共查询到20条相似文献,搜索用时 15 毫秒
1.
S. A. Gasanov 《Astronomy Letters》2008,34(3):179-188
We have found libration points and investigated their Lyapunov stability in the problem of the motion of a star inside a layered inhomogeneous rotating elliptical galaxy with a variable mass. We have constructed the surfaces of zero velocity and obtained stability conditions for unsteady motion in the first approximation. We analyze general case where the densities of the galactic nucleus and layers vary with time according to different laws. 相似文献
2.
S. A. Gasanov 《Astronomy Letters》2003,29(10):704-711
We consider the three-dimensional problem of the motion of a star inside an inhomogeneous rotating elliptical galaxy with a homothetic density distribution. We construct and analyze the periodic solutions near a central libration point by using Lyapunov’s method. 相似文献
3.
S. A. Gasanov 《Astronomy Letters》2006,32(3):192-205
The problem of the spatial motion of a star inside an inhomogeneous rotating elliptical galaxy with a homothetic density distribution is considered. Periodic solutions are constructed by the method of a small Poincaré parameter. Linear variational equations with periodic coefficients are used to analyze the Lyapunov stability of these solutions. 相似文献
4.
This paper argues that the Milky Way galaxy is probably the largest member of the Local Group. The evidence comes from estimates of the total mass of the Andromeda galaxy (M31) derived from the three-dimensional positions and radial velocities of its satellite galaxies, as well as the projected positions and radial velocities of its distant globular clusters and planetary nebulae. The available data set comprises 10 satellite galaxies, 17 distant globular clusters and nine halo planetary nebulae with radial velocities. We find that the halo of Andromeda has a mass of together with a scalelength of 90 kpc and a predominantly isotropic velocity distribution. For comparison, our earlier estimate for the Milky Way halo is Although the error bars are admittedly large, this suggests that the total mass of M31 is probably less than that of the Milky Way . We verify the robustness of our results to changes in the modelling assumptions and to errors caused by the small size and incompleteness of the data set.
Our surprising claim can be checked in several ways in the near future. The numbers of satellite galaxies, planetary nebulae and globular clusters with radial velocities can be increased by ground-based spectroscopy, while the proper motions of the companion galaxies and the unresolved cores of the globular clusters can be measured using the astrometric satellites Space Interferometry Mission ( SIM ) and Global Astrometric Interferometer for Astrophysics ( GAIA ). Using 100 globular clusters at projected radii 20 R 50 kpc with both radial velocities and proper motions, it will be possible to estimate the mass within 50 kpc to an accuracy of 20 per cent. Measuring the proper motions of the companion galaxies with SIM and GAIA will reduce the uncertainty in the total mass caused by the small size of the data set to 22 per cent. 相似文献
Our surprising claim can be checked in several ways in the near future. The numbers of satellite galaxies, planetary nebulae and globular clusters with radial velocities can be increased by ground-based spectroscopy, while the proper motions of the companion galaxies and the unresolved cores of the globular clusters can be measured using the astrometric satellites Space Interferometry Mission ( SIM ) and Global Astrometric Interferometer for Astrophysics ( GAIA ). Using 100 globular clusters at projected radii 20 R 50 kpc with both radial velocities and proper motions, it will be possible to estimate the mass within 50 kpc to an accuracy of 20 per cent. Measuring the proper motions of the companion galaxies with SIM and GAIA will reduce the uncertainty in the total mass caused by the small size of the data set to 22 per cent. 相似文献
5.
A detailed theoretical analysis on the orbital lifetime and frozen orbit of low-moon-orbit satellites (LMOS) is carried out, and their relationships with the orbital inclination, as well as some mutual relationships are presented. Taking account of the main perturbing sources of low-orbit satellites, we carried out numerical simulations under a comprehensive force model, and the results not only confirm the correctness of the theoretical analysis, but also provide some valuable insights on the orbital design of LMOS. 相似文献
6.
S. A. Gasanov 《Astronomy Letters》2001,27(2):124-133
The plane motion of a mass point inside an inhomogeneous rotating ellipsoidal body with a homothetic density distribution is considered. The force function of the problem is expanded in terms of the ellipsoid's second eccentricities up to the fourth order, which are taken as small parameters. We derive an expression for the perturbing function and solve the equations of perturbed motion in orbital elements. 相似文献
7.
8.
