首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 716 毫秒
1.
This paper investigates the reservoir potential of deeply-buried Eocene sublacustrine fan sandstones in the Bohai Bay Basin, China by evaluating the link between depositional lithofacies that controlled primary sediment compositions, and diagenetic processes that involved dissolution, precipitation and transformation of minerals. This petrographic, mineralogical, and geochemical study recognizes a complex diagenetic history which reflects both the depositional and burial history of the sandstones. Eogenetic alterations of the sandstones include: 1) mechanical compaction; and 2) partial to extensive non-ferroan carbonate and gypsum cementation. Typical mesogenetic alterations include: (1) dissolution of feldspar, non-ferroan carbonate cements, gypsum and anhydrite; (2) precipitation of quartz, kaolinite and ferroan carbonate cements; (3) transformation of smectite and kaolinite to illite and conversion of gypsum to anhydrite. This study demonstrates that: 1) depositional lithofacies critically influenced diagenesis, which resulted in good reservoir quality of the better-sorted, middle-fan, but poor reservoir quality in the inner- and outer-fan lithofacies; 2) formation of secondary porosity was spatially associated with other mineral reactions that caused precipitation of cements within sandstone reservoirs and did not greatly enhance reservoir quality; and 3) oil emplacement during early mesodiagenesis (temperatures > 70 °C) protected reservoirs from cementation and compaction.  相似文献   

2.
Anomalously high porosities up to 30% at burial depth of >3000 m along with varying amounts and types of carbonate cements occur in the fluvial channel sandstone facies of the Triassic Skagerrak Formation, Central Graben, Norway. However, porosities of the Skagerrak Formation are lower in the Norwegian sector than in the UK sector. In this study, petrographic analysis, core examination, scanning electron microscopy, elemental mapping, carbon and oxygen isotope, fluid inclusion and microgeometry analysis are performed to determine the diagenesis and direct influence on reservoir quality, with particular focus on the role played by carbonate cementation. The sandstones are mainly fine-grained lithic-arkosic to sub-arkosic arenites and display a wide range of intergranular volumes (2.3%–43.7% with an average of 23.6%). Porosity loss is mainly due to compaction (av. 26.6%) with minor contribution from cementation (av. 12.1%). The carbonate cements are patchy in distribution (from trace to 20.7%) and appear as various types e.g. calcretes (i.e. calcareous concreted gravels), poikilitic sparite and sparry ferroan dolomite, and euhedral or/and aggregated ankerite/ferroan dolomite crystals. This study highlights the association of carbonate precipitation with the remobilisation of carbonate from intra-Skagerrak calcretes during early burial stage i.e. <500 m. During deeper burial, compaction is inhibited by carbonate cements, resulting high intergranular volume of up to 32% and 29% for fine- and medium-grained sandstones, respectively. Carbonate cement dissolution probably results from both meteoric water flow with CO2 during shallow burial, and organic CO2 and carboxylic acid during deep burial. The maximum intergranular volume enhanced by dissolution of early carbonate cements is calculated to 8% and 5% for fine- and medium-grained sandstones, respectively. Compaction continues to exert influence after dissolution of carbonate cements, which results in a loss of ∼6% intergranular volume for fine- and medium-grained sandstones. Reservoir quality of the Norwegian sector is poorer than that of the UK sector due to a lower coverage of clay mineral coats e.g. chlorite, later and deeper onset of pore fluid overpressure, lower solubility of carbonate compared to halite, and a higher matrix content.  相似文献   

