chromosphere that the neutral helium lines are emitted in the metal-hydrogen emitting region where the kinetic temperature is low enough, 6000 8000 K, so that only the ionization due to UV radiation from the corona can explain the intensity of neutral helium emission. Also we find that the intensity ratio of Hei 3888.65 to H8 3889.05 increases towards the upper boundaries of prominences and of the chromosphere and that it approaches to a universal limiting value, both in various prominences or in the chromosphere, where it is considered that the ionization of neutral helium and hydrogen is nearly complete. From these facts the helium to hydrogen number ratio is found to be 6.5 ± 1.5%.A new schematic model of the chromosphere is presented where spicules have no hot region of emitting neutral helium lines. Here it is suggested that the kinetic temperature of spicules, 6000 8000 K, would be primarily determined by the radiation temperature of the corona and the transition region beyond the Lyman continuum of hydrogen which happens to be around those temperatures.  相似文献   

2.
The equilibrium positions of coronal currents are determined. It is shown that the fact that the photosphere has a very large inertia as compared to the corona, poses an important boundary condition at the surface. Electric currents flowing in a coronal active region show a tendency to concentrate above a neutral line. Only here equilibria are possible, determined at low heights by the background field and at large heights by gravity. An instability may occur when the current at low heights exceeds a certain value. The model given is compared with observations of the corona, of prominences, and of fibril motions. Also, the relation with solar flares is discussed in general terms.  相似文献   

3.
Fontenla  Juan Manuel  Rovira  Marta 《Solar physics》1983,85(1):141-156
Solar Physics - We present simplified models for the region where Lα is formed, in the boundary between prominences and corona. The models were calculated by solving the radiation transfer in...  相似文献   

4.
Large-scale coronal structures (helmet streamers) observed in the white-light corona during total solar eclipses and/or with ground-based coronagraphs are mostly located only above quiescent types of prominences. These helmet streamers are maintained due to the magnetic fields of the Sun. Time–latitudinal distribution of prominences during a solar cycle, however, shows both the poleward and equatorward migrations, similar to the 530.3 nm emission corona (the green corona) intensities. Distribution of observed coronal helmet streamers during total solar eclipses, enlarged with the helmet streamers as were obtained by the ground-based coronagraph observations, are compared with the heliographic distribution of prominences and the green corona intensities for the first time. It is shown that the distribution of above-mentioned helmet streamers, reflects – roughly – the time–latitudinal distribution of prominences and emission corona branches, and migrates together with them over a solar cycle.  相似文献   

5.
Two-dimensional distributions of kinetic temperature, density and turbulent velocity are obtained for four quiescent prominences observed at the Peruvian eclipse of 12 November, 1966.
  1. The kinetic temperature derived from line widths is around 6000–7000 K in the central part of prominences and rises to 12000K in both edges and possibly in the top of prominences.
  2. The turbulent velocity shows a similar tendency, being 7–9 km/sec in the central part and ≈ 20 km/sec in the outer part. The turbulent velocity also increases slowly towards higher heights in the prominence.
  3. The electron density derived both from the Stark effect and the intensity ratio of the continuous spectra turns out to be about 1010.2–1010.6 cm?3 in the central portion of two prominences.
  4. From the width and the intensity, neutral helium lines are shown to originate in the same region as hydrogen and metallic lines where the kinetic temperature goes down to 6000 K. This indicates that neutral helium is emitted after the ionization due to UV radiation from the corona and the transition region.
  相似文献   

6.
The generation of magnetohydrodynamic waves in the corona by the observed random motions in prominences is considered. The associated energy input into the corona may be a significant source of heating for the coronal loops overlying prominences, especially during the onset of flares. Some relevant observations are discussed.  相似文献   

7.
Thermal transfer in closed magnetic tubes in the corona and transition region is described on the basis of a static model in which all heat generated is radiated away, though conduction transfers much of the heat to the transition region prior to emission. The rate of conductive transfer depends on the cross-section of the magnetic tube as it passes through the chromosphere and transition region. This is derived from the pressure in the normal chromosphere. There is then only one main parameter to establish conditions in the corona and transition region, viz. the heating per unit area of the Sun's surface, which must equal the observed radiation from corona and transition region. The density adjusts itself so as to radiate away all heat generated within the tube; conditions in the tube below the transition region have little influence other than to decide where the base of the transition region lies and the width of the region particularly in its lower parts. For the observed rate of heating, the computed densities (or pressures), the ratio of coronal to transition region emissions, and the distribution of radiation in the EUV spectrum agree closely with those observed. The optimum maximum temperatures are found with heating concentrated in the highest regions of the flux tubes. It is only in the lowest 20–40 km of the transition region, where T<105K, that any additional heating is needed to explain EUV line intensities. The equation of heat transfer also has solutions in which the temperature is oscillatory with disance. These do not apply to the normal corona, but may be relevant to prominences.  相似文献   