In the framework of the inverse problem of dynamics, we face the following question with reference to the motion of one material point: Given a region Torb of the xy plane, described by the inequality g (x, y) ≤ c0, are there potentials V = V (x, y) which can produce monoparametric families of orbits f (x, y) = c (also to be found) lying exclusively in the region Torb? As the relevant PDEs are nonlinear, an answer to this question (generally affirmative, but not with assurance) can be given by the procedure of the determination of certain constants specifying the pertinent functions. In this paper we ease the mathematics involved by making certain simplifying assumptions referring to the homogeneity of both the function g (x, y) (describing the boundary of Torb) and of the slope function γ(x, y) = fy/fx (representing the required family f (x, y) = c). We develop the method to treat the so formulated problem and we show that, even under these restrictive assumptions, an affirmative answer is guaranteed provided that two algebraic equations have in common at least one solution (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
9.
R. Brasser 《Monthly notices of the Royal Astronomical Society》2002,332(3):723-728
We determine the maximum dimensionless pericentre distance a third body can have to the barycentre of an extreme mass ratio binary, beyond which no exchange or ejection of any of the binary components can occur. We calculate this maximum distance, q '/ a , where q ' is the pericentre of the third mass to the binary barycentre and a is the semimajor axis of the binary, as a function of the critical value of L 2 E of the system, where L is the magnitude of the angular momentum vector and E is the total energy of the system. The critical value is obtained by calculating L 2 E for the central configuration of the system at the collinear Lagrangian points. In our case we can make approximations for the system when one of the masses is small. We compare the calculated values of the pericentre distance with numerical scattering experiments as a function of the eccentricity of the inner orbit, e , the mutual inclination i and the eccentricity of the outer orbit, e '. These show that the maximum observed value of q '/ a is indeed the critical q '/ a , as expected. However, when e '→1 , the maximum observed value of q '/ a is equal to the critical value calculated when e '=0 , which is contrary to the theory, which predicts exchange distances several orders of magnitude larger for nearly parabolic orbits. This does not occur because changes in the binding energy of the binary are exponentially small for distant, nearly parabolic encounters. 相似文献
10.
A. P. Markeev 《Astronomy Letters》2005,31(9):627-633
We investigate the stability of the periodic motion of a satellite, a rigid body, relative to the center of mass in a central Newtonian gravitational field in an elliptical orbit. The orbital eccentricity is assumed to be low. In a circular orbit, this periodic motion transforms into the well-known motion called hyperboloidal precession (the symmetry axis of the satellite occupies a fixed position in the plane perpendicular to the radius vector of the center of mass relative to the attractive center and describes a hyperboloidal surface in absolute space, with the satellite rotating around the symmetry axis at a constant angular velocity). We consider the case where the parameters of the problem are close to their values at which a multiple parametric resonance takes place (the frequencies of the small oscillations of the satellite’s symmetry axis are related by several second-order resonance relations). We have found the instability and stability regions in the first (linear) approximation at low eccentricities. 相似文献
11.
The dynamical evolution of small stellar groups composed of N=6 components was numerically simulated within the framework of a gravitational N-body problem. The effects of stellar mass loss in the form of stellar wind, dynamical friction against the interstellar medium, and star mergers on the dynamical evolution of the groups were investigated. A comparison with a purely gravitational N-body problem was made. The state distributions at the time of 300 initial system crossing times were analyzed. The parameters of the forming binary and stable triple systems as well as the escaping single and binary stars were studied. The star-merger and dynamical-friction effects are more pronounced in close systems, while the stellar wind effects are more pronounced in wide systems. Star-mergers and stellar wind slow down the dynamical evolution. These factors cause the mean and median semimajor axes of the final binaries as well as the semimajor axes of the internal and external binaries in stable triple systems to increase. Star mergers and dynamical friction in close systems decrease the fraction of binary systems with highly eccentric orbits and the mean component mass ratios for the final binaries and the internal and external binaries in stable triple systems. Star mergers and dynamical friction in close systems increase the fraction of stable triple systems with prograde motions. Dynamical friction in close systems can both increase and decrease the mean velocities of the escaping single stars, depending on the density of the interstellar medium and the mean velocity of the stars in the system. 相似文献
12.
This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft.The electrostatic charge which a spacecraft generates on its surface in the Earth’s magnetic field will be subject to a perturbative Lorentz force.A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields.This Lorentz force can be used to modify or perturb the spacecraft’s orbits.Lagrange’s planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit.Our approach incorporates orbital inclination and the true anomaly.The numerical results of Lagrange’s planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturbation for a certain value of charge.The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component.In addition,the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit,which is consistent with realistic physical phenomena that occur in polar orbits.The results confirm that the magnitude of the Lorentz force depends on the amount of charge.This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft. 相似文献
13.
T. A. Agekyan 《Astronomy Letters》2003,29(5):348-351
We consider system of equations of motion in the field of a rotationally symmetric potential. 相似文献
14.