3.
The Jiaolai Basin (Fig. 1) is an under-explored rift basin that has produced minor oil from Lower Cretaceous lacustrine deltaic sandstones. The reservoir quality is highly heterogeneous and is an important exploratory unknown in the basin. This study investigates how reservoir porosity and permeability vary with diagenetic minerals and burial history, particularly the effects of fracturing on the diagenesis and reservoir deliverability. The Laiyang sandstones are tight reservoirs with low porosity and permeability (Φ < 10% and K < 1 mD). Spatial variations in detrital supply and burial history significantly affected the diagenetic alterations during burial. In the western Laiyang Sag, the rocks are primarily feldspathic litharenites that underwent progressive burial, and thus, the primary porosity was partially to completely eliminated as a result of significant mechanical compaction of ductile grains. In contrast, in the eastern Laiyang Sag, the rocks are lithic arkoses that were uplifted to the surface and extensively eroded, which resulted in less porosity reduction by compaction. The tectonic uplift could promote leaching by meteoric water and the dissolution of remaining feldspars and calcite cement. Relatively high-quality reservoirs are preferentially developed in distributary channel and mouth-bar sandstones with chlorite rims on detrital quartz grains, which are also the locations of aqueous fluid flow that produced secondary porosity. The fold-related fractures are primarily developed in the silt–sandstones of Longwangzhuang and Shuinan members in the eastern Laiyang Sag. Quartz is the most prevalent fracture filling mineral in the Laiyang sandstones, and most of the small-aperture fractures are completely sealed, whereas the large-aperture fractures in a given set may be only partially sealed. The greatest fracture density is in the silt–sandstones containing more brittle minerals such as calcite and quartz cement. The wide apertures are crucial to preservation of the fracture porosity, and the great variation in the distribution of fracture-filling cements presents an opportunity for targeting fractures that contribute to fluid flow.  相似文献   

4.
Rock physical properties, like velocity and bulk density, change as a response to compaction processes in sedimentary basins. In this study it is shown that the velocity and density in a well defined lithology, the shallow marine Etive Formation from the northern North Sea increase with depth as a function of mechanical compaction and quartz cementation. Physical properties from well logs combined with experimental compaction and petrographic analysis of core samples shows that mechanical compaction is the dominant process at shallow depth while quartz cementation dominates as temperatures are increased during burial. At shallow depths (<2000–2500 m, 70–80 °C) the log derived velocities and densities show good agreement with results from experimental compaction of loose Etive sand indicating that effective stress control compaction at these depths/temperatures. This indicates that results from experimental compaction can be used to predict reservoir properties at burial depths corresponding to mechanical compaction. A break in the velocity/depth gradient from about 2000 m correlates with the onset of incipient quartz cementation observed from petrographic data. The gradient change is caused by a rapid grain framework stiffening due to only small amounts of quartz cement at grain contacts. At temperatures higher than 70–80 °C (2000–2500 m) the velocities show a strong correlation with quartz cement amounts. Porosity reduction continues after the onset of quartz cementation showing that sandstone diagenesis is insensitive to effective stress at temperatures higher than 70–80 °C. The quartz cement is mainly sourced from dissolution at stylolites reflected by the fact that no general decrease in intergranular volume (IGV) is observed with increasing burial depth. The IGV at the end of mechanical compaction will be important for the subsequent diagenetic development. This study demonstrates that mechanical compaction and quartz cementation is fundamentally different and this needs to be taken into consideration when analyzing a potential reservoir sandstone such as the Etive Formation.  相似文献   

5.
The complex fluvial sandstones of the Triassic Skagerrak Formation are the host reservoir for a number of high-pressure, high-temperature (HPHT) fields in the Central Graben, North Sea. All the reservoir sandstones in this study comprise of fine-grained to medium-grained sub-arkosic to arkosic sandstones that have experienced broadly similar burial and diagenetic histories to their present-day maximum burial depths. Despite similar diagenetic histories, the fluvial reservoirs show major variations in reservoir quality and preserved porosity. Reservoir quality varies from excellent with anomalously high porosities of up to 35% at burial depth of >3500 m below seafloor to non-economic with porosities <10% at burial depth of 4300 m below seafloor.This study has combined detailed petrographic analyses, core analysis and pressure history modelling to assess the impact of differing vertical effective stresses (VES) and high pore fluid pressures (up to 80 MPa) on reservoir quality. It has been recognised that fluvial channel sandstones of the Skagerrak Formation in the UK sector have experienced significantly less mechanical compaction than their equivalents in the Norwegian sector. This difference in mechanical compaction has had a significant impact upon reservoir quality, even though the presence of chlorite grain coatings inhibited macroquartz cement overgrowths across all Skagerrak Formation reservoirs. The onset of overpressure started once the overlying Chalk seal was buried deeply enough to form a permeability barrier to fluid escape. It is the cumulative effect of varying amounts of overpressure and its effect on the VES history that is key to determining the reservoir quality of these channelised sandstone units. The results are consistent with a model where vertical effective stress affects both the compaction state and subsequent quartz cementation of the reservoirs.  相似文献   

