首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pearl River Mouth Basin in the South China Sea has accumulated >2 km of Eocene sediments in its deep basin, and has become the exploration focus due to the recent discoveries of the HZ25-7 oil field in the Eocene Wenchang (E2w) Formation. In this study, the geochemical characteristics of potential source rocks and petroleum in the HZ25-7 oil field are investigated and the possible origins and accumulation models developed. The analytical results reveal two sets of potential source rocks, E2w and Enping (E2e) formations developed in the study area. The semi-deep-to-deep lacustrine E2w source rocks are characterized by relatively low C29 steranes, low C19/C23 tricyclic terpane (<0.6), low C24 tetracyclic terpane/C30 hopane (<0.1), low trans-trans-trans-bicadinane (T)/C30 hopane (most <2.0), and high C30 4-methyl sterane/ΣC29 sterane (>0.2) ratios. In contrast, the shallow lacustrine and deltaic swamp-plain E2e source rocks are characterized by relatively high C29 steranes, high C19/C23 tricyclic terpane (>0.6), high C24 tetracyclic terpane/C30 hopane (>0.1), variable yet overall high T/C30 hopane, and low C30 4-methyl sterane/ΣC29 sterane (<0.2) ratios. The relatively low C19/C23 tricyclic terpane ratios (mean value: 0.39), low C24 tetracyclic terpane/C30 hopane ratios (mean value: 0.07), high C30 4-methyl sterane/ΣC29 sterane ratios (mean value: 1.14), and relatively high C27 regular sterane content of petroleum in the HZ25-7 oil field indicate that the petroleum most likely originated from the E2w Formation mudstone in the Huizhou Depression. One stage of continuous charging is identified in the HZ25-7 oil field; oil injection is from 16 Ma to present and peak filling occurs after 12 Ma. Thin sandstone beds with relatively good connectivity and physical properties (porosity and permeability) in the E2w Formation are favorable conduits for the lateral migration of petroleum. This petroleum accumulation pattern implies that the E2w Formation on the western and southern margins of the Huizhou Depression are favorable for petroleum accumulation because they are located in a migration pathway. Thus exploration should focus in these areas in the future.  相似文献   

2.
The origin of the fourteen major oil fields in the Bozhong sub-basin, Bohai Bay basin was studied based on the results of Rock-Eval pyrolysis on more than 700 samples and biomarker analysis on 61 source rock samples and 87 oil samples. The three possible source rock intervals have different biomarker assemblages and were deposited in different environments. The third member of the Oligocene Dongying Formation (E3d3, 32.8–30.3 Ma in age) is characterized mainly by high C19/C23 tricyclic terpane (>0.75), high C24 tetracyclic terpane/C26 tricyclic terpane (>2.5), low gammacerane/αβ C30 hopane (<0.15) and low 4-methyl steranes/ΣC29 steranes (<0.15) ratios, and was deposited in sub-oxic to anoxic environments with significant terrigenous organic matter input. The first (E2s1, 35.8–32.8 Ma) and third (E2s3, 43.0–38.0 Ma) members of the Eocene Shahejie Formation have low C19/C23 tricyclic terpane and low C24 tetracyclic terpane/C26 tricyclic terpane ratios and were deposited in anoxic environments with minor terrestrial organic matter input, but have different abundances of 4-methyl steranes and gammacerane. The hydrocarbon-generating potential and biomarker associations of these three source rock intervals were controlled by tectonic evolution of the sub-basin and climate changes. Three oil families derived from E2s3, E2s1 and E3d, respectively, and three types of mixed oils have been identified. All large oil fields in the Bozhong sub-basin display considerable heterogeneities in biomarker compositions and originated from more than one source rock interval, which suggests that mixing of oils derived from multiple source rock intervals or multiple generative kitchens, and/or focusing of oils originated from a large area of a generative kitchen, is essential for the formation of large oil fields in the Bozhong sub-basin. E2s3- and E2s1-derived oils experienced relatively long-distance lateral migration and accumulated in traps away from the generative kitchen. E3d3-derived oils had migrated short distances and accumulated in traps closer to the generative kitchen. Such a petroleum distribution pattern has important implications for future exploration. There is considerable exploration potential for Dongying-derived oils in the Bozhong sub-basin, and traps close to or within the generative kitchens have better chance to contain oils generated from the Dongying Formation.  相似文献   