We investigate the neighborhood of the periodic eight-like orbit found by Moore (1993) and Chenciner and Montgomery (2000). One-, two-, and three-dimensional scans in body coordinates, velocities, and masses were constructed. We found the regions of initial conditions in which the maximum mutual separation did not exceed 5 distance units during 2000 time units (about 300 periods of the initial solution). Larger deviations from the periodic solution lead to distant body ejections and escapes. The identified regions of finite motions are complex in structure. In some sections, these are simple-connected manifolds, while in other sections, stability zones alternate with escape zones. We estimated the fractal dimensions of the stability regions in three-dimensional scans: it typically ranges from 2 to 3. In some cases, we found transitions between motions along the figure of eight in its neighborhood and motions in the vicinity of a periodic Broucke orbit in the isosceles three-body problem. 相似文献
15.
关于星座小卫星的编队飞行问题 总被引:3,自引:0,他引:3
从轨道力学角度来看星座小卫星编队飞行和星星跟踪中的伴飞,遵循着如下动力学机制:(1)在各小卫星绕地球运动过程中轨道摄动变化的主要特征决定了星-星之间的空间构形,(2)当星星之间相互距离较近时,在退化的限制性三体问题(实为限制性二体问题)中,共线秤动点附近的条件周期运动亦可在一定时间内制约星-星之间的空间构形.将具体阐明这两种动力学机制的原理和相应的星星之间的相对构形,并用仿真计算来证实这两种动力学机制的适用范围,为星座小卫星编队飞行和在伴飞运动过程中进行轨控提供理论依据和具体的轨控条件. 相似文献
16.
17.
M. Bro D. Vokrouhlický F. Roig D. Nesvorný W. F. Bottke A. Morbidelli 《Monthly notices of the Royal Astronomical Society》2005,359(4):1437-1455
The 2/1 mean motion resonance with Jupiter, intersecting the main asteroid belt at ≈3.27 au, contains a small population of objects. Numerical investigations have classified three groups within this population: asteroids residing on stable orbits (i.e. Zhongguos), those on marginally stable orbits with dynamical lifetimes of the order of 100 Myr (i.e. Griquas), and those on unstable orbits. In this paper, we reexamine the origin, evolution and survivability of objects in the 2/1 population. Using recent asteroid survey data, we have identified 100 new members since the last search, which increases the resonant population to 153. The most interesting new asteroids are those located in the theoretically predicted stable island A, which until now had been thought to be empty. We also investigate whether the population of objects residing on the unstable orbits could be resupplied by material from the edges of the 2/1 resonance by the thermal drag force known as the Yarkovsky effect (and by the YORP effect, which is related to the rotational dynamics). Using N -body simulations, we show that test particles pushed into the 2/1 resonance by the Yarkovsky effect visit the regions occupied by the unstable asteroids. We also find that our test bodies have dynamical lifetimes consistent with the integrated orbits of the unstable population. Using a semi-analytical Monte Carlo model, we compute the steady-state size distribution of magnitude H < 14 asteroids on unstable orbits within the resonance. Our results provide a good match with the available observational data. Finally, we discuss whether some 2/1 objects may be temporarily captured Jupiter-family comets or near-Earth asteroids. 相似文献
18.
Xi-Yun Hou 《中国天文和天体物理学报》2009,9(4)
In a previous paper, we proposed another special critical value concerning the evolution of the long period family around the equilateral equilibrium points, besides the two values given by Henrard. Are there any other special critical values? After studying the stability curves of the long period family carefully, we gave a negative answer. During the study, we found an interesting family of periodic orbits which we called the homo family. We studied the evolution of this family following the increase of μ. With these findings, we were able to explain the origin of the four branches of periodic families emanating from L4 and the stability results of the equilateral equilibrium points. 相似文献
19.
We consider the trajectories in the neighborhood of a 2: 1 resonance (in periods of osculating motions of the outer and inner binaries) in the plane equal-mass three-body problem. We identified the zones of motions that are stable on limited time intervals. All of them correspond to the retrograde motions of the outer and inner subsystems. The prograde motions are unstable: the triple system breaks up into a final binary and an escaping component. In the barycentric nonrotating coordinate system, the trajectories occasionally form symmetric structures composed of several leaves. These structures persist for a long time, and, subsequently, the trajectories of the bodies fill compact regions in coordinate space. 相似文献
20.
Lunar physical libration, which is true oscillation of lunar equator in the space, alters the lunar gravitational field in the space coordinate system and affects the orbiting motion of lunar orbiters (hereafter called as lunar satellites) correspondingly. The effect is very similar to that of the precession and nutation on the earth satellites, and a similar treatment can be used. The variations in the gravitational force and in the orbit perturbation solution are clearly given in this paper together with numerical illustrations. 相似文献