6.
Lacustrine deep-water turbidite plays are a novel area for exploration in the Huimin Depression, Bohai Bay Basin. Turbidites in the Shang 847 block, a typical turbidite play in the Huimin Depression, provide an opportunity to study the factors controlling the reservoir properties and hydrocarbon accumulation in lacustrine turbidite sandstones. The reservoir quality of turbidite sandstones (very fine-grained, moderately to well sorted, mainly lithic arkose) in this study area are mainly controlled by the distribution patterns of carbonate cements and pseudomatrix. Significant inverse relationships exist between the volume of carbonate cement and both porosity and permeability of the turbidite sandstones. Carbonate cement is located preferentially near the margins of the sandstone bodies. Sandstones with distance from the sandstone–mudstone contact surface less than 0.7 m or with thickness less than 1.2 m are commonly tightly cemented (carbonate cement >15%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The source of carbonate cement was most likely external, probably derived from the surrounding mudstone. Most pore-filling carbonate cements occurred during late diagenesis at burial depths greater than 2200 m. The petrophysical properties of turbidites have a positive relationship with the content of kaolinite and chlorite, but have a negative relationship with the content of illite. 2-D and 3-D reconstructions of non-oil bearing and oil-bearing layers indicate that dissolution of carbonate cement, feldspars and unstable rock fragments was more developed in oil-bearing layers than in non-oil bearing layers and hance oil-bearing layers have higher porosity and larger pore sizes. Petrophysical property appears to have a significant effect on the hydrocarbon accumulation in the turbidite sandstones. Sandstones with porosities lower than 9% and/or permeabilities lower than 0.78 mD are not prone to contain oil.  相似文献   

7.
Rapid supply and deposition of 1000's of meters of Miocene and Pliocene sediment tend to lead to a different set of controls on reservoir quality than older, more slowly buried sandstones. Here we have studied Miocene fluvial-deltaic Bhuban Formation sandstones, from the Surma Group, Bengal Basin, buried to >3,000 m and >110 °C, using a combination of petrographic, geochemical and petrophysical methods in order to understand the controls on Miocene sandstone reservoir quality to facilitate improved prediction of porosity and permeability. The main conclusions of the study are that mechanical compaction processes are the dominant control on porosity-loss although early calcite growth has led to locally-negligible porosity in some sandstones. Mechanical compaction occurred by grain rearrangement, ductile grain compaction and brittle grain fracturing. Calcite cement, occupying up to 41% intergranular volume, was derived from a combination of dissolved and recrystallized bioclasts, an influx of organic-derived carbon dioxide and plagioclase alteration. Clay minerals present include smectite-illite, kaolinite and chlorite. The smectitic clay was probably restricted to low energy depositional environments and it locally diminishes permeability disproportionate to the degree of porosity-loss. Kaolinite is probably the result of feldspar alteration resulting from the influx of organic-derived carbon dioxide. Quartz cement is present in small amounts, despite the relatively high temperature, due to a combination of limited time available in these young sandstones, grain-coating chlorite and low water saturations in these gas-bearing reservoir sandstones. Reservoir quality can now be predicted by considering primary sediment supply and primary depositional environment, the magnitude of the detrital bioclast fraction and the influx of organic-derived carbon dioxide.  相似文献   

8.
The c. 500 m thick Middle Jurassic sandstones of the fluvial Bristol Elv and marine Pelion Formations of the East Greenland Basin are evaluated here in order to improve the understanding of the processes that influenced the diagenetic evolution. The study may help to predict the reservoir properties of sandstones affected by magmatism and faulting, both in general and specifically in undrilled areas on- and offshore East Greenland and, in the Vøring Basin on the Mid-Norwegian shelf. The study shows a variety of authigenic mineral phases dominated by quartz cement, carbonate cement, illite and iron-oxide. One of the clear differences between the two formations is the presence of early carbonate-cemented horizons in the marine sandstones; these horizons are inferred to reflect a primary concentration of biogenic clasts and fossil shells. Intense quartz cementation occurs primarily in the fluvial sandstones but the marine sandstones are also highly quartz-cemented. Two episodes of burial and uplift are recorded in the diagenetic sequence and widespread grain-crushing in coarse-grained intervals is believed to result from overpressure and subsequent compaction due to sudden pressure release along major faults. Maximum burial depths may only have been around 2000–2500 m. Cathodoluminescence analyses show that grain crushing was followed by intense quartz cementation. The quartz cement is to a great deal believed to have formed due to increased surface area from crushing of detrital quartz grains, creating fresh nucleation sites for the quartz. Cathodoluminescence investigations also show that only minor pressure dissolution has taken place between detrital quartz grains and that the ubiquitous quartz cementation displays several growth zones, and was thus in part the result of the introduction of silica-rich extra-formational fluids related to the flow of hot fluids along reactivated faults and increased heat flow and temperature due to magmatism. This interpretation is supported by fluid inclusion homogenization temperatures between 117 and 158 °C in quartz cements. In one of the two study areas, the development of macroscopic stylolites has significantly enhanced quartz cementation, probably in connection with thermal convection flow. As a result of the magmatic and fault-related quartz cementation and illitization, the reservoir quality of the sandstone formations deteriorated and changed drastically.  相似文献   