3.
Oil samples from Lower Cretaceous to Eocene reservoirs in southwest Iran were analyzed using gas chromatography–mass spectrometry and gas chromatography–isotope ratio mass spectrometry for genetic classification of oil families and determining their maturity. The Studied oil samples are non-biodegraded and their gravity range from 18.3 to 37° API. The slight even/odd n-alkane predominance, coupled with low Pr/Ph values, suggests their likely source rocks with a predominance of algal organic matter, type IIS kerogen deposited under strongly reducing marine environments. The biomarker distribution of investigated oils is characterized by high concentration of both C29 and C30 hopanes and ratios of C29/C30H are generally greater than unity. There is a marked predominance of C29 regular sterane over C27 and C28 homologs in our studied oils. High sterane/hopane values and cross plot of the δ13C sat versus δ13C aro show contribution of marine organic matter. Medium value of gammacerane index and other salinity indices show water density stratification and high salinity conditions of the environment of deposition. It can be concluded that the studied reservoirs, due to their variable maturity have different API gravity and contain two oil families (types A and B) with latter being deeper and comprising more mature oils.  相似文献   

4.
The Cuu Long Basin (Mekong Basin) is a rift basin off southern Vietnam, and the most important petroleum producing basin in the country. However, information on petroleum type and characteristics has hitherto been largely unavailable to the public. This paper presents petroleum geochemical data on nine oil samples from four different producing fields in the Cuu Long Basin: the Dragon (Rong), Black Lion (Sutu-Den), Sunrise (Rang ?ong) and White Tiger (Bach Ho) Fields. The oils are highly paraffinic with bimodal normal alkane distributions and show moderate pristane to phytane ratios and a conspicuous hyperbolic decrease in abundance with increasing carbon number of hopane homologues from C30 to C35. The TPP-index of Holba et al. (Holba, A.G., Dzou, L.I., Wood, G.D., Ellis, L., Adam, P., Schaeffer, P., Albrecht, P., Greene, T., Hughes, W.B., 2003. Application of tetracyclic polyprenoids as indicators of input from fresh–brackish water environments. Organic Geochemistry 34, 441–469) is equal to 1 in all samples which in combination with tricyclic triperpane T26/T25 ratios >1 and the n-alkane and hopane distributions mentioned above provide a strong indication of an origin from lacustrine source rocks. This is supported by the absence of marine C30 desmethyl steranes (i.e. 24-n-propylcholestanes) and marine diatom-derived norcholestanes. Based on the overall biological marker distributions, the lakes probably belonged to the overfilled or balanced-fill types defined by Bohacs et al. (Bohacs, K.M., Carroll, A.R., Neal, J.E., Mankiewicz, P.J., 2000. Lake-basin type, source potential, and hydrocarbon character. An integrated sequence-stratigraphic–geochemical framework. AAPG Studies in Geology 46, 3–34). The oils were generated from source rocks at early- to mid-oil-window maturity, presumably Oligocene lacustrine shales that are present in the syn-rift succession. Oils from individual fields may, however, be distinguished by a combination of biological marker parameters, such as the oleanane index, the gammacerane index, the relative abundance of tricyclic terpanes, the proportions of diasteranes and 28-norspergulane, complemented by other parameters. The oils of the Cuu Long Basin show an overall similarity to the B-10 oil from the Song Hong Basin off northern Vietnam, but are markedly different from the seepage oils known from Dam Thi Nai on the coast of central Vietnam.  相似文献   

5.
Crude oil samples from Cretaceous and Tertiary reservoir sections in the Zagros Fold Belt oil fields, southern Iraq were investigated using non-biomarker and biomarker parameters. The results of this study have been used to assess source of organic matter, and the genetic link between oils and their potential source rocks in the basin. The oils are characterized by high sulphur and trace metal (Ni, V) contents and relatively low API gravity values (17.4–22.7° API). This indicates that these oils are heavy and generated from a marine source rock containing Type II-S kerogen. This is supported by their biomarker distributions of normal alkanes, regular isoprenoids, terpanes and steranes and the bulk carbon isotope compositions of their saturated and aromatic hydrocarbons. The oils are characterized by low Pr/Ph ratios (<1), high values of the C35 homohopane index and C31-22R/C30 hopane ratios, relatively high C27 sterane concentrations, and the predominance of C29-norhopane. These biomarkers suggest that the oils were generated predominantly from a marine carbonate source rock, deposited under reducing conditions and containing plankton/algal and microorganisms source input. The presence of gammacerane also suggests water column stratification during source rock deposition.The biomarker characteristics of the oils are consistent with those of the Middle Jurassic Sargelu carbonate as the effective source rock in the basin. Biomarker maturity data indicate that the oils were generated from early maturity source rocks.  相似文献   