8.
Spectroscopic observations of the Nai D emission lines of prominences were made with the Domeless Solar Telescope in Hida Observatory. When active prominences are bright in the D2 emission line, the intensity ratio of D1 to D2 is found to deviate significantly from the theoretical ratio of the optically-thin case. On the other hand, the intensity ratio is close to the theoretical ratio for the most part of quiescent prominences. Furthermore, the full widths at half maximum intensity of the D2 emission line for active prominences become wider than those of the D1 line, as the intensity of the D2 line gets higher. These observed features clearly show that the emitting region of the Nai D lines is optically thick in some types of prominences. Non-LTE calculations were made by taking the ionization degree of hydrogen atoms and the thickness of the prominences and the electron temperature as free parameters. It is shown that the electron temperature of the emitting region of the Nai D lines should be as low as 4000 K for an explanation of the large optical thickness of the Nai D lines for active prominences. Brief discussions are included about the possible existence of low temperatures in active prominences.  相似文献   

9.

We study the longitudinal magnetic field in a number of active limb prominences showing fields in excess of 30 G. The objects fall into three groups: surges, caps and active region prominences. There appears to be an upper limit of 150–200 G for the field strength in prominences.

A model of surges is presented in which a pre-surge axi-symmetric magnetic field is established by a line current in the corona. We observe particle acceleration in surges that indicates v×B≠0 in these objects during periods comparable to the Alfvén transit time.

The strong fields observed in caps seem to run between parts of active regions in accordance with Hale's law of sunspot group polarities.

  相似文献   

10.
It is argued that the quiscent prominences are a natural consequence of the formation and thermal instability of current sheets in the corona. Thus observation and theory of prominences can give vital information on the presence of currents and the topology of magnetic fields in the corona. Conversely by developing the theory of the structure and evolution of current sheets under coronal conditions we can attempt to gain a comprehensive understanding of the structure, evolution, and mass and energy balance of quiescent prominences. A stability analysis for coronal material permeated by a vertical magnetic field rooted in the photosphere, indicates that a condensation will take the form of a thin vertical wedge of cool matter. The development of a finite condensation is followed and it is shown that photospheric line tying is only important in the initial stages. A perturbation analysis of vertical motions at the neutral sheet shows that thermal instability can lead to overstable oscillations. Cooling of coronal material can lead to both upward and downward mass motions, and gravitational energy release is important to the thermal balance of prominences. Relevant optical and radio observations are discussed. Synoptic observations of the development of active regions and magnetic fields are needed to test the basic hypothesis of the formation of prominences from neutral sheets.  相似文献   

11.
The onset stage of coronal mass ejections (CMEs) is difficult to observe and is poorly studied. In spite of their practical importance, methods for CME predictions with sufficient lead times are only in the nascent stages of development. The most probable CME mechanism is a catastrophic loss of equilibrium of a large-scale current system in the corona (a flux rope). A twisted magnetic rope is maintained by the tension of field lines of photospheric sources until parameters of the system reach critical values and the equilibrium is lost. Unfortunately, there is low-density plasma (coronal cavity) in most of the rope volume; thus, it is difficult to observe a rope. However, the lower parts of the helical field lines of a rope are fine traps for the dense cold plasma of prominences. Thus, prominences are the best tracers of flux ropes in the corona. The maximal height up to which the rope is in stable equilibrium can be found by analyzing the distribution of the magnetic field generated by photospheric sources in the corona. Comparing this critical height with the actually observed prominence height, one can estimate the probability of the loss of equilibrium by a magnetic rope with a following eruption of prominences and coronal mass ejections.  相似文献   

12.
Arch systems lying above quiescent prominences in the solar corona have long drawn the attention of eclipse observers, and such formations have been investigated since the end of the last century. Almost every eclipse photograph shows one or more arches, and in most cases the arch system is accompanied by a quiescent prominence below it and a helmet streamer above it. Also, in some cases there is a dark cavity between the arch system and the prominence.On large-scale photographs obtained at the November 12, 1966 eclipse, detailed photometry has been carried out on a formation in the corona composed of a helmet streamer straddling two multiple-arch systems each with a dark cavity and a quiescent prominence. The excess of electrons in the arches and the deficiency in the cavities are evaluated. We find that the formation of a prominence requires much more material than available in the cavity before depletion. Consequently the condensation theory of coronal matter into prominences seems to have difficulties explaining the necessary amount of matter in the cases where coronal arches - delineating magnetic field lines above the cavity - may exclude inflow of material from the corona. We comment on the low velocity of solar wind in the helmet streamer.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