9.
The Upper Triassic Chang 6 sandstone, an important exploration target in the Ordos Basin, is a typical tight oil reservoir. Reservoir quality is a critical factor for tight oil exploration. Based on thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), stable isotopes, and fluid inclusions, the diagenetic processes and their impact on the reservoir quality of the Chang 6 sandstones in the Zhenjing area were quantitatively analysed. The initial porosity of the Chang 6 sandstones is 39.2%, as calculated from point counting and grain size analysis. Mechanical and chemical compaction are the dominant processes for the destruction of pore spaces, leading to a porosity reduction of 14.2%–20.2% during progressive burial. The porosity continually decreased from 4.3% to 12.4% due to carbonate cementation, quartz overgrowth and clay mineral precipitation. Diagenetic processes were influenced by grain size, sorting and mineral compositions. Evaluation of petrographic observations indicates that different extents of compaction and calcite cementation are responsible for the formation of high-porosity and low-porosity reservoirs. Secondary porosity formed due to the burial dissolution of feldspar, rock fragments and laumontite in the Chang 6 sandstones. However, in a relatively closed geochemical system, products of dissolution cannot be transported away over a long distance. As a result, they precipitated in nearby pores and pore throats. In addition, quantitative calculations showed that the dissolution and associated precipitation of products of dissolution were nearly balanced. Consequently, the total porosity of the Chang 6 sandstones increased slightly due to burial dissolution, but the permeability decreased significantly because of the occlusion of pore throats by the dissolution-associated precipitation of authigenic minerals. Therefore, the limited increase in net-porosity from dissolution, combined with intense compaction and cementation, account for the low permeability and strong heterogeneity in the Chang 6 sandstones in the Zhenjing area.  相似文献   

10.
The Kaimiro Formation is an early to middle Eocene, NE-SW trending reservoir fairway in Taranaki Basin, and comprises a range of coastal plain through to shallow marine facies. A time of regional transgression is observed across the Paleocene–Eocene transition, which is linked to a general global warming trend and to regional thermal relaxation-related subsidence in New Zealand. The earliest Eocene transgressive deposits pass upwards into a series of cyclically stacked packages, interpreted as 3rd and 4th order sequences. Maximum regression occurred within the early Eocene and was followed by punctuated retrogradational stacking patterns associated with shoreline retreat and subsequent regional transgression in the middle Eocene.The Kaimiro Formation is considered a good reservoir target along most of the reservoir fairway, which can largely be attributed to a consistently quartz-rich, lithic-poor composition and reasonably coarse sand grain size. Correlations demonstrate that within the early Eocene the main reservoir facies are channel-fill sandstones overlying candidate sequence boundaries in paleoenvironmentally landward (proximal) settings, and upper shoreface/shoreline sandstones in relatively basinward (distal) settings. Middle Eocene reservoir facies are not represented in distal wells due to overall transgression at this time, yet they form a significant target in more proximal well locations, particularly on the Taranaki Peninsula.Depositional facies is one of the principal controls on sandstone reservoir quality. However, while reservoir facies have been proven along the length of the reservoir fairway, it is evident that diagenesis has significantly impacted sandstone quality. Relatively poor reservoir properties are predicted for deeply buried parts of the basin (maximum burial >4.5 km) due to severe compaction and relatively abundant authigenic quartz and illite. In contrast, good reservoir properties are locally represented in reservoir facies where present-day burial depths are <4 km due to less severe compaction, cementation and illitisation. Within these beds (<4 km) the presence of locally occurring authigenic grain-coating chlorite (shallow marine facies) and/or well-developed secondary porosity are both favourable to reservoir quality, while pervasive kaolinite and/or carbonate are both detrimental to reservoir quality.These results illustrate how an interdisciplinary approach to regional reservoir characterisation are used to help reduce risk during prospect evaluation. Assessment of both reservoir distribution and quality is necessary and can be undertaken through integrated studies of facies, sequence stratigraphy, burial modelling and petrography.  相似文献   