6.
A combined geochemical and molecular characterization of a wide selection of oils from the major Brazilian offshore basins has been undertaken. The elemental (sulphur, nickel and vanadium) and bulk (oAPI and δ13C) properties of each sample been considered, together with its molecular composition determined using liquid and gas chromatography, and quantitative biological marker investigations using gas chromatography-mass spectrometry for alkanes.The results reveal significant differences in the chemical features of the various oils which enable them to be divided into five groups. The distinction of the groups appears to reflect differences in the depositional environment of the source rocks of the oils. Each group is correlated tentatively with source rocks laid down in a specific depositional regime, namely lacustrine freshwater, lacustrine saline water, marine evaporitic, marine carbonate or marine deltaic. The diagnostic features that allow this classification are: the relative abundance and carbon number distributions of n-alkanes; pristane/phytane ratios; sulphur, nickel and vanadium contents; carbon isotope data; the absolute concentrations of hopanes and steranes, and their abundance relative to 4-methylsteranes and, also the occurrence and abundance of several specific biological markers, including 18α(H)-oleanane, gammacerane, β-carotane, tricyclic terpanes, higher acyclic isoprenoids, 28, 30-bisnorhopane and 25, 28, 30-trisnorhopane. This investigation shows the value of a combined geochemical and molecular approach in the assessment of the palaeoenvironment of deposition of the source rocks which gave rise to the oils.  相似文献   

7.
This study aims at investigating hydrocarbon generation potential and biological organic source for the Tertiary coal-bearing source rocks of Pinghu Formation (middle-upper Eocene) in Xihu depression, East China Sea shelf basin. Another goal is to differentiate coal and mudstone with respect to their geochemical properties. The coal-bearing sequence has a variable organofacies and is mainly gas-prone. The coals and carbonaceous mudstones, in comparison with mudstones, have a higher liquid hydrocarbon generation potential, as reflected by evidently higher HI values (averaging 286 mg HC/g C) and H/C atomic ratios (round 0.9). The molecular composition in the coal-bearing sequence is commonly characterized by unusually abundant diterpenoid alkanes, dominant C29 sterane over C27 and C28 homologues and high amount of terrigenous-related aromatic biomarkers such as retene, cadalene and 1, 7-dimethylphenanthrene, indicating a predominantly terrigenous organic source. The source rocks show high Pr/Ph ratios ranging mostly from 3.5 to 8.5 and low MDBTs/MDBFs ratios (<1.0), indicating deposition in an oxic swamp-lacustrine environment. The coals and carbonaceous mudstones could be differentiated from the grey mudstones by facies-dependent biomarker parameters such as relative sterane concentration and gammacerane index and carbon isotope composition. Isotope and biomarker analysis indicate the genetic correlation between the Pinghu source rocks and the oils found in Xihu depression. Moreover, most oils seem to be derived from the coal as well as carbonaceous mudstone.  相似文献   