13.
Coronal holes     
Coronal holes are extensive regions of extremely low density in the solar corona within 60° of latitude from the equator. (They are not to be confused with the well-known coronal cavities which surround quiescent prominences beneath helmet streamers.) We have superposed maps of the calculated current-free (potential) coronal magnetic field with maps of the coronal electron density for the period of November 1966, and find that coronal holes are generally characterized by weak and diverging magnetic field lines. The chromosphere underlying the holes is extremely quiet, being free of weak plages and filaments. The existence of coronal holes clearly has important implications for the energy balance in the transition region and the solar wind.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
The damping of MHD waves in solar coronal magnetic field is studied taking into account thermal conduction and compressive viscosity as dissipative mechanisms. We consider viscous homogeneous unbounded solar coronal plasma permeated by a uniform magnetic field. A general fifth-order dispersion relation for MHD waves has been derived and solved numerically for different solar coronal regimes. The dispersion relation results three wave modes: slow, fast, and thermal modes. Damping time and damping per periods for slow- and fast-mode waves determined from dispersion relation show that the slow-mode waves are heavily damped in comparison with fast-mode waves in prominences, prominence–corona transition regions (PCTR), and corona. In PCTRs and coronal active regions, wave instabilities appear for considered heating mechanisms. For same heating mechanisms in different prominences the behavior of damping time and damping per period changes significantly from small to large wavenumbers. In all PCTRs and corona, damping time always decreases linearly with increase in wavenumber indicate sharp damping of slow- and fast-mode waves.  相似文献   

15.
M. Waldmeier 《Solar physics》1981,70(2):251-258
The extension of the polar coronal holes has been studied for four cycles (1940–1978), using the observations of the corona line 530.3 nm. For about 7 years of each cycle, including sunspot minimum, the polar hole exists permanently and has a diameter of about 40° or even more. For about 3 years around sunspot maximum no polar hole does exist (Figure 5). The boundary of the hole is flanked at a distance of 10° by the polar zone of the corona and at one of 20° by that of the prominences. In the polar caps, so far they are occupied by the holes, polar photospheric faculae and the well-known plumes of the polar corona are found, and the polar crown of prominences, encircling the polar hole, is the belt where the reversal of the magnetic polarity takes place.  相似文献   

16.
A new type of magnetograph has been built capable to measure weak magnetic fields in the chromosphere and corona. Measurements of magnetic field in two prominences are demonstrated as examples.  相似文献   

17.
Nowadays the primordial importance of the magnetic field for coronal plasma physics is well known. However, its determination is only made in cool regions, mainly the photosphere and prominences. The extrapolation to the corona gives some indications of the magnetic structure but is not presently sufficiently reliable. So it is important to consider all the other observable physical effects of the magnetic field.In this puzzle, eruptive prominences may play a key role because the cool plasma is forced to move along field lines, which can then be visualized. In the strongest field regions, flares also give such information, while coronal mass ejections (CME) play such a role at larger scales. The magnetic field, which is at the base of the physical processes, is a common link between these different events.Observed properties of solar prominence eruptions are reviewed, then their relationships with CMEs and flares are discussed, with the help of present models. We emphasize the importance of magnetic measurements in future coordinated observations.Invited paper presented at the IAU Commission 10 Meeting on Dynamics and Structure of Prominences in Buenos Aires.  相似文献   