11.
In the Kopet-Dagh Basin of Iran, deep-sea sandstones and shales of the Middle Jurassic Kashafrud Formation are disconformably overlain by hydrocarbon-bearing carbonates of Upper Jurassic and Cretaceous age. To explore the reservoir potential of the sandstones, we studied their burial history using more than 500 thin sections, supplemented by heavy mineral analysis, microprobe analysis, porosity and permeability determination, and vitrinite reflectance.The sandstones are arkosic and lithic arenites, rich in sedimentary and volcanic rock fragments. Quartz overgrowths and pore-filling carbonate cements (calcite, dolomite, siderite and ankerite) occluded most of the porosity during early to deep burial, assisted by early compaction that improved packing and fractured quartz grains. Iron oxides are prominent as alteration products of framework grains, probably reflecting source-area weathering prior to deposition, and locally as pore fills. Minor cements include pore-filling clays, pyrite, authigenic albite and K-feldspar, and barite. Existing porosity is secondary, resulting largely from dissolution of feldspars, micas, and rock fragments, with some fracture porosity. Porosity and permeability of six samples averages 3.2% and 0.0023 mD, respectively, and 150 thin-section point counts averaged 2.7% porosity. Reflectance of vitrinite in eight sandstone samples yielded values of 0.64-0.83%, in the early mature to mature stage of hydrocarbon generation, within the oil window.Kashafrud Formation petrographic trends were compared with trends from first-cycle basins elsewhere in the world. Inferred burial conditions accord with the maturation data, suggesting only a moderate thermal regime during burial. Some fractures, iron oxide cements, and dissolution may reflect Cenozoic tectonism and uplift that created the Kopet-Dagh Mountains. The low porosity and permeability levels of Kashafrud Formation sandstones suggest only a modest reservoir potential. For such tight sandstones, fractures may enhance the reservoir potential.  相似文献   

12.
Diagenesis is of decisive significance for the reservoir heterogeneity of most clastic reservoirs. Linking the distribution of diagenetic processes to the depositional facies and sequence stratigraphy has in recent years been discipline for predicting the distribution of diagenetic alterations and reservoir heterogeneity of clastic reservoirs. This study constructs a model of distribution of diagenetic alterations and reservoir heterogeneity within the depositional facies by linking diagenesis to lithofacies, sandstone architecture and porewater chemistry during burial. This would help to promote better understanding of the distribution of reservoir quality evolution and the intense heterogeneity of reservoirs. Based on an analogue of deltaic distributary channel belt sandstone in Upper Triassic Yanchang Formation, 83 sandstone plug samples were taken from 13 wells located along this channel belt. An integration of scanning electron microscopy, thin sections, electron microprobe analyses, rate-controlled porosimetry (RCP), gas-flow measurements of porosity and permeability, and nuclear magnetic resonance (NMR) experiments, together with published data, were analysed for the distribution, mineralogical and geochemical characteristics of detrital and diagenetic components and the distribution of reservoir quality within the distributary channel belt.Distribution of diagenetic alterations and reservoir heterogeneity within the distributary channel belt sandstones include (i) formation of high quality chlorite rims in the middle part of thick sandstones with coarser grain sizes and a lower content of ductile components resulted from the greater compaction resistance of these sandstones (providing larger pore spaces for chlorite growth), leading to formation of the intergranular pore – wide sheet-like throat and intergranular pore - intragranular pore – wide sheet-like throat (Φ>15%, k>1mD) in the middle part of thick sandstones; (ii) formation of thinner chlorite rims in the middle part of thinner sandstones is associated with the intergranular pore - intragranular pore – narrow sheet-like throat (9%<Φ<14%, 0.2mD<k<0.8mD); (iii) strong cementation by kaolinite in the more proximal sandstones of distributary channel owing to the strong feldspar dissolution by meteoric water, resulting in the intragranular pore - group of interstitial cement pores – narrow sheet-like throat/extremely narrow sheet-like throat (8%<Φ<11%, 0.1mD<k<0.3mD) due to the pore-filling kaolinite occluding porosity; (iv) formation of dense ferrocalcite zones (δ18OVPDB = −23.4‰ to −16.6‰; δ13 CVPDB = −4.0‰ to −2.3‰) favoured in the top and bottom of the channel sandstone which near the sandstone-mudstone bouding-surface, destroying pore space (Φ<8%, k<0.1mD); (v) strong compaction in sandstone of distributary channel edge laterally as a result of fine grain size and high content of ductile components in those sandstones, forming the group of interstitial cement pores – extremely narrow sheet-like throat with porosity values less than 8%.  相似文献   