8.
Different methods have been used to examine minerals and/or solid bitumens in three adjacent Carpathian regions of Poland, Ukraine and Slovakia. The minerals fill smaller and larger veins and cavities, where they occur either together or separately. They usually co-occur with the solid bitumens. All δ13CPDB values measured for calcite lie in a relatively wide interval between −6.25‰ and +1.54‰, while most values fall into the narrower interval from below 0 to about −3‰. The general range of calcite δ18O results for the whole studied region is between +17.13‰ and +25.23‰ VSMOW or from about −11 to −5‰ VPDB, while the majority of these values are between +20.0 and 23.5‰ VSMOW (−10.53 and −8.00‰ PDB, respectively). δ18OVSMOW results for quartz vary between +23.2 and 27.6. The carbonate percentage determined in some samples falls between from <2% CaCO3 to >90% CaCO3, while the TOC values changes from 0.09% to over 70%.The aliphatic fraction predominates in all studied samples, mainly in bitumens and oils. The composition of the aliphatic fraction is relatively homogeneous and points to a strong aliphatic, oil-like paraffin character of the bitumens. Such a composition is characteristic of the Carpathian oils and different from the rocks studied that contain the higher percentage of a polar fraction. The content of the aliphatic fraction in bitumens is only slightly higher than that in two oils used for comparison. The distribution of n-alkanes is variable in rocks, solid bitumens as well as inclusions in quartz and calcite. Two groups of bitumens may be distinguished. Those with a predominance of long-chain n-alkanes in the C25–C27 interval (in some cases from C23–C25 and without or with a very low concentration of short-chain n-alkanes in the interval of C14–C21) show also a high content of isoprenoids i.e. of pristane (Pr) and phytane (Ph). In all but one bitumen samples, Pr predominates over Ph. The second group comprises oils and rock samples with a characteristic predominance of short-chain n-alkanes in the interval from C13–C19 and a low percentage of the long-chain n-alkanes from the n-C27n-C33 interval. Pristane and phytane exhibit a concentration comparable to that of C17 and C18 n-alkanes with a Pr predominance over Ph. Due to high maturity, only small amounts of the most stable compounds from the hopane group have been observed in the samples, also oleanane in one case. Among the aromatic hydrocarbons, phenanthrene and its methyl- and dimethyl-derivatives are dominant in bitumens, source rocks and inclusions in calcite and quartz. Occurrence of cyclohexylbenzene and its alkyl-derivatives as well as cyclohexylfluorenes in solid bitumens suggest that they formed from oil accumulations under the influence of relatively high temperatures in oxidizing conditions.Homogenization temperatures for aqueous/brine inclusions in quartz within the Dukla and Silesian units (Polish and Ukrainian segments) are between 125 and 183.9 °C, while salinities are low in the interval of 0.2–5.5 wt% NaCl eq. The inclusions in calcite homogenize at higher temperatures of almost 200 °C and the brine displays higher salinity than the fluid in the quartz. Two quartz generations may be distinguished by inclusion and isotope characteristics and the macroscopic diversity. Oil inclusions homogenize at 95 °C. One phase inclusions in quartz contain methane, CO2 and nitrogen in variable proportions.  相似文献   

9.
Shales of the Silurian Dadaş Formation exposed in the southeast Anatolia were investigated by organic geochemical methods. The TOC contents range from 0.24 to 1.48 wt% for the Hazro samples and 0.19 to 3.58 wt% for the Korudağ samples. Tmax values between 438 and 440 °C in the Hazro samples indicate thermal maturity; Tmax values ranging from 456 to 541 °C in the Korudağ samples indicate late to over-maturity. Based on the calculated vitrinite reflectance and measured vitrinite equivalent reflectance values, the Korudağ samples have a maximum of 1.91%R(g-v), in the gas generation window, while a maximum value of 0.79%R(amor-v) of one sample from the Hazro section is in the oil generation window. Illite crystallinity (IC) values of all samples are consistent with maturity results.Pr/Ph ratios ranging from 1.32 to 2.28 and C29/C30 hopane ratios > 1.0 indicate an anoxic to sub-oxic marine-carbonate depositional environment.The Hazro shales do not have any shale oil or shale gas potential because of their low oil saturation index values and early to moderate thermal maturation. At first glance, the Korudağ shales can be considered a shale gas formation because of their organic richness, thickness and thermal over-maturity. However, the low silica content and brittle index values of these shales are preventing their suitability as shale gas resource systems.  相似文献   