18.
B. C. Low 《Solar physics》1996,167(1-2):217-265
This review puts together what we have learned about coronal structures and phenomenology to synthesize a physical picture of the corona as a voluminous, thermally and electrically highly-conducting atmosphere responding dynamically to the injection of magnetic flux from below. The synthesis describes complementary roles played by the magnetic heating of the corona, the different types of flares, and the coronal mass ejections as physical processes by which magnetic flux and helicity make their way from below the photosphere into the corona, and, ultimately, into interplanetary space. In these processes, a physically meaningful interplay among dissipative magnetohydrodynamic turbulence, ideal ordered flows, and magnetic helicity determines how and when the rich variety of relatively long-lived coronal structures, spawned by the emerged magnetic flux, will evolve quasi-steadily or erupt with the impressive energies characteristic of flares and coronal mass ejections. Central to this picture is the suggestion, based on recent theoretical and observational works, that the the emerged flux may take the form of a twisted flux rope residing principally in the corona. Such a flux rope is identified with the low-density cavity at the base of a coronal helmet, often but not always encasing a quiescent prominence. The flux rope may either be bodily transported into the corona from below the photosphere, or reform out of a state of flaring turbulence under some suitable constraint of magnetic-helicity conservation. The appeal of this synthesis is its physical simplicity and the manner it relates a large set of diverse phenomena into a self-consistent whole. The implications of this view point are discussed.The topics covered are: the large-scale corona; helmet streamers; quiescent prominences; coronal mass ejections; flares and heating; magnetic reconnection and magnetic helicity; and, the hydromagnetics of magnetic flux emergence.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
Summary Conclusion This colloquium on solar prominences - the first ever held - has shown that a major part of activity in prominence research in recent years concentrated on both observation and computation of the magnetic conditions which were found to play a crucial role for the development and the maintainance of prominences. Remarkable progress was made in fine-scale measurements of photospheric magnetic fields around filaments and in internal field measurements in prominences. In addition, important information on the structure of the magnetic fields in the chromosphere adjacent to the filaments may be derived from high resolution photographs of the H fine structure around filaments which have become available recently; unfortunately, an unambiguous determination of the vector field in the chromosphere is not yet possible.It is quite clear, now, that stable filaments extend along neutral lines which divide regions of opposite longitudinal magnetic fields. Different types of neutral lines are possible, depending on the history and relationship of the opposite field regions. There is convincing evidence that the magnetic field in the neighbouring chromosphere may run nearly parallel to the filament axis and that there are two field components in stable prominences: an axial field dominant in the lower parts and a transverse field dominant in the higher parts.Methods for the computation of possible prominence field configurations from measured longitudinal photospheric fields were developed in recent years. In a number of cases (e.g. for loop prominences) the observed configuration could be perfectly represented by a force-free or even a potential field; poor agreement was found between computed and measured field strengths in quiescent prominences. In order to reconcile both of them it is necessary to assume electric currents. Unambiguous solutions will not be found until measurements of the vector field in the photosphere and in the prominences are available.The two-dimensional Kippenhahn-Schlüter model is still considered a useful tool for the study of prominence support and stability. However, a more refined model taking into account both field components and considering also thermal stability conditions is available now. It was proposed that quiescent prominences may form in magnetically neutral sheets in the corona where fields of opposite directions meet.As for the problem of the origin of the dense prominence material there are still two opposite processes under discussion. The injection of material from below, which was mainly applied to loop prominences, has recently been considered also a possible mechanism for the formation of quiescent prominences. On the other hand, the main objections against the condensation mechanism could be removed: it was shown that (1) sufficient material is available in the surrounding corona, and that (2) coronal matter can be condensed to prominence densities and cooled to prominence temperatures in a sufficiently short time.The energy balance in prominences is largely dependent on their fine structure. It seems that a much better radiative loss function for optically thin matter is now available. The problem of the heat conduction can only be treated properly if the field configuration is known. Very little is known on the heating of the corona and the prominence in a complicated field configuration. For the optically thick prominences the energy balance becomes a complicated radiative transfer problem.Still little is known on the first days of prominence development and on the mechanism of first formation which, both, are crucial for the unterstanding of the prominence phenomenon. As a first important step, it was shown in high resolution H photographs that the chromospheric fine structure becomes aligned along the direction of the neutral line already before first filament appearance. More H studies and magnetic field measurements are badly needed.Recent studies have shown that even in stable prominences strong small-scale internal rotational or helical motions exist; they are not yet understood. On the other hand, no generally agreed interpretation of large-scale motions of prominences seems to exist. A first attempt to explain the ascendance of prominences, the Disparitions Brusques, as the result of a kink instability was made recently.New opportunities in prominence research are offered by the study of invisible radiations: X-rays and meterwaves provide important information, not available otherwise, on physical conditions in the coronal surroundings of prominences; EUV observations will provide data on the thin transition layer between the cool prominence and the hot coronal plasma.Mitt. aus dem Fraunhofer Institut No. 111.  相似文献   

20.
P. Lantos  A. Raoult 《Solar physics》1980,66(2):275-283
The experimental results of a previous paper (Raoult et al., 1979) are used to discuss the interpretation of the depression in brightness temperature associated with prominences observed on the disk at centimetric and millimetric wavelengths. It is shown that the UV observations of the prominence-corona transition region are in agreement with the radio data. This is one of the arguments to locate the origin of the radio depression in the prominence-corona transition region rather than in the coronal cavity above filaments. Millimetric observations of filaments give further constraints on prominence core physical conditions, not fulfilled in the presently available models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号