13.
This paper analyses the diagenetic evolution of sandstones belonging to the Bajo Barreal Formation (Cretaceous) in the Golfo de San Jorge Basin (Patagonia, Argentina). The Bajo Barreal Formation includes the main reservoirs, which are located along the western area of the basin and is composed of sandstones, conglomerates, mudstones, tuffaceous mudstones and some layers of tuffs. The principal reservoirs comprise medium-to coarse-grained sandstones, which are dominated by feldspathic litharenites and contain minor amounts of litharenites and lithic arkoses. The authigenic minerals include kaolinite, smectite, chlorite, quartz overgrowths, microquartz and calcite, with minor proportions of megaquartz, siderite, analcime, laumontite, feldspar overgrowths and illite/smectite and chlorite/smectite mixed layers. Secondary porosity is much more important than primary porosity and is produced by the dissolution of feldspar, lithic clasts and clay cements. The diagenetic history of the Bajo Barreal sandstones can be divided into seven diagenetic stages, each of which is characterized by a specific assemblage of authigenic minerals and diagenetic processes. Eogenetic conditions occur in stages 1, 2, 3 and 4. Stage 1 corresponds to shallow burial characterized by the physical reduction of primary porosity by compaction; during stage 2, rim clay cements of chlorite, smectite and clinoptilolite, as well as thin quartz overgrowths, were formed. The precipitation of pore-filling cements of kaolinite, chlorite and smectite occurred during stage 3, while stage 4 records the intense dissolution of feldspar, lithic fragments and kaolinite cements. Mesogenesis occurs in diagenetic stages 5 and 6. The former corresponds to a new phase of authigenic kaolinite, while the latter records the significant dissolution of feldspar, lithic clasts and previous cements, which produced the highest values of secondary porosity. Finally, stage 7 corresponds to the highest degree of diagenesis in the Bajo Barreal Formation (mesogenesis), which resulted in the precipitation of cements of zeolites and calcite, as well as quartz and plagioclase overgrowths.  相似文献   

14.
The Stø Formation is the most important reservoir interval in the Norwegian Barents Sea, however the reservoir quality can be highly affected by the detrimental effects of quartz cement where there have been extensive post depositional burial. Core plug data from well 7219/8-2 in the Southwestern Barents Sea shows abnormally high porosity and permeability values in certain units of the deeply buried and otherwise highly quartz cemented Stø Formation. The amount of quartz cement in the samples is inversely proportional to the porosity. Samples with high and low porosities are similar texturally and mineralogically, but the high porosity samples have a layer of illitic clay coating the majority of the detrital quartz grains. Illitic clay coating present at grain contacts can result in a lowered IGV given they aid in the dissolution of quartz at interfaces, also creating a source of dissolved silica. Clay induced dissolution means that silica saturation is not a limiting factor in quartz cementation in these samples. The results show that the illitic clay coating is capable of limiting the amount of authigenic quartz overgrowth from 20 to 23% in samples with negligible grain coating to 5–11% in the intervals with high coating coverage. The illitic clay coating inhibits quartz overgrowth by limiting the surface area available for nucleation on detrital grains. The Stø Formation comprises mainly shallow marine deposits of highly reworked clean sandstone. Abnormally high porosities appear to be linked to settings where sediments of a more proximal location are preserved without extensive reworking. The grain coating clay is illitic and most likely originates from clay infiltration processes prior to final deposition. The difference in extent of clay coating in similar facies can mostly be correlated with varying amount of post depositional reworking. This study suggests that there is a potential for considerable porosity and permeability to be preserved in deeply buried sandstones in the Barents Sea. This study could be important in the future exploration activity of deeply buried structures in the area.  相似文献   