10.
Interest in factors controlling lacustrine source rock deposition has increased over the last few decades because this type of deposits contain significant petroleum resources. Generally, tectonic subsidence and climate are the two root causes as they control the accommodation potential, water column properties and sources of organic matter. In this study, coupling organic geochemical and elemental geochemical data, two potential source rocks, i.e., the Eocene Wenchang Formation (E2w) and Oligocene Enping Formation (E3e) were investigated. Two models were finally raised to explain deposition of the two set of source rocks according to their paleoclimatic and tectonic properties. The source rock potential shows a strong heterogeneity. The second member of the Eocene Wenchang Formation (E2w2) is characterized by high organic matter content and oil-prone kerogen type. In contrast, the first member of the Eocene Wenchang Formation (E2w1) and the Oligocene Enping formation (E3e) are characterized by low organic matter content and gas-prone kerogen type. The primary productivity and depositional environment exhibit notable differences between the two potential source rocks horizons and show an obvious variation from the depocenter to the slope and can be best explained by the coevolution of tectonic subsidence and climate. During the E2w depositional stage, low sediment supply led to mudstone deposited in deep lacustrine environment and resulted in underfilled lake basin. The low water inflow provided little terrigenous organic matter (low bicadinane, perylene and floranthene contents) and oxygen. Besides, the low area/depth ratio impeded the water circulation, thus resulted in shallow thermocline and anoxic-suboxic bottom environment (abundant dibenzothiophene and high C35/C3122S hopane ratios). Therefore abundant algae, which contributed to the high amorphous organic matter (AOM) content, can be preserved. The warm and wet climate (high Mn/Mg ratios) gave birth to autochthonous organism, such as dinoflagellates and Pavlova gyrans (abundant 4-methyl sterane). During the E3e depositional stage, the sufficient sedimentary supply resulted in expanding, shallow lacustrine and swamp environment. The higher area/depth ratio and high sediment supply made environment unstable and can be strongly influenced by external environment (broader range of Mn/Mg ratios). Enough terrigenous organic matter (TOM) was transported to the slope but little to the depocenter. The slightly hot and dry climate (low Mn/Mg ratios) led to decreasing autochthonous organism and evaporation environment. The shallow water depth and relative dry climate resulted in saline, suboxic-dysoxic acid bottom environment. The co-variation of organic and inorganic indexes indicates the combination is a valid method in reconstructing source rock depositional models.  相似文献   

11.
The Yanshiping section, which includes the Quemo Co, Buqu, Xiali, Suowa and Xueshan Formations (Yanshiping Group) exposes organic-rich Middle to Late Jurassic deposits in the Qiangtang Basin of northern Tibet. The biostratigraphic data, from bivalves, brachiopods as well as dinoflagellate cysts, define a Bajocian to Tithonian age. This study focuses on the biomarkers present in these mudstones and limestones to determine the sources, thermal maturity and depositional environment of the organic matter. Most samples show a clear dominance of short-chain (C15–C20) n-alkanes with a maximum at C19 or C19 with a secondary maximum at C23 except for the sample BP01(22)S1 where the predominant range is C22 to C26 with a maximum at C24, significant CPI and odd-to-even predominance. The hopanoids and steroids suggest that the sources of organic matter were dominated by phytoplankton, especially algae, as the primary source. Furthermore, the Pr/Ph, Pr/nC17 and Ph/nC18, with relatively low values plus high abundance of 17α(H)-hopanes, support deposition in dysoxic to reducing, relatively shallow-water depositional settings, and the presence of gammacerane indicates normal marine salinity and/or water-column stratification. All samples are fairly mature with respect to petroleum generation, a conclusion supported by maturity parameters such as C31 22S/(22S + 22R) hopanes and C29 ααα20S/(20S + 20R) steranes.  相似文献   

12.
The sedimentary system of Kalimantan has undergone significant development since the Oligocene. Previous research have largely ignored the capacity of the Cretaceous–Eocene sediments to produce hydrocarbons,focusing instead primarily on the Oligocene–Miocene coal as the principal source rocks. Shales and coals from the outcrops in the northern margin of Kalimantan were analyzed with palynological and geochemical methods to characterize the palaeoenvironmental and palaeoecological differences bet...  相似文献   

13.
Fluctuations in lacustrine sedimentary environments significantly affect distributions of organic matter (OM), uranium, and other elements in shales. In this study a high-resolution geochemical record of fluctuations in the paleo-depositional environment of a terrestrial lake basin is provided on the basis of extensive samples collected from the Member 3 of the Paleogene Shahejie Formation (Es3) of the Niu-38 well in the Dongying Depression, Eastern China. These samples were tested for total organic carbon (TOC), element concentrations, and biomarkers to study the evolution and fluctuation in the depositional environments of an ancient lake basin and associated geochemical response. The evolution and fluctuation of the sedimentary environment from a deep lake to a semi-deep lake and then to a shallow lake delta were indicated by geochemical response. During this evolution, the values of TOC, S1, S2, Sr, and Ts/(Ts + Tm) remarkably decreased, whereas those of Co, Ni, Rb, Na, Fe/Mn, Fe/(Ca + Mg), and C29 mortane/C29 hopane significantly increased. The deep lake basin shows depositional fluctuations, as indicated by rock lithofacies and their geochemical parameters. A close interrelationship was observed among U concentration, TOC content, and inorganic element content. Uranium concentrations are positively correlated with TOC contents, Ca and Sr concentrations, and Sr/Ba and Ca/Mg ratios but negatively with K, Na, Ba, and Rb contents and Fe/(Ca + Mg) and Fe/Mn ratios. The observed increase in U concentration in the lower Es3 section is closely related to surface adsorption by clay minerals and OM, together with some replacements of Ca and Sr by U in the shales.  相似文献   

14.
The Late Cretaceous sedimentary record of the North American Western Interior Seaway is characterized by cyclic deposition of organic carbon-rich sediments. One notable interval during the late Coniacian-Santonian is recorded by the Niobrara Formation. The organic carbon-rich interval within the Niobrara Formation has been identified as Oceanic Anoxic Event (OAE) 3. Understanding the reason for this distribution of organic carbon within the Niobrara Formation requires a refined understanding of the source and maturity of the organic matter. In this study, we present lipid biomarker records from the USGS Portland #1 core (Cañon City, CO) to constrain the thermal maturity of the organic matter and the differing contributions of organic matter sources. Sterane and hopane thermal maturity indices indicate that the samples are somewhat immature with respect to oil formation and that there is strong agreement between different proxies for thermal maturity. Based on the distribution of n-alkanes, steranes, and hopanes, there is a significant increase in the contribution of algal organic matter during and after OAE 3, coeval with increased organic carbon accumulation. Although a consistent terrestrial contribution is observed, it is only a minor source of organic matter at the Portland core location and does not drive increased organic matter accumulation during OAE 3. Of particular note is the consistent influence of even-over-odd predominantly mid-chain length (C21 to C25) organic matter. This observation within the brackish to marine, not methanogenic WIS represents an expansion of the depositional settings in which even-over-odd predominance has been observed in mid-chain length n-alkanes. Pristane (Pr) and phytane (Ph) abundances are inconsistent with a redox control on Pr/Ph ratios and suggest an increase in the delivery and/or preservation of phototrophic organic matter as the source for pristane and phytane in the Portland core.  相似文献   

15.
Shixi Bulge of the central Junggar Basin in western China is a unique region that provides insight into the geological and geochemical characteristics of large-scale petroleum reservoirs in volcanic rocks of the western Central Asian Orogenic Belt. Carboniferous volcanic rocks in the Shixi Bulge mainly consist of striped lava and agglomerate, as well as breccia lava and tight tuff. Volcanic rocks differ in porosity and permeability. Striped lava exhibits the highest porosity (average: 14.2%) but the lowest permeability (average: 0.67 × 10−15 m) among the rock types. Primary gas pores are widely developed and mostly filled. Secondary dissolution pores and fractures are two major reservoir storage spaces. Capillary pressure curves suggest the existence of four pore structure types of reservoir rocks. Several factors, namely, lithology, pore structure, and various diagenesis, govern the physical properties of volcanic rocks. The oil is characterized by a high concentration of tricyclic terpane, a terpane distribution of C23 < C21 > C20, and sterane distributions of C27 < C28 < C29 and C27 > C28 < C29. Oil and gas geochemistry revealed that the oil is a mixture derived primarily from P2w source rock and secondarily from P1j source rock in the sag west of Pen-1 Well. The gases are likely gas mixtures of humic and sapropelic organic origins, with the sapropelic gas type dominant in the mixture. The gas mixture is most likely cracked from kerogen rather than oils. The Carboniferous volcanic reservoirs in Shixi Bulge share some unique characteristics that may provide useful insights into the various roles of different volcanic reservoir types in old volcanic provinces. The presence of these reservoirs will undoubtedly encourage future petroleum exploration in volcanic rocks up to the deep parts of sedimentary basins.  相似文献   