15.
The evolution of large-scale paleo-uplifts within sedimentary basins controls the sedimentary provenance, depositional systems and hydrocarbon distributions. This study aims to unravel changes in paleo-geomorphology, interpret sedimentary sequence evolution, and investigate favourable reservoir types and the hydrocarbon distribution during the buried stage of a long-term eroded paleo-uplift, taking the Lower Cretaceous Qingshuihe Formation (K1q) in the Junggar Basin as an example. These research topics have rarely been studied or are poorly understood. This study integrates current drilling production data with outcrop and core analyses, drilling well logs, 3D seismic data interpretations, grading data, physical property comparisons and identified hydrocarbon distributions.After more than 20 million years of differential river erosion and weathering in arid conditions, the large-scale Chemo paleo-uplift within the hinterland area of the basin formed a distinctive valley–monadnock paleo-geomorphology prior to the deposition of K1q. Since the Early Cretaceous, tectonic subsidence and humid conditions have caused the base level (lake level) to rise, leading to backfilling of valleys and burial processes. Two systems tracts in the target strata of K1q, consisting of distinctive depositional systems, can be identified: (1) a lowstand systems tract (LST), which is confined within incised valleys and is mainly composed of gravelly braided rivers and rarely occurring debris flows and (2) an extensive transgressive systems tract (TST), which developed into an almost flat landform and consists of braided river delta to lacustrine depositional systems. Overall, the physical properties of braided river reservoirs in the LST are better than those of the braided river delta reservoirs in the TST. However, the inhomogeneous distributions of carbonate cements cause differences in the physical properties of conglomerate reservoirs in the LST. However, for sandstones in both the LST and TST, coarser grain sizes and better sorting result in better physical properties. Altogether, four types of reservoir can be identified in the study area: Jurassic inner monadnock reservoirs, K1q LST stratigraphic onlap reservoirs, LST structural reservoirs and TST structural reservoirs.  相似文献   

16.
The porosity and hence volume of argillaceous sediments is determined by: (1) the magnitude of the effective stress acting within the sediment; (2) the previous stress history of the sediment; and (3) at shallow depths of burial, by features such as the mineralogy and the nature of the depositional environment. Stress paths and the critical state diagrams for a number of clays are used to investigate the range of porosities possible in argillaceous sediments as the effective stresses increase. It is found that all porosity/effective stress curves converge at large stresses. The change in porosity is strongly dependent on the mean effective stress but largely independent of the deviatoric stress, and thus is largely independent of the nature of the stress field acting on the basin (compressional, extensional etc.). Because of the dependence of porosity on the mean effective stress, no simple relationship exists between porosity and depth of burial but in the absence of overpressured pore fluids and assuming the sediment is not overconsolidated, it is possible to contour the porosity/effective stress diagram in terms of burial depths. These data should assist in recalculating stratigraphic thicknesses for basin reconstruction and stratigraphic correlation studies.  相似文献   

17.
Carbonate concretions in Upper Jurassic Kimmeridge Clay Formation from three overpressured wells provide a detailed record of pore fluid evolution in the Outer Moray Firth/Northern Central Graben. The concretions contain multiple generations of septarian cements, with morphologies ranging from simple cracks to complex fractures. Discrepancy exists between diagenetic studies, which indicate these concretions formed during the initial 1–1.5 km of burial and palaeotemperature predictions, based on a thermal history calibrated from the vitrinite reflectance kinetic model, which indicate formation at much greater depths of between 1.5 and 2.5 km. Modelling undertaken for this study indicate that the concretions formed during the initial stages of burial under high heat flows, fitting the early diagenetic model for their formation. These conclusions have important implications for understanding the cementation of adjacent sandstone reservoirs where cement sequences have similar mineralogy and isotopic compositions, with precipitation in the same temperature range from mudrock derived pore fluids. Early cementation of these sandstones is implied by analogy with the mudrock concretions.  相似文献   