16.
对两种原油进行混合配比实验,将混合后油样置于人工气候箱进行风化模拟实验,采用气相色谱质谱联用仪(GC-MS)检测风化样品中的生物标志化合物,短期风化作用对混合溢油的油指纹、生物标志化合物诊断指标等的影响。结果表明,混合溢油的正构烷烃总质量变化与单一原油油品的变化规律相近,即前期风化较快,质量减损较多,而后期风化趋缓,不同混合比例的溢油表现差异不明显。常用于短期风化的诊断比值对各混合油样的风化具有指示意义,但难以定性鉴别油品是否发生混合。重复性限法检验只能判定短期风化过程前后的油样为同一油源,而难以反映油样是否为混合油源的特征,各诊断比值的RSD%值较大可能是混合溢油的一个表现。  相似文献   

17.
In the tidally influenced Fraser River, Canada, palynological and carbon isotope (δ13Corg) signatures of channel-margin sediments are compared to environmental parameters (e.g., grain size, water salinity) to establish how the signatures vary across the tidal–fluvial transition. Palynological assemblages in the Fraser River are dominated by tree pollen, which constitutes between 85% and 95% of all assemblages. Dinocyst abundances do not exceed 2% of the total palynological assemblage, and the number and diversity of dinocysts gradually decreases landward. The calculated landward limit for dinocysts is at approximately 83 river km, which is relatively close to the upstream limit of the tidal backwater (at ∼100 km). δ13Corg values show minimal variability across the tidal–fluvial transition, and the average value is approximately −26‰. The δ13Corg signature of river sediments indicates a dominance of terrestrially sourced organic matter regardless of brackish-water and tidal influence on sediment deposition.Six palynological and geochemical trends are identified as relevant to the rock record. 1) In deltaic environments, palynological and geochemical characteristics are less useful than sedimentological and ichnological characteristics for establishing depositional conditions. 2) In marginal-marine settings, low abundances and low species diversities of dinocysts, coupled with a “terrestrial” geochemical signature (δ13Corg < −25‰) do not necessarily indicate deposition in a terrestrial environment. 3) Dinocyst abundances above 1% of the total palynomorph population can indicate a significant marine influence on sediment deposition. 4) Mud beds, preferably bioturbated, should be preferentially sampled in order to maximize palynomorph recovery. 5) Marine palynomorphs can occur, albeit in very low concentrations, to the landward limit of the tidal–backwater zone. 6) Palynological and geochemical data should be compared across the paleo-depositional environment in order to establish general trends and remove local variations caused by biases such as grain size.  相似文献   

18.
The assessment of gas origin in mud volcanoes and related petroleum systems must consider post-genetic processes which may alter the original molecular and isotopic composition of reservoir gas. Beyond eventual molecular and isotopic fractionation due to gas migration and microbial oxidation, investigated in previous studies, we now demonstrate that mud volcanoes can show signals of anaerobic biodegradation of natural gas and oil in the subsurface. A large set of gas geochemical data from more than 150 terrestrial mud volcanoes worldwide has been examined. Due to the very low amount of C2+ in mud volcanoes, isotopic ratios of ethane, propane and butane (generally the best tracers of anaerobic biodegradation) are only available in a few cases. However, it is observed that 13C-enriched propane is always associated with positive δ13CCO2 values, which are known indicators of secondary methanogenesis following anaerobic biodegradation of petroleum. Data from carbon isotopic ratio of CO2 are available for 134 onshore mud volcanoes from 9 countries (Azerbaijan, Georgia, Ukraine, Russia, Turkmenistan, Trinidad, Italy, Japan and Taiwan). Exactly 50% of mud volcanoes, all releasing thermogenic or mixed methane, show at least one sample with δ13CCO2 > +5‰ (PDB). Thermogenic CH4 associated with positive carbon isotopic ratio of CO2 generally maintains its δ13C-enriched signature, which is therefore not perturbed by the lighter secondary microbial gas. There is, however, high variability in the δ13CCO2 values within the same mud volcanoes, so that positive δ13CCO2 values can be found in some vents and not in others, or not continuously in the same vent. This can be due to high sensitivity of δ13CCO2 to gas–water–rock interactions or to the presence of differently biodegraded seepage systems in the same mud volcano. However, finding a positive δ13CCO2 value should be considered highly indicative of anaerobic biodegradation and further analyses should be made, especially if mud volcanoes are to be used as pathfinders of the conditions indicative of subsurface hydrocarbon accumulations in unexplored areas.  相似文献   