18.
This study investigates petrophysical and acoustic properties of experimentally compacted reconstituted samples of seal sequences from the southwestern Barents Sea. The aggregates were collected from drill cuttings of mudstone and shale formations of two exploration wells, 7220/10-1 (Salina discovery) and 7122/7-3 (Goliat field). The washed and freeze-dried samples were characterized for grain size distributions, geochemical analyses, and mineralogical compositions. A total of 25 compaction tests (12 dry and 13 brine-saturated) were performed with a maximum effective vertical stress of 50 MPa. The laboratory measurements demonstrated that petrophysical and acoustic properties of argillaceous sediments can change within a sedimentary basin and even within a given formation. The results show that the collected aggregates from Goliat field are compacted more compared to Salina discovery. The maximum and minimum compaction are measured in samples collected from Snadd and Fuglen formations, respectively. The final porosity of brine-saturated specimens varies between 5% and 22%. The ultrasonic velocity measurements depict that samples with the same porosity values can have a broad range of velocity values. The resulting compaction trends in this study were compared to published compaction curves for synthetic mixtures of quartz and clay. All compaction trends show higher porosity reduction than the silt fraction with 100% quartz. Comparison of experimental compaction result of each mudstone and shale aggregate with its corresponding acquired well log data helps to delineate the burial history and exhumation in the study area. A net exhumation of 950 m and 800 m is estimated at Salina and Goliat wells, respectively. The outcomes of this study can provide insights for hydrocarbon prospect discovery in a pre-mature sedimentary basin in terms of exploration and production, and also for geological CO2 storage sites. The experimental results may provide information for well log and seismic interpretation, basin modeling and seal integrity of investigated horizons.  相似文献   

19.
Mechanical compaction of sand-rich reservoirs usually occurs during shallow burial and involves the rearrangement of framework grains and the ductile deformation of soft lithoclasts. The reservoir quality (porosity and permeability) of some Neogene sandstones of the South Caspian Basin has, however, been dramatically reduced by mechanical compaction involving extensive grain-fracturing (i.e. porosity collapse). These sandstones were probably susceptible to pervasive grain-fracturing because they were buried rapidly and experienced compressional deformation prior to reaching 80 °C. Consequently, they did not undergo quartz cementation and were therefore exposed to high stresses while they were extremely weak. Grain-size and structural position are also important controls on the distribution of grain fracturing in the onshore analogue in the Apsheron Peninsula. Microstructural analysis confirms that susceptibility to distributed grain-fracturing increases with increasing grain-size. Structural position has also an important impact on the distribution of porosity collapse. In particular, sandstones within the hinges of folded sections have undergone much more extensive grain-fracturing than within the surrounding area; the increased stresses in this structural position have enhanced distributed grain-fracturing and subsequent deformation band development.  相似文献   

20.
Future exploration in lower Miocene sandstones in the Gulf of Mexico will focus increasingly at depths greater than 4.5 km, and reservoir quality will be a critical risk factor in these deep to ultradeep reservoirs. The goal of this study was to understand the variation in reservoir quality of lower Miocene sandstones across the western Gulf of Mexico. To do this, we examined regional variation in detrital mineral composition, diagenesis, and reservoir quality in five areas: (1) Louisiana, (2) upper Texas coast, (3) lower Texas coast, (4) Burgos Basin, Mexico, and (5) Veracruz Basin, Mexico using petrographic and petrophysical data from depths of 0.9–7.2 km.There are strong variations in mineralogical composition within the study area. Lower Miocene sandstones from offshore Louisiana have an average composition of quartz = 86%, feldspar = 12%, and rock fragments = 2% (Q86F12R2). Feldspar and rock-fragment content increase southward as source areas shifted to include volcanic and carbonate rocks. Composition of samples from offshore Texas ranges from Q67F24R9 in the upper Texas coast to Q58F24R19 in the lower Texas coast. Lower Miocene sandstones from the onshore Burgos Basin, northern Mexico, have an average composition of Q54F22R23, whereas sandstones from the Veracruz Basin, southern Mexico, contain the highest proportion of rock fragments, Q33F12R55. Main diagenetic events in quartz-rich lower Miocene sandstones in Louisiana were mechanical compaction and precipitation of quartz cement. Compactional porosity loss increased to the south with increasing rock-fragment content. Calcite is the most abundant cement in the south and is strongly related to reservoir quality loss.At moderate burial depths, the best reservoir quality occurs in quartz-rich sandstones in Louisiana and decreases with increasing lithic content in Texas and Mexico. Porosity is higher in Louisiana and upper Texas than in lower Texas and Mexico at all depths and temperatures, but at depths >5 km and temperatures >175 °C, porosity differences are lessened. The lower Miocene sandstone trend in the western Gulf of Mexico from Louisiana to Mexico is an example of the importance of variation in detrital mineralogy as a control on diagenesis and reservoir quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号