19.
The Es3L (lower sub-member of the third member of the Eocene Shahejie Formation) shale in the Jiyang Depression is a set of relatively thick and widely deposited lacustrine sediments with elevated organic carbon, and is considered to be one of the most important source rocks in East China. We can determine the mineralogy, organic and inorganic geochemistry of the Es3L shale and calculate paleoclimate indexes by using multiple geochemical proxies based on organic chemistry (total organic carbon [TOC] and Rock-Eval pyrolysis), major and trace elements, X-Ray diffraction, and carbon and oxygen isotope data from key wells alongside ECS (Elemental Capture Spectroscopy) well log data. These indicators can be used to analyze the evolution of the paleoenvironment and provide a mechanism of organic matter (OM) accumulation. The Es3L oil shale has high TOC abundance (most samples >3.0%) and is dominated by Type I kerogens. Additionally, the organic-rich shale is rich in CaO and enrichment in some trace metals is present, such as Sr, Ba and U. The positive δ13C and negative δ18O values, high Sr/Ba, B/Ga and Ca/Ca + Fe ratios and low C/S ratios indicate that the Es3L shales were mainly deposited in a semi-closed freshwater-brackish water lacustrine environment. The consistently low Ti/Al and Si/Al ratios reflect a restricted but rather homogeneous nature for the detrital supply. Many redox indicators, including the Th/U, V/(V + Ni), and δU ratios, pyrite morphology and TOC-TS-Fe diagrams suggest deposition under dysoxic to suboxic conditions. Subsequently, the brackish saline bottom water evolved into an anoxic water body under a relatively arid environment, during which organic-lean marls were deposited in the early stage. Later, an enhanced warm-humid climate provided an abundant mineral nutrient supply and promoted the accumulation of algal material. OM input from algal blooms reached a maximum during the deposition of the organic-rich calcareous shale with seasonal laminations. High P/Ti ratios and a strongly positive relationship between the P and TOC contents indicate that OM accumulation in the oil shale was mainly controlled by the high primary productivity of surface waters with help from a less stratified water column. Factors such as the physical protection of clay minerals and the dilution of detrital influx show less influence on OM enrichment.  相似文献   

20.
Evidence from geochemical tracers (salinity, oxygen, silicate, nutrients, alkalinity, dissolved inorganic carbon (DIC), carbon isotopes (δ13CDIC) and radiocarbon (Δ14C)) collected during the Pacific Ocean World Ocean Circulation Experiment (WOCE) voyages (P10, P15, P17 and P19) indicate there are three main water types at intermediate depths in the Pacific Ocean; North Pacific Intermediate Water (NPIW), Antarctic Intermediate Water (AAIW) and Equatorial Pacific Intermediate Waters (EqPIW). We support previous suggestions of EqPIW as a separate equatorial intermediate depth water as it displays a distinct geochemical signature characterised by low salinity, low oxygen, high nutrients and low Δ14C (older radiocarbon). Using the geochemical properties of the different intermediate depth waters, we have mapped out their distribution in the main Pacific Basin.From the calculated pre-formed δ13Cair–sea conservative tracer, it is evident that EqPIW is a combination of AAIW parental waters, while quasi-conservative geochemical tracers, such as radiocarbon, also indicate mixing with old upwelling Pacific Deep Waters (PDW). The EqPIW also displays a latitudinal asymmetry in non-conservative geochemical tracers and can be further split into North (NEqPIW) and South (SEqPIW) separated at ~2°N. The reason for this asymmetry is caused by higher surface diatom production in the north driven by higher silicate concentrations.The δ13C signature measured in benthic foraminifera, Cibicidoides spp.13CCib), from four core tops bathed in AAIW, SEqPIW and NPIW, reflects that of the overlying intermediate depth waters. The δ13CCib from these cores show similarities and variations down-core that highlight changes in mixing over the last 30,000 yr BP. The reduced offset between the δ13CCib of AAIW and SEqPIW during the last glacial indicates that AAIW might have had an increased influence in the eastern equatorial Pacific (EEP) region at this time. Additional intermediate depth cores and other paleo-geochemical proxies such as Cd/Ca and radiocarbon are required from the broader Pacific Ocean to further understand changes in intermediate depth water formation, circulation and mixing over glacial/interglacial